The Land Conservancy OF SAN LUIS OBISPO COUNTY

P.O. BOX 12206 • SLO, CA 93406 • (805) 544-9096 • FAX (805) 544-5122 VISIT US ONLINE AT: WWW.LCSLO.ORG

September 1st, 2010

Re: Santa Rosa Creek Watershed Conservation Plan Final Release

To All Interested Parties:

The Land Conservancy of San Luis Obispo County is pleased to announce the release of the *Santa Rosa Creek Watershed Conservation Plan*. This plan was funded in 2007 through a grant awarded by the California State Coastal Conservancy for a total cost of \$81,000.

The purpose of the Plan was to:

- Compile and summarize existing data regarding land use, water resources, sensitive habitat, and fisheries to inform future and ongoing studies (such as the *Santa Rosa Creek Watershed Management Plan* funded by the California Department of Fish and Game).
- Identify and prioritize conservation projects informed by erosion modeling and spatial analysis.
- Recommend land restoration techniques and practices which improve habitat for steelhead and other sensitive species of flora and fauna in Santa Rosa Creek.

The specific intent of the project is to guide the efforts of The Land Conservancy and other conservation professionals working with willing landowners and funding entities to complete priority voluntary conservation projects in the watershed.

The Land Conservancy and the California Coastal Conservancy hope that practitioners find the plan useful as they undertake efforts to protect this relatively pristine watershed and to support the family farmers and ranchers that steward the land.

For additional information, or to obtain a digital copy of the plan, please contact me at (805) 544-9096 or Tim Duff, Project Manager with the California State Coastal Conservancy, at (510) 286-3826.

Best Wishes,

Kaila Dettman Deputy Director

Santa Rosa Creek Watershed Conservation Plan

Prepared for California Coastal Conservancy

by The Land Conservancy of San Luis Obispo County

August 2010

Santa Rosa Creek Watershed Conservation Plan

Prepared for California Coastal Conservancy by

Land Conservancy of San Luis Obispo County

August 2010

Contributing Authors: Donald Alley- D.W. ALLEY & Associates Stacey Smith- Soils and Geographic Information Systems Consultant Kaila Dettman- Land Conservancy of San Luis Obispo County Bob Hill-Land Conservancy of San Luis Obispo County Michael LeBrun- Land Conservancy of San Luis Obispo County Brian Stark- Land Conservancy of San Luis Obispo County

The Santa Rosa Creek Watershed Conservation Plan was made possible with funding provided by the California Coastal Conservancy and guidance from the Technical Advisory Committee.

Technical Advisory Committee Agencies/Organizations: California Coastal Conservancy California Department of Fish and Game Natural Resources Conservation Services Upper Salinas Las Tables Resource Conservation District Cambria Community Services District San Luis Obispo County Farm Bureau Central Coast Salmon Enhancement Friends of Fiscalini Ranch Greenspace - The Cambria Land Trust Land Conservancy of San Luis Obispo County

ACKNOWLEDGMENTS

The Land Conservancy wishes to acknowledge the following individuals who offered their time, resources, and expertise to assist the development of the Santa Rosa Creek Watershed Conservation Plan.

Cambria Community Services District-who provided an extensive list of published resources for watershed conservation and restoration in the Santa Rosa Creek Watershed.

Bobby Jo Close, County of San Luis Obispo-who supplied valuable spatial data which informed nearly all areas of the Conservation Plan.

Joy Fitzhugh, San Luis Obispo County Farm Bureau-whose working knowledge provided an overview of historic and present activities in the watershed.

D.J. Funk, Upper Salinas Las Tables Resource Conservation District-who provided road erosion information which assisted in upland erosion analysis.

Brent Hallock, California Polytechnic State University-who brought a wealth of knowledge and experience in erosion assessments which guided the RUSLE2 erosion study.

Richard Hawley, The Cambria Land Trust-who assisted in acquiring existing documentation.

Tom Mastin, California Polytechnic State University-who provided his expertise and technical support for spatial data acquisition, which included aerial imagery cropping and digital elevation modeling.

Stephnie Wald, Central Coast Salmon Enhancement-who provided valuable planning guidance and feedback to develop the Conservation Plan.

TABLE OF CONTENTS

ACKNOWLEDGMENTS i
LIST OF FIGURES
LIST OF TABLES ix
LIST OF PHOTOGRAPHS
1. EXECUTIVE SUMMARY
2. INTRODUCTION
2.1. PURPOSE
2.2. TECHNICAL ADVISORY COMMITTEE5
3. BACKGROUND
3.1. GEOGRAPHIC SETTING
3.2. CLIMATE
3.3. DEMOGRAPHICS
3.4. PRE-HISTORY
3.5. EUROPEAN HISTORY15
Settlement and Development15
Mining17
Flooding19
3.6. CULTURAL RESOURCES
3.7. VEGETATION
Mesomorphic Tree Vegetation-Forest and Woodlands21
Mesomorphic Shrub Vegetation
Mesomorphic Herbaceous Vegetation28
Temperate Flooded Riparian Vegetation29
Temperate Meadow and Freshwater Marsh29
Special Status Plant Species
Non-native Invasive Plant Species

3.8. WILDLIFE	
Special Status Animal Species	
3.9. GEOLOGY	
3.10. SOILS	
4. ASSESSMENT COMPONENTS	
4.1. RUSLE2 PREDICTED SOIL LOSS	
RUSLE2 Background	
Variables Used in RUSLE2 Calculations	
RUSLE2 Outputs	46
RUSLE2 Assessment Methods	
RUSLE2 Assessment Results	
4.2. UPLAND EROSION MAPPING	54
Upland Erosion Mapping Results	56
4.3. FISHERIES ASSESSMENT	63
Fisheries Resources	63
Santa Rosa Creek Habitat Characteristics	74
Limiting Factors Affecting the Steelhead Population in Santa Rosa Creek	74
Steelhead Population Assessment	
Tidewater Goby Ecology	92
4.4. LAND USES AND OWNERSHIP PATTERNS	93
Land Use Assessment Background	93
Existing Plans	93
GIS Land Use Assessment Methods	
GIS Land Use Assessment Results	
5. RECOMMENDED CONSERVATION STRATEGIES	111
5.1. Land Acquisition Strategies	

Conservation Easements	
Land Purchase (Fee Simple)	
5.2. Restoration Strategies	
5.3. Long Term Management Strategies	
5.4. Wildlife Habitat and Riparian Restoration MMPs	
Agricultural MMPs	
Irrigated Row Crops and Orchards	
Urban MMPs	
Construction MMPs	
5.5. Recommended Priorities and Ranking System	
Steelhead Habitat	
Presence of Listed Threatened or Endangered Species	
Persistent Baseflow	
Stream Corridors	
Erosion Potential	
Monterey Pines	
Development Potential	
Connectivity with Existing Public and Private Conservation Land	
Other Potential Criteria	
5.6. CONCLUSION	
6. EXISTING DATA	
7. STATUTORY FRAMEWORK	
7.1. POLITICAL DISTRICTS	
Congressional District	
State Senate District	
Assembly District	

	7.2. FEDERAL REGULATORY AGENCIES	130
	U.S. Army Corps of Engineers (USACE)	130
	U.S. Fish and Wildlife Service (USFWS)	131
	National Oceanic and Atmospheric Administration (NOAA) Fisheries Service	131
	Monterey Bay National Marine Sanctuary (MBNMS)	131
	U.S. Environmental Protection Agency (USEPA)	132
	7.3. STATE REGULATORY AGENCIES	132
	California Department of Fish and Game (CDFG)	132
	Regional Water Quality Control Board (Regional Boards)	132
	California Coastal Commission	133
	7.4. Non-Regulatory agencies	133
	Natural Resources Conservation Service (NRCS)	133
	Resources Conservation District (RCD)	133
	San Luis Obispo County Farm Bureau	134
	Land Conservancy of San Luis Obispo County	134
	Greenspace The Cambria Land Trust	134
	Central Coast Salmon Enhancement (CCSE)	135
	7.5. LOCAL GOVERNMENT	135
	County of San Luis Obispo Planning and Building	135
	Cambria Community Services District	135
8.	REFERENCES	136
9.	GLOSSARY	
	9.1. GEOLOGY TERMINOLOGY	142
	9.2. SOILS TERMINOLOGY	142
	9.3. GIS TERMINOLOGY	144

APPENDIX A	Special Status Vegetative Species Located in the Santa Rosa Creek Watershed
APPENDIX B	Non-native Invasive Plant Species Located in the California Floristic Province, Central West
APPENDIX C	Animal Species Located in Lower Santa Rosa Creek Watershed Fiscalini Ranch Preserve
APPENDIX D	Special Status Animal Species Located in the Santa Rosa Creek Watershed
APPENDIX E	Geologic Map Units Located in the Santa Rosa Creek Watershed
APPENDIX F	Soil Map Units Located in the Santa Rosa Creek Watershed
APPENDIX G	GIS Data Descriptions and Sources
APPENDIX H	Methods for Determining Predicted Soil Loss Using RUSLE2 and GIS
APPENDIX I	RUSLE2 Results for Soil Map Units in the Upper Santa Rosa Creek Watershed
APPENDIX J	Predicted Soil Loss by Blue Line Stream Drainages and Other Drainages within the Upper Santa Rosa Creek Watershed
APPENDIX K	Pictures of Erosion Examples Occurring Throughout the Santa Rosa Creek Watershed
APPENDIX L	Santa Rosa Creek Watershed Fisheries and Hydrologic Assessment
APPENDIX M	North Coast Area Plan Environmental Goals
APPENDIX N	Cambria Community Services District California Municipal Code
APPENDIX O	Land Use Code Descriptions
APPENDIX P	Stream Restoration Management Measures and Practices
APPENDIX Q	Existing Informative Resources for the Santa Rosa Creek Watershed

LIST OF FIGURES

Figure 1.	Santa Rosa Creek Watershed Regional Map	7
Figure 2.	Santa Rosa Creek Watershed and Sub-watershed Boundaries	8
Figure 3.	Perry Creek and Fiscalini Creek Confluence	10
Figure 4.	Santa Rosa Creek Outlet	11
Figure 5.	Santa Rosa Creek Watershed Blue-Line Streams	12
Figure 6.	Santa Rosa Creek Watershed Vegetation Formations	22
Figure 7.	Santa Rosa Creek Watershed Oak Species	23
Figure 8.	Monterey Pine Forest Stand Locations in the Santa Rosa Creek Watershed	24
Figure 9.	Geologic Units and Faults in the Santa Rosa Creek Watershed	34
Figure 10.	Soil Map Units for Lower Santa Rosa Creek Watershed	37
Figure 11.	Soil Map Units for Upper Santa Rosa Creek Watershed Sub-watershed	38
Figure 12.	Soil Map Units for Perry Creek Sub-watershed	40
Figure 13.	Soil Erodibility (K-Factor Values) in the Santa Rosa Creek Watershed	42
Figure 14.	Detachment, runoff, and deposition as described in RUSLE2 calculations	44
Figure 15.	Sediment yield of a uniform slope in RUSLE2	44
Figure 16.	Drainage Boundaries Used for RUSLE2 Analysis	48
0	Predicted Soil Loss (tons/acre) from Upper Santa Rosa Creek Watershed Using SLE2	51
Figure 18.	Predicted Soil Loss (tons/year) from Upper Santa Rosa Creek Watershed by Soil	
Ma	p Unit Using RUSLE2	52
Figure 19.	Predicted Soil Loss of Upper Santa Rosa Creek Watershed Drainages Using	
RU	SLE2	53
Figure 20.	Upland Erosion Sites Located in the Santa Rosa Creek Watershed	58
-	Histogram of ephemeral gully and gully erosion site size in the Santa Rosa Creek tershed	60
Figure 22.	Histogram of road erosion site size identified using GIS and 2007 aerial imagery	61
Figure 23.	Santa Rosa Creek Stream Reaches as Defined by D.W. ALLEY & Associates	67
Figure 24.	Map of Structures and Barriers in the Santa Rosa Creek Watershed, by CDFG	69
0	D.W. ALLEY & Associates' map of stream reaches indicating stream nomenclature tributaries along Santa Rosa Creek	71
Figure 26.	Rainfall amounts in Santa Rosa Creek, from July 1986-June 2007	77
Figure 27.	Measured streamflow in fall at sampling sites in Santa Rosa Creek, 1998-2006	78

Figure 28. Percent fines in pools in reaches of Santa Rosa Creek at four-year intervals, from 1998-2006	82
Figure 29. Percent fines in step-runs and runs in reaches of Santa Rosa Creek, at four-year intervals, from 1998-2006	82
Figure 30. Substrate embeddedness in step-runs and runs in reaches of Santa Rosa Creek, at four-year intervals, from 1998-2006	83
Figure 31. Substrate embeddedness in pools in reaches of Santa Rosa Creek, at four-year intervals, from 1998-2006	83
Figure 32. Relationship between percent embryo survival and geometric mean diameter of the spawning substrate	84
Figure 33. Relationship between average percent fry emergence survival and percentage of 1-3mm sand	85
Figure 34. Escape cover index for pool habitat types in habitat typed segments of reaches in Santa Rosa Creek, at four-year intervals, from 1998-2006	87
Figure 35. Annual young-of-the-year densities at Lower Valley Santa Rosa Creek sites, from 1997-2006	89
Figure 36. Annual young-of-the-year densities at Upper Canyon Santa Rosa Creek sites, from 1997-2006	89
Figure 37. Average site density for young-of-the-year steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1997-2006	
Figure 38. Annual total juvenile densities at Lower Valley Santa Rosa Creek sites, 1994-2006.	90
Figure 39. Annual rainfall measured at the Cambria Wastewater Treatment Plant in the Lower Santa Rosa Creek Watershed, 1986-2007	91
Figure 40. Santa Rosa Creek Watershed Planning Areas and Jurisdictional Boundaries	94
Figure 41. Rural Land Use Classifications for Santa Rosa Creek Watershed	100
Figure 42. National Land Cover Data (NLCD) for Santa Rosa Creek Watershed	102
Figure 43. Lower Santa Rosa Creek Watershed land uses based on primary land use codes (PrimLUC) from the County of San Luis Obispo Assessor's Office parcel data	103
Figure 44. "Family" Parcel Blocks in the Upper Santa Rosa Creek Watershed	106
Figure 45. Williamson Act Parcels in the Santa Rosa Creek Watershed	108

LIST OF TABLES

Table 1. Santa Rosa Creek Watershed Conservation Plan Technical Advisory Committee	5
Table 2. Total acreage of Santa Rosa Creek Watershed and sub-watersheds	9
Table 3. Santa Rosa Creek Watershed vegetation formation categories, total acres, and percent of watershed area, identified by the County of San Luis Obispo and AIS, 2008	25
Table 4. Santa Rosa Creek Watershed tree category vegetation identified by the County of San Luis Obispo and AIS, 2008.	26
Table 5. Acreage and predicted annual soil loss values for the Upper Santa Rosa Creek Watershed and sub-watersheds	49
Table 6. Mapped upland erosion site statistics for Santa Rosa Creek Watershed and sub- watersheds	57
Table 7. Mapped unclassified road lengths within Santa Rosa Creek Watershed and sub- watersheds	59
Table 8. Santa Rosa Creek mainstem stream reach descriptions and reach lengths, from channe mile 0.5, to Mora Creek, as defined by D.W. ALLEY and Associates, in Fall 2006	
Table 9. Limiting factors to steelhead in the Santa Rosa Creek mainstem and lagoon	75
Table 10. Historical record of sandbar closure at Santa Rosa Lagoon (1993-2007) and San Simeon Lagoon (1991-92)	92
Table 11. Rural land use classification: sum of acres and percent of total watershed area	101
Table 12. County Agricultural Commissioner's Office crop data edited	109
Table 13. Primary Land Use Code statistics for Upper Santa Rosa Creek Watershed, excluding the densely populated residential area of Perry Creek Sub-watershed	
Table 14. Management measures and practices used to protect stream banks and infrastructure, establish riparian vegetation, and improve habitat for sensitive species	
Table 15. Management measures and practices used to reduce impacts to water bodies in urban areas	
Table 16. Management measures and practices used to protect sensitive habitats during construction projects	124

LIST OF PHOTOGRAPHS

Photo 1.	Outbuildings at Oceanic Mine, 1917	18
Photo 2.	The town of Cambria in 1956, after heavy precipitation caused a devastating flood	19

1. EXECUTIVE SUMMARY

The Santa Rosa Creek Watershed, located in northern San Luis Obispo County, California, is a coastal watershed of 30,395 acres and is nestled between the Pacific Ocean and the Santa Lucia Mountains (Fig. 2, pg. 10). Coastal streams within this watershed provide critical habitat for south-central California coast steelhead trout *(Oncorhynchus mykiss irideus)*, a federally threatened species in this region. In recognition of the watershed's importance to the survival of steelhead on the Central Coast, the 2007 funding from the California Coastal Conservancy was allocated to the Land Conservancy of San Luis Obispo County to develop the Santa Rosa Creek Watershed Conservation Plan (Conservation Plan).

Components of the Conservation Plan include:

1. Compilation of existing data

Geography, climate, history, demographic, soil, geology, hydrology, and biology data were gathered to create the direction of the Conservation Plan. Over 230 reports or reference documents, watershed data, websites of interest, and over 30 personal contacts were identified and compiled. In addition, 85 Geographic Information Systems (GIS) data layers were either acquired through San Luis Obispo County and various online databases, or created during the preparation of this plan.

2. Collection of additional data

Data were collected to identify upland erosion sites, predict annual erosion rates, assess land use, and study limiting factors to steelhead in the Santa Rosa Creek Watershed. Upland erosion sites were mapped using 2007 aerial photographs, field reconnaissance, and GIS. Upland erosion appears moderate with only a few large gullies or landslides identified. Smaller gullies associated with drainages were more common and usually present on annual grasslands used for grazing.

Erosion Rates

Annual predicted erosion rates were calculated for the upper Santa Rosa Creek Watershed using the United States Department of Agriculture, Natural Resources Conservation Service (USDA, NRCS) RUSLE2 program. The upper watershed drains into Santa Rosa Creek from the Santa Lucia Mountains, downstream to the Main Street and Santa Rosa Creek crossing near Coast Union High School (Fig. 2, pg. 10). The lower watershed could not be assessed using RUSLE2 because the area is highly developed with residential and commercial properties.

A predicted erosion rate was calculated for each soil map unit according to NRCS Soil Survey data in all drainages within the upper watershed. Land between drainages was studied separately. The upper watershed has a combined probable erosion rate of 56,271 tons of soil per year, with drainages located further upstream having larger total predicted erosion rates. According to Brent Hallock, Earth and Soil Science Department at California Polytechnic State University, annual erosion rates at or exceeding five tons of soil per acre is considered unsustainable. From 1,169 assessed soil map units, 37 units had a predicted soil loss rate of five or more tons of soil per acre, annually. This leads to a combined area of 1,617 acres that exceed sustainable erosion rates. Erosion from gullies, mines, and roads, including ranch roads, are also significant sources of sediment. However, these sources could not be assessed using RUSLE2 within the scope of this project due to limitations on accessing private lands.

Land Use

The land use assessment conducted for the Conservation Plan was completed using parcel data, GIS data, 2007 aerial imagery, and digital topographic quadrangles (Figs. 41-45, pgs. 125-136). The upper and lower watersheds have been summarized separately due to differences in land use. Land use in the lower watershed is primarily residential while land use in the upper watershed is primarily agricultural.

The lower watershed drains from the Main Street and Santa Rosa Creek crossing, downstream to the Pacific Ocean. Land use in the lower watershed is mostly residential with over 80 percent of all property owners in the watershed concentrated here. According to parcel data, 847 acres, or 63 percent of the lower watershed, is residential. Agriculture is the second biggest land use in the lower watershed with two large agricultural properties located on the northern edge of town and totaling 258 acres, or 19 percent of lower watershed area. The business, commercial, and industrial sectors of Cambria are located in the lower watershed. Although they only account for 95 acres, or seven percent of the lower watershed, they are a distinct feature in the town of Cambria.

The upper watershed land uses are noticeably different than the lower watershed land uses. According to parcel data, the primary land use in the upper watershed is agriculture. Using parcel data, aerial imagery, and field reconnaissance, cattle grazing appears to be the most common land use. Other common land uses are dry farming, rural residential, and irrigated crops such as grapes, avocados, and apples. Parcels are generally much larger than lower watershed parcels, there is one high density residential area located along the western boundary of the upper watershed. This area is approximately 67 acres, or less than one percent of the entire upper watershed area, and is a continuation of the lower watershed's residential area that reaches near the confluence of Perry and Santa Rosa Creeks.

The land uses have changed significantly over the last 150 years. Dairies were the first major land use with their accompanying pig farms, orchards, vegetable gardens, and hay fields. When dairies became too costly to maintain they were replaced with grazing practices and dryland farming. Today the land uses are quite varied. Grazing is still a significant land use in the watershed however there is an increasing number of vineyards, avocado and citris orchards, row crops, and hay fields. Although land uses have changes in some cases land ownership has remained fairly constant for many years.

Throughout the watershed's history, family-owned private parcels remain significant with 17 families owning close to 70 percent of the total watershed, or 20,962 acres. These "family" properties often include multiple agricultural parcels that are mostly used for grazing and dry farming. The family parcels are sometimes owned by different members of the same family, and are not located together (Fig. 44, pg. 134).

Limiting Factors to Steelhead Viability in Santa Rosa Creek Watershed

The fisheries assessment of the Santa Rosa Creek Watershed describes factors that limit the long term viability of south-central California coast steelhead (*Oncorhynchus mykiss irideus*), a federally listed threatened species. Several factors appear to limit the distribution, survival, and growth rate of juvenile steelhead in this watershed. These factors include impediments to passage due to road crossings, shallow riffles due to erosion and sedimentation, poor spawning habitat (proportion of fine sediment), low spring and summer base flows, lack of adequate escape cover (provided by instream wood, undercut banks, unembedded boulders, water depth itself), high water temperature, and inadequate water depth.

Man-made and natural structures located in the stream impede adult passage upstream. This limits accessible habitat for spawning steelhead. Locations of known and possible fish passage barriers in the Santa Rosa Creek Watershed have been compiled in the California Fish Passage Assessment Database by the California Department of Fish and Game. There are currently seven structures that are "total", "partial", or "temporal" barriers for fish migration in the Santa Rosa Creek Watershed (Fig. 24, pg. 88). There are an additional 14 structures with an "unknown" barrier status, and two structures that are not barriers. Along the mainstem of Santa Rosa Creek there is one total barrier (natural limit to anadromy), two temporal barriers (a road crossing and fish passage facility), one unknown (cascade falls), and one structure that is not a barrier (Highway 1 bridge). The California Department of Fish and Game identified the natural limit to anadromy at a steep elevation change near the headwaters of Santa Rosa Creek.

3. Recommendations

The Conservation Plan's restoration techniques and conservation strategies are based on the identified limiting factors impacting steelhead in the Santa Rosa Creek Watershed and other goals for improving watershed health and ecosystem function. Criteria were developed to assist with identifying priorities for conservation, placing emphasis on properties that provide habitat for steelhead (especially during dry summer months), and protect or enhance water quality and/or water supply. Management Measures and Practices (also known as techniques and/or Best Management Practices (BMPs)) were developed and identified using Natural Resources Conservation Service technical resources, California Rangelands online resources, and BMP manuals from entities such as Caltrans. These practices were selected for inclusion in the Conservation Plan based on their efficacy to reduce sediment load into streams, protect water resources, and enhance habitat for steelhead and other sensitive species. Practices were organized based on five land uses/project types including general habitat and restoration, ranching and grazing, row crops and orchards, urban, and construction.

Santa Rosa Creek is one of the premier steelhead streams on the central coast of California that supports many sensitive species and habitats. New development and numerous existing land uses have the potential to degrade the watershed as seen in other coastal streams. Conservation and restoration are the primary tools described in this Conservation Plan for improving watershed health and sustaining this relatively pristine watershed.

2. INTRODUCTION

2.1. PURPOSE

Santa Rosa Creek is one of the most viable steelhead fisheries in the south-central California Coast Evolutionary Significant Unit (ESU). Steelhead are currently listed as a threatened species here, however just south of San Luis Obispo County they are listed as endangered (from the Santa Maria River in Santa Barbara County, south to the Mexico border). The proximity of the endangered listing makes preserving the productivity of the Santa Rosa Creek's fishery all the more critical.

In recent years, several fishery studies conducted in the lower reaches of Santa Rosa Creek have concluded that mean pool depths are decreasing, indicating that sedimentation is occurring in the lower watershed. Additionally, riparian buffer zones have diminished where land has been developed tangent to streams. With the loss of vegetation, streambanks are more susceptible to erosion which in turn degrades steelhead habitat. Changes in bank stability, water quality and supply, and fisheries productivity are directly linked to land use. Analysis of land use patterns, combined with predictive erosion modeling, can help define conservation strategies for improving steelhead habitat and overall ecosystem function.

The purpose of the Conservation Plan is to prepare:

- A prioritized list of conservation projects informed by erosion modeling and land use pattern analysis.
- A compilation and summary of land use, water resources, and fisheries information to inform ongoing and future studies.
- Recommended land management practices to improve the viability of the steelhead fishery.

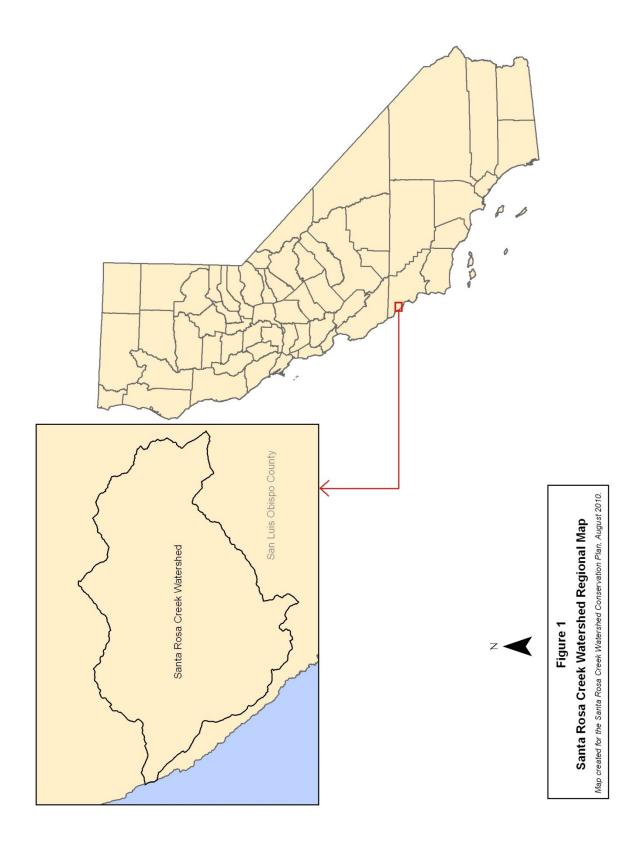
2.2. TECHNICAL ADVISORY COMMITTEE

The role of the Technical Advisory Committee (Table 1) was to inform project planning, assist in avoiding duplication of other conservation efforts, and review this Conservation Plan.

Representative	Agency/Organization	Email
Tim Duff	California State Coastal Conservancy	tduff@scc.ca.gov
Margaret Paul	California Department of Fish and Game	mpaul@dfg.ca.gov
Robb Tibstra	California Department of Fish and Game	rtibstra@dfg.ca.gov
Susan Litteral	Natural Resources Conservation Services	Susan_Litteral@ca.usda.gov
D.J. Funk	Upper Salinas-Las Tablas Resource Conservation District	riverfunk@aol.com
Jim Adams	Cambria Community Services District	jadams@cambriacsd.org
Brian Bode	Cambria Community Services District	bbode@cambriacsd.org
Ben Boer	Cambria Community Services District	bboer@cambriacsd.org
Connie Davidson	Cambria Community Services District	cdavidson@cambriacsd.org
Joy Fitzhugh	San Luis Obispo County Farm Bureau	joy@slofarmbureau.org
Stephanie Wald	Central Coast Salmon Enhancement	steph@centralcoastsalmon.com
Brad Seek	Friends of Fiscalini	
Richard Hawley	Greenspace – The Cambria Land Trust	rick@greenspacecambria.org
Bob Hill	Land Conservancy of San Luis Obispo County	bobh@lcslo.org
Michael LeBrun	Land Conservancy of San Luis Obispo County	
Brian Stark	Land Conservancy of San Luis Obispo County	
Kaila Dettman	Land Conservancy of San Luis Obispo County	kailad@lcslo.org

Table 1. Santa Rosa Creek Watershed Conservation Plan Technical Advisory Committee.

3. BACKGROUND


3.1. GEOGRAPHIC SETTING

Santa Rosa Creek Watershed is located in northern San Luis Obispo County, California, in the southern portion of the Coast Ranges (Fig. 1). The unincorporated community of Cambria is located in the northwestern portion of the watershed while the small community of Harmony is located on the southern edge of the watershed (Fig. 2). Santa Rosa Creek flows east to west, with the headwaters situated in the Santa Lucia Mountains, and the outlet draining into the Pacific Ocean. The upper watershed is characterized by mountain and foothill topography with a maximum elevation of 2,933 feet above mean sea level at Cypress Mountain.

The outlet of Santa Rosa Creek is located in Township 27 South; Range 8 East; Section 22. The western extent of the watershed is located approximately 35°34'19.16"N Latitude, 121°6'46.70"W Longitude, and the eastern extent of the watershed is located approximately 35°32'50.57"N Latitude, 120°54'2.03"W Longitude. The northern extent of the watershed is located approximately 35°36'28.05"N Latitude, 120°59'35.44"W Longitude, and the southern extent of the watershed is located approximately 35°29'59.38"N Latitude, 121°0'4.80"W Longitude.

The Santa Rosa Creek Watershed is composed of two major drainages: the Santa Rosa Creek drainage, and the Perry Creek drainage. The upper Santa Rosa Creek sub-watershed is nearly 16 thousand acres and drains water from the surrounding landscape into the Santa Rosa Creek and numerous unnamed tributaries upstream of the Santa Rosa and Perry Creek confluence. The Perry Creek sub-watershed is nearly 15 thousand acres and is composed of Green Valley and Fiscalini Creeks, as well as numerous unnamed tributaries (Table 2). Green Valley Creek is a tributary to Perry Creek, which is a tributary to Santa Rosa Creek. Although Green Valley Creek is significantly large in this watershed, United States Geological Survey (USGS) nomenclature generally assigns the sub-watershed name to Perry Creek which is the stream of the lowest downstream order and tributary to Santa Rosa Creek.

Santa Rosa Creek Watershed is considered by many to be one of the most pristine watersheds on the Central Coast with much of the watershed undeveloped and mostly vegetated. The headwaters of Santa Rosa and Green Valley Creeks are located in the Santa Lucia Mountains. Creeks in the upper watershed are fed by springs created from the highly fractured bedrock in that area. These spring-fed tributaries drain downstream through rolling foothills and enter wide valleys and fertile floodplains before reaching the Pacific Ocean. The watershed hosts a wide range of vegetative communities with non-native grasslands dominating the lower foothills and floodplains, while scrublands and forests are more prominent in higher elevations. Rare stands of Monterey Pine (*Pinus radiata*) exist throughout the lower watershed and are carefully managed for preservation.

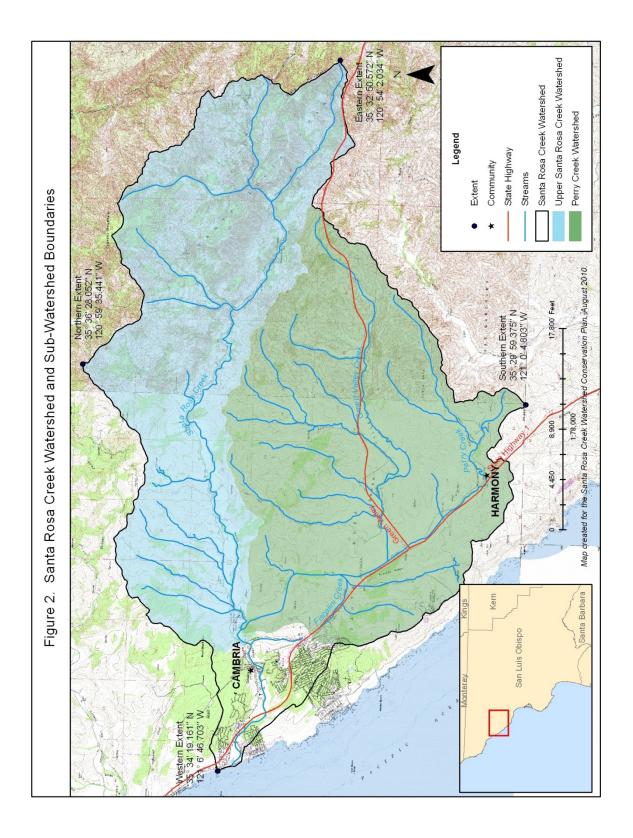
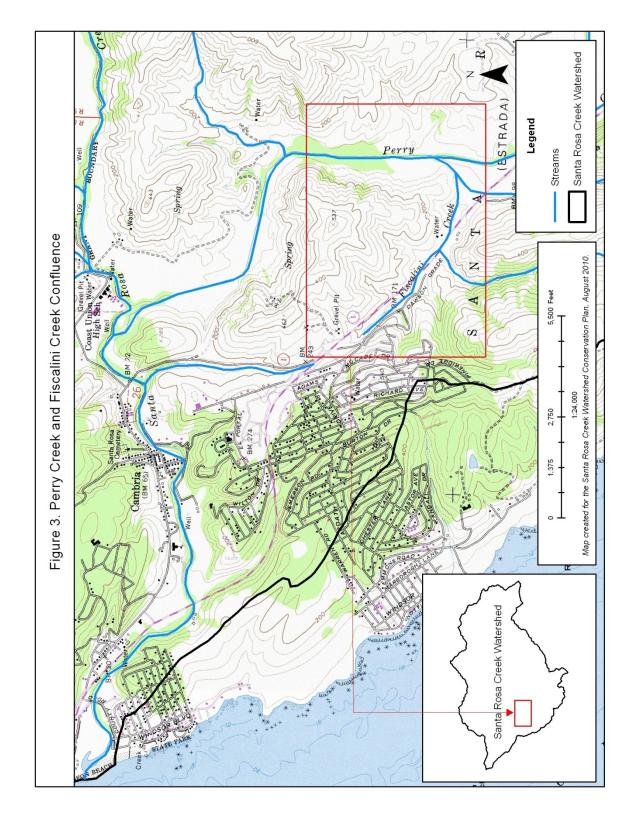
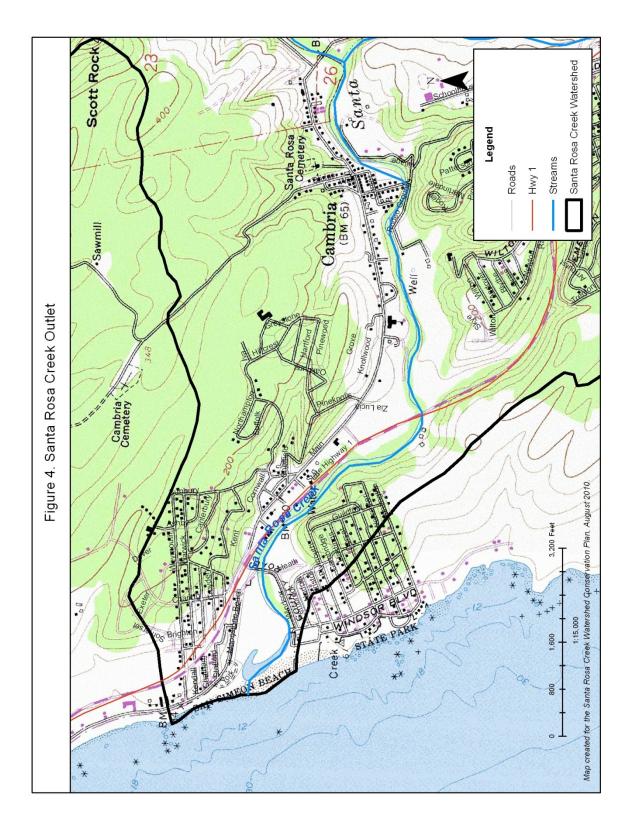
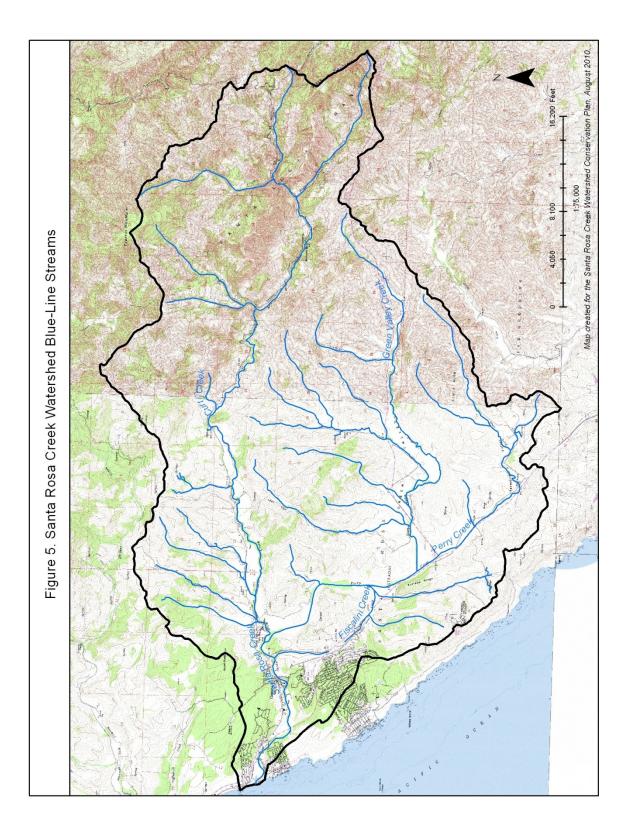


 Table 2. Total acreage of Santa Rosa Creek Watershed and sub-watersheds.


Boundary	Acres
	(acres)
Entire Watershed	30,395
Upper Santa Rosa Creek Sub-watershed	15,712
Perry Creek Sub-watershed	14,683


The southern portion of the watershed drains into Perry Creek with low elevation headwaters located in the foothills near Harmony. Perry Creek is 9.3 miles in total length with headwater elevation approximately 820 feet above mean sea level. Fiscalini Creek, a tributary to Perry Creek, is 1.1 miles in length, and collects water from the southwestern portion of the watershed, west of State Highway 1. Fiscalini Creek flows through a residential area on the south-east end of Cambria (Fig. 3).


Green Valley Creek is another tributary to Perry Creek and exists within the Perry Creek subwatershed. Green Valley Creek is 7.3 miles in length and enters Perry Creek in the lowlands of Green Valley. From the confluence of Perry and Green Valley Creeks, Perry Creek flows downstream for 3.1 miles before it enters Santa Rosa Creek, 0.4 miles upstream of the Main Street-Santa Rosa Creek crossing.

Santa Rosa Creek flows through the commercial and residential districts of Cambria in the lower reaches of the watershed. As it approaches the ocean, the creek passes underneath State Highway 1, 1.25 miles from the coast, and enters San Simeon Beach State Park, which includes Moonstone Beach, before it flows into the Pacific Ocean (Fig. 4).

Digital 7.5 minute USGS topographic maps of Cambria and Cypress Mountain were studied using Geographic Information Systems (GIS) to obtain stream order and stream length data. The *California Salmonid Stream Habitat Restoration Manual* (Flosi et al, 1998) used by the California Department of Fish and Game and many watershed planning groups, classifies stream order using the Strahler system. Streams with no tributaries are classified as first-order streams. When two first-order streams meet, they form a second-order stream, and so on. Only where two stream segments of "equal magnitude" join is an increase in order required (Ritter, Kochel & Miller, 2002). Using this system, Santa Rosa Creek is a third-order stream. According to USGS quadrangle data there are 38 miles of blue line streams within the watershed, including Santa Rosa, Perry, Green Valley, Curti, and Fiscalini Creeks, as well as numerous unnamed tributaries (Fig. 5). Although some tributaries are not named on the quadrangles, many of them have been named and are known by those familiar with the watershed. Other named tributaries in the upper watershed include Lehman, Mora, and Trout Creeks (shown in Fig. 25, page 90), as well as Machaci and Soto Creeks.

3.2. CLIMATE

California has one of the most diverse climates of any other state in the nation. Climatic factors include temperature, precipitation, wind, fog, topography and proximity to the ocean. The Santa Rosa Creek Watershed is situated along the Pacific coastline where climate is cool and mild, and little daily or seasonal temperature fluctuations exist. According to the Köppen System of climate classification, the climate of this watershed is characterized as "Mediterranean cool summer with fog, typified by warm, dry summers and mild, moist winters" (Holland and Keil, 1995).

Fog greatly impacts the central coast's climate. It reduces incoming solar radiation which results in cooler temperatures and decreased photosynthesis and transpiration rates. Fog also increases condensation on soil and plant surfaces, which in-turn increases total effective precipitation of an area (Holland and Keil, 1995).

Smaller microclimates are formed within the Mediterranean macroclimate due to slope and aspect. These microclimates occur between north and south-facing slopes of foothills and mountains, and within distinct topographic features such as narrow mountain valleys. Because sun exposure is greater on south-facing slopes, they are hotter and drier than north-facing slopes which are generally cool and moist. Aspect also affects vegetation type and density, for instance trees and shrubs are more common on north-facing slopes where moisture is greater, while chaparral and grasses are more common on drier south-facing slopes. These microclimates are apparent throughout the foothills and upper reaches of the watershed.

Precipitation and temperature data for the watershed were obtained using the Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/), an online database. USDA Service Center Agencies created GIS climate data from information gathered between 1960 and 2001. These data provided the climate information for the Santa Rosa Creek Watershed described below.

Average annual precipitation data from the Geospatial Data Gateway show precipitation ranges from 17 inches at the coast to 23 inches in the Santa Lucia Mountains. Most precipitation occurs between the months of December and March, with January exceeding all months, averaging between 3.75 and 4.75 inches. In contrast, very little precipitation occurs for several months in the summer. Additional resources show precipitation averages below 0.15 inches a month for Cambria from June through September

(http://www.weather.com/weather/wxclimatology/monthly/graph/USCA0161?role=). Precipitation data from local farmers show precipitation ranges can be much greater than the average data. In recent years, rainfall amounts have exceeded 40 inches in the headwaters, with some areas in the Santa Lucia Mountains receiving up to 56 inches of rain in a year.

The average annual temperature data from Geospatial Data Gateway show the watershed is a mild 55° F to 59° F. Minimum temperatures range between 33° F and 43° F. The insulating qualities of the Pacific Ocean are evident by the 16° F difference in maximum temperatures between the coast, at 67° F, and the headwaters, at 83° F.

3.3. DEMOGRAPHICS

The United States Census Bureau conducted its latest census in 2000. In the US Department of Commerce's census report published in 2002, census data for Cambria were separated from

county-wide data and summarized. Approximately 18 percent of the total watershed area, or 8.57 square miles, was accounted for in the census report. The report results focused on the urbanized core of Cambria, with a density of 727 individuals per square mile.

The Department of Commerce data shows that in 2000, the population of Cambria was 6,232 with a median age of 51 years old. Population under the age of 18 years was 16.4 percent and the population 65 years and older was 26.6 percent. California-born native residents living in Cambria was 56.3 percent. In 1990, the population of Cambria was 5,382 persons with a median age of 45 years old. The population change from 1990 to 2000 indicates an approximate 1.6 percent population growth each year.

The census report also shows that in 2000, over 90 percent of the population was white with Hispanic or Latino individuals accounting for most of the minority population. At that time, there were 3,750 housing units in Cambria, with 13 percent of those units developed between 1995 and 2000. The average household size was 2.21 individuals and median household income was \$45,000 per year. In 2000, the majority of housing was owner-occupied at 55 percent with seasonal, recreational, and occasional use accounting for 20 percent of housing.

The Department of Commerce report also shows that in 2000 the population 25 years old, or older, was 4,896, or 79 percent of the total population. Of that population, 91 percent were high school graduates, or higher, and 36 percent of those individuals had a bachelor's degree, or higher. In 2000, the population within poverty status was determined to be 8.2 percent. About half of the population was involved in the labor force, at 54 percent, with 89 percent of that population driving a car, truck, or van to work, 16 percent carpooling and only 0.8 percent using public transportation.

Additional demographic data were acquired through SLO Datafinder

(http://lib.calpoly.edu/collections/gis/slodatafinder/) and included housing and population census data for the year 2000. The census "blocks" or boundaries used to summarize GIS data do not match the watershed boundary exactly. Therefore, GIS data studied for the Santa Rosa Creek Watershed includes area within and tangent to the watershed. Santa Rosa Creek Watershed census "blocks" total 74,703 acres. In 2000, 2,990 dwellings existed and the population within these "blocks" was 5,360, or 0.0717 persons per acre. In the upper watershed (71,821 acres) 494 dwellings existed and the population was 973, or 0.014 persons per acre. In contrast, the remaining population of 4,387 occupied the lower watershed of 2,882 acres. The population density in the lower watershed. These data show that approximately 113 times greater than population exists within the lower 3.9 percent of the watershed.

3.4. PRE-HISTORY

Radiocarbon dating from archeological sites in San Luis Obispo County provides evidence that Obispeño and Salinan ancestors existed on the Central Coast up to 9,560 years before present (B.P.) In the Cambria area, more than a dozen archeological sites have been discovered, spanning a timeframe of over 8,000 years of occupation (Greenwood in Gibson, 2003). Parker and Associates Archeological Research compiled data describing human occupation on the Central Coast in the past 12,000 years. They published this data in a timeline available on their website (http://www.tcsn.net/sloarcheology). The following description of Cambria pre-history was derived from their data:

During Paleo-Indian times (12,000 B.P.), Central Coast climate was moist with pine forests, marshes, lakes, and rivers abundant. Small groups of native people existed. They primarily ate large mammals as well as fish and mussels gathered by hand in tidepools. As resources diminished groups of native people moved to different locations. As climate changed to the warmer, drier period of the Lower Archaic (8,500 B.P.), wetlands were replaced with grasslands and chaparral. Small camps of individuals coalesced into larger communities near water resources. Hunting and gathering evolved with the development of tools such as the fish gorge, net weight, milling slab, hand stone, and the spear. By Middle Archaic (5,500 B.P.), diminishing resources necessitated the further development of tools such as the shell hook, dart and atlatl, and bowl and mortar. In this period trade began with inland groups. During the Upper Archaic (2,500 B.P.) siltation from rising ocean levels devastated the fisheries and forced coastal villages to relocate to fringe coastal/inland boundaries. This move increased available food resources. The seagoing plank canoe, or tomol, was developed approximately 2,000 B.P., indicating a greater adaptability to limited resources. At that time, the population grew, a social class developed, and shell-bead currency was introduced. By the Emergent Period (1,000 B.P.) a highly civilized society existed with different classes and political systems in place. The population continued to grow as additional tools were developed, such as the bow and arrow, bone hook, and hopper mortar.

Hamilton (1999) states that diaries written by early Spanish expedition members noted native people existed in the Cambria area by the late 18th century. "These native people had different cultural and dialect traits from the Salinan people located in the Salinas Valley and were therefore labeled Playa Salinans". Chumash believe they also had a presence in the North Coast and may have lived in the Cambria area as well. Contact between the native people and Spaniards was made around 1769, and European diseases were fatal to many natives. Around 1838, additional changes in the lives of the native people occurred when they were integrated into Rancho Santa Rosa, located in the lower Santa Rosa Creek Watershed. They were introduced to domestic plants and animals while forced to labor at the rancho.

3.5. EUROPEAN HISTORY

Settlement and Development

Don Gaspar de Portola, a career-officer in the Army of the King of Spain, was the first to lead a land-expedition into Nueva California in 1769. Portola's objective was to establish outposts in both San Diego harbor and Monterey Bay. At the time, Spain was attempting to protect territories from Holland, England, and Russia. Holland and England were approaching from the Pacific, and Russia was moving southward from Alaska. Friar Juan Crespi traveled with the expedition and recorded Portola's journey in his diary. This diary was later translated by Father Francisco Palóu and published in the book *Captain Portolá in San Luis Obispo County, in 1769*. Portola's route up and down the coast was described in detail by Crespi. On expedition north from San Diego, Portola traveled through Green Valley and arrived at the present-day location of Coast Joint Union High School, on September 10th, 1769. Crespi described the Santa Rosa Creek valley in the following manner:

From that point (Green Valley) we made out for a mountain range covered with pines, and in a very deep valley filled with a thick growth of willows, cottonwoods, pines, and

other trees, we came to a large arroyo, which looked to us like a small river. We halted at the head of the valley, and some sixty heathen from a village that they said was not far from the camping place came to visit us. They gave us some baskets of pinole and we returned the gift with beads. They brought a little bear which they have reared and offered it to us, but we did not accept it.

On December 24th, 1769, Portola's expedition returned to the Cambria campsite from the north. They were greeted by over two hundred "heathen of both sexes" who celebrated Christmas with Portola's men. The native people brought them gifts of pinole and fish.

Nearly thirty years later, in 1797, Mission San Miguel was established by the Spanish. It was soon discovered that water resources here were not adequate for extensive agriculture. Other areas were explored to find additional resources. Rancho Santa Rosa, located in the lower Santa Rosa Creek Watershed, provided wood from the watershed's headwaters to Mission San Miguel. Geneva Hamilton describes Rancho Santa Rosa in her book, *Where the Highway Ends* (1999).

This rancho had an abundance of wild forage for mission stock and numerous springs and streams which flowed throughout the year. In the fertile valleys through which Santa Rosa Creek and its tributaries wandered lived many deer, bear, fox and small animals such as the rabbit, squirrel and marsh rat. Oak, elderberry, sycamore and myrtlewood trees were plentiful in the canyons and along the streams while forage grasses and chaparral covered the drier hill sides and flats. The northern end of the valley through which Perry Creek flows, was quite low and caused the formation of a low, board lake called a laguna by the Spanish. It was fed, not only by Perry Creek flowing from Harmony Valley, but also by the Green Valley stream and several other small streams caused by runoff from the surrounding hills to the west and northwest. During the summer, the lake became a marsh clogged with tules and other water plants and was partially surrounded by willows. The abundance of natural food and water encouraged the establishment of several large Indian camps which were inhabited for many hundreds of years before the first Spaniards arrived.

Rancho Santa Rosa was granted to Don Julian Estrada in 1841 as a result of mission secularization. Estrada spent summers at the property and native people assisted him to raise cattle on the land. By 1849, Estrada moved his family from San Luis Obispo to the Rancho where he had built an adobe home and created gardens, orchards, vineyards, and fields for cultivation. In 1850, California became a state. In order to establish local governments there was heavy taxation on real and personal property (including every chicken, pig, cow, horse, or tree owned). The Rancheros had operated on the barter system for over 50 years and the transition to a cash-based economy was very difficult. Estrada was forced to borrow money from a San Luis Obispo attorney and land speculator, Domingo Pujol, to pay for survey and legal fees incurred to substantiate the boundaries of his Rancho. Estrada eventually transferred 12,000 plus acres of Rancho Santa Rosa in 1864-1865 to Pujol (who was foreclosing on Estrada) and 1,500 acres to George Hearst, retaining 160 acres surrounding his rancho home. Pujol subdivided Rancho Santa Rosa into lots and sold the first lot in September 1866 in what is now modern Cambria (Hamilton, 1999). By 1900, only adobe wall remnants were left of the Estrada home. In 1962, the site was completely covered by the relocation of State Highway 1.

In 1866, the town of Cambria began development and grew rapidly due to the success of offshore whaling, shipping, mercury mining, dairy farming, and sea lettuce cultivation. The

Leffingwell saw mill was established in the late 1850s on the hills north of Santa Rosa Creek. The Pacific Saw Mill, a portable mill, was located south of Santa Rosa Creek in 1866. During the construction of the town, these mills were working at full capacity to fulfill the demand for lumber. The mill quickly cut local trees into wood slabs to be used for the town's development. Often times bark was left on the slabs, which gave the buildings a rough appearance and assigned Cambria the nickname of "Slab Town".

Santa Rosa Creek Trail (now known as Main Street) ran east-west and connected with the Coast Trail (now known as Bridge Street) in town. The Coast Trail was later re-named Bridge Street because many bridges were built to cross the "gulley on the west side of the road" (Adams, 1986). Within town limits, the "gulley" was eventually filled in.

By 1880, Cambria was the second largest community in San Luis Obispo County, with over 2,000 inhabitants in the town of Cambria with many more residents living in surrounding farms and ranches outside town. The community was devastated in 1889, when the "Great Fire" destroyed the central business district and six homes. The community rebounded quickly however, replacing buildings, establishing a town water system, and expanding their fire-fighting capacity. Since then, Cambria has experienced periods of success and decline.

In 1894, the development of the county's railway system caused the coastal shipping industry to drop. Cambria suffered losses and by the early 1900's a boost to the economy was needed. Cambria began to prosper as improvements to roads and the mass production of the automobile made the community more accessible to surrounding cities. The Cambria Development Company purchased the Taylor Ranch in 1927 and built the Cambria Pines Lodge in 1932 to attract buyers who would build seasonal cottages in the resort development. Another tourism boom occurred in 1958 when the William Randolph Hearst "Castle" was built just north of Cambria. The rerouting of State Highway 1 was complete in 1964 and may have impacted tourism slightly; however Cambria is still a popular vacation destination.

Mining

As early American settlers panned the California countryside looking for gold, a quicksilver boom was about to hit the coast surrounding Cambria. Liquid quicksilver, or mercury, was used during the Gold Rush to isolate flecks of gold. Quicksilver is derived from crushed and heated cinnabar ore. Portolà, in his 1769 expedition, observed local native people who decorated themselves using ground cinnabar to paint their bodies. Sources of cinnabar were kept secret for nearly 100 years, until body painting was relinquished as Native Americans were integrated into Spanish missions. In 1862, Mexican prospectors discovered cinnabar in the Santa Lucia Mountain range east of San Simeon. With the Civil War driving mercury prices high, a "rush of prospecting and claim staking [occurred] on every bit of ground that gave a show of cinnabar" (Hamilton, 1999).

The first cinnabar outcroppings were located in the Santa Rosa Creek headwaters. In January 1864, the Josephine Quicksilver Mining Company was established and successfully shipped \$280,000 of quicksilver through the port of San Simeon between 1864 and 1867. Local mining activities expanded and by 1871 a need for a mining district was eminent.

The greatest mineral discovery was found in 1872 by three men riding their horses in the foothills north of town. The men discovered "red streaks" in a rock, later confirmed as mercury. This was a historic find in the watershed as testing samples revealed high mercury content. The

three claims resulting from this find were consolidated in 1874 to form the Oceanic Quicksilver Mining Company. The Oceanic Mine was a successful operation, going at "full blast" in September, 1874 (Hamilton, 1999). There were four levels to the mine, 300 feet long at the most, and 900 feet deep. The mine was intermittently active until WWII. The tunnels were filled and covered in the mid-1940s. In the early 1950s, the retort was used to process slag. The yield was of such poor quality it was soon abandoned. In the early 1960s, four small vertical holes approximately 200 feet in depth were drilled. The holes were filled and all mining ceased (personal communication, J. Fitzhugh). Today the Oceanic Mine is closed with conflict surrounding the cleanup of waste produced from the site. High levels of mercury have been detected in the waters of Curti Creek, the stream draining from the Oceanic Mine site. Mercury has also been discovered in crops grown at the organic farm now residing where miners processed the ore (Rigley, Cover Story).

Mining reached its peak in the Santa Rosa Creek Watershed in 1876, hit a near stand-still from 1888 to 1894, and was revitalized and subsided by 1918. At this time, many mines were either abandoned due to poor profits, or depleted of their resources. By 1963 a third wave of mining activity returned to the area as prices for quicksilver reached historic levels. However, activity subsided again within only a few years. Today, there are no active mercury mines in the watershed.

Huge buildings over the shafts of the Oceanic Mine. Taken about 1917. The outbuildings held blacksmithing forges, the office, crushers, etc.

Picture 1. Outbuildings at Oceanic Mine, 1917 (Hamilton, 1999).

Flooding

Cambria has faced several major and minor flooding events, including the 1914, 1956, 1969, and 1995 floods in which the business and residential districts in town were inundated with flood waters. As Santa Rosa Creek flows through the town of Cambria, it becomes confined by structures such as buildings and bridges, in a narrow channel with developed stream terraces. As development along the channel has increased, impacts of flood waters have increased.

In January 1914, after weeks of rain, streams and gullies overflowed leaving the streets of Cambria underwater and cisterns and cesspools full (Hamilton, 1999). Business owners rushed frantically to sandbag doorways in attempt to save their establishments while trying to conduct "business as usual". Homes along the creek were the most impacted. Off the coast, several large waterspouts formed and crashed onto the beach near the outlet of Santa Rosa Creek.

The impacts of the 1956, 1969, and1995 floods were greater than the 1914 flood due to increasing amounts of urban structures, such as culverts and bridges, along the stream. These structures decreased the Santa Rosa Creek water capacity through town, making it easier to flood. Picture 2, below, shows the western portion of Cambria flooded in 1956.

In the 1960's, State Highway 1 was developed and fill was used to elevate the road between the stream and stores in the western portion of Cambria. As a result, mostly minor flooding events have occurred, with two exceptions; the entire West Village was flooded in 1969 and 1995. Businesses were ruined and it took the community several years to recover from each event. In the early 2000s, extensive measures were taken by San Luis Obispo County to address water backflow issues at State Highway 1 culverts.

Heavy rain, an overflowing creek and high tide combined to flood the town of Cambria in 1956. (Courtesy of Ralph Morgan)

Picture 2. The town of Cambria in 1956 after heavy precipitation caused a devastating flood (Hamilton, 1999).

3.6. CULTURAL RESOURCES

Various cultural resources located in the Cambria area are described in Robert Gibson's archeological assessment, conducted for the Santa Rosa Creek Trail Project (2003). Gibson found that at least one dozen cultural sites exist between Lodge Hill and San Simeon Creek. Lodge Hill is located on both sides of State Highway 1, above the East Village and near Cambria Pines Lodge. Lodge Hill is also close to marine terrace and tidepool locations. Gibson noted 11 cultural sites are located on marine and stream terraces in the older sections of town. Gibson also noted that several additional cultural sites are located east of town on flat stream terraces.

There are three historic sites within the watershed boundary

(http://lib.calpoly.edu/collections/gis/slodatafinder/). They include the Arthur Beale House (1929), Bianchini House (1889), and the Paul Squibb House (1877). Additionally, the Guthrie House (landmark plaque number N853) and Old Santa Rosa Catholic Church and Cemetery (landmark plaque number N1154) are listed as "National Registers" located in Cambria (http://ohp.parks.ca.gov/listed_resources/). The Office of Historic Preservation defines National Registers as "buildings, structures, objects, sites, and districts of local, state, or national significance in American history, architecture, archeology, engineering, and culture".

3.7. VEGETATION

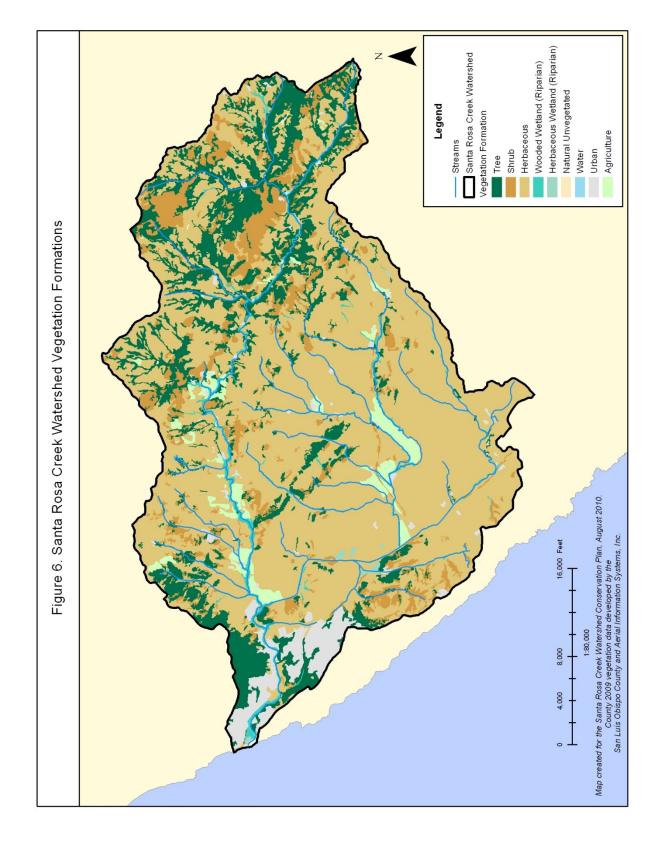
The geographic classification system used in *The Jepson Manual: Higher Plants of California* (1993) divides California into geographic systems, or provinces, according to several landscape features such as natural vegetation types, as well as geologic, topographic, and climatic variations. Using this classification system the Santa Rosa Creek Watershed is located in the Central Coast (CCo) of the Central Western California Floristic Province. The boundaries of CCo extend along the Pacific Ocean, from Point Conception in the south, to Bodega Bay in the north, and by the Great Valley province to the east. The Mediterranean climate of this region allows a wide range of vegetative species to grow here, including rare species.

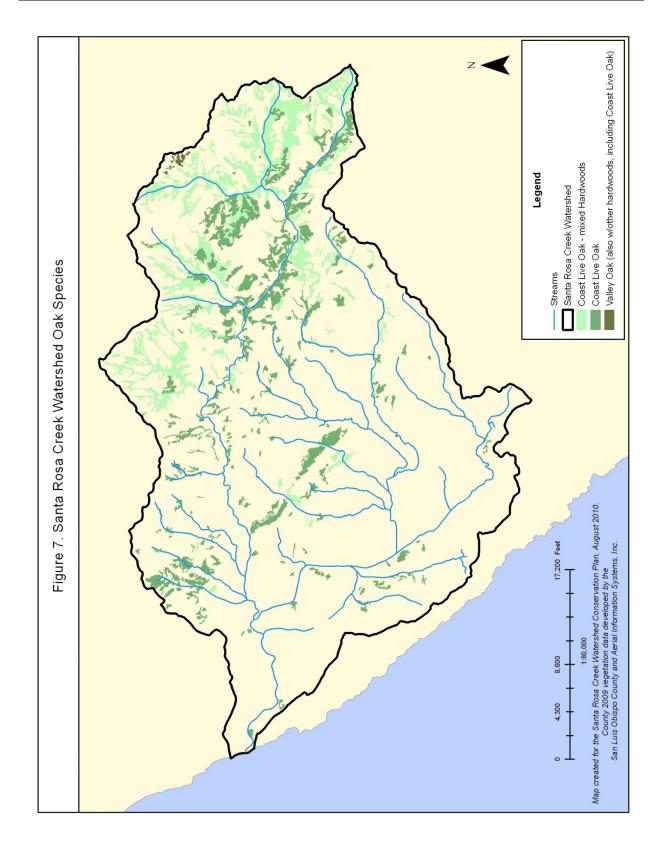
Monterey Pine (*Pinus radiata*) and Sargent Cypress (*Cupressus sargentii*) are two rare tree species found in the watershed. One of only three naturally occurring stands of Monterey Pine found within California is located in the watershed (Sawyer, Keeler-Wolf, 1995). Additionally, locally rare Sargent Cypress is the name-sake for Cypress Mountain, located on the eastern boundary of the watershed. Sargent Cypress grows at a few sites near Cambria in the Santa Lucia Mountains (Coffman, 1995). In addition to rare species, the watershed is a mosaic of vegetative species which have adapted to the diverse habitats here.

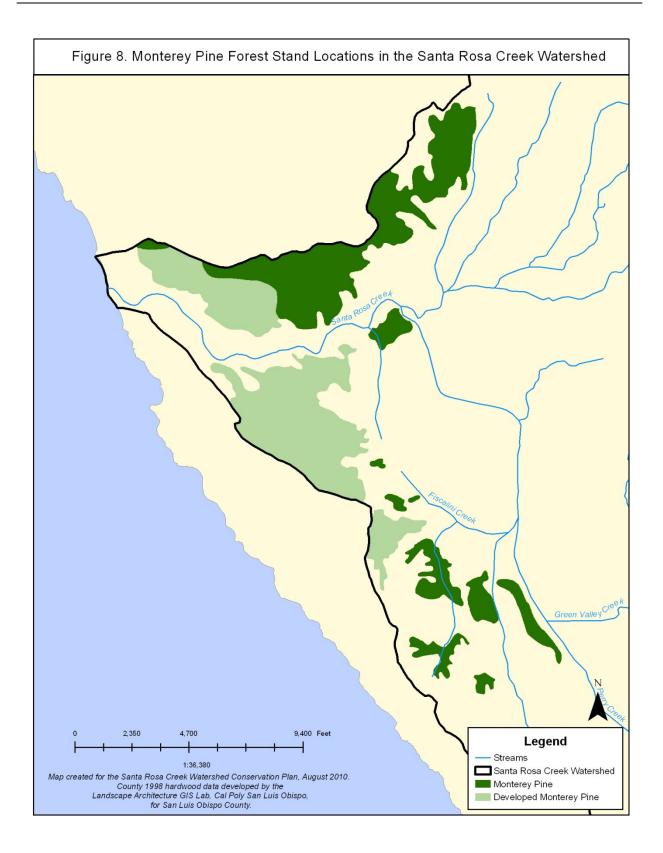
Grasslands, riparian forests, hardwood forests, and an estuary are just a few of the ecosystems found in the Santa Rosa Creek Watershed. Being largely undeveloped, the watershed is full of trees, shrubs, and herbs. In 2009, spatial vegetation data for the watershed was published by the County of San Luis Obispo with Aerial Information Systems, Inc. (AIS). The digital vegetation data were developed using the 2008 National Vegetation Classification System (NVCS) and the *Manual of California Vegetation* (Sawyer and Keeler-Wolf, 1995). The resulting vegetation boundaries within the watershed were mapped (Fig. 6 and 7).

The County/AIS data identified vegetation formation units and oak communities. Formation mapping units describe all vegetative communities within the watershed (Fig. 6). Vegetation formations include: Mesomorphic Tree Vegetation-Forest and Woodlands (Tree), Mesomorphic

Shrub Vegetation (Shrub), Mesomorphic Herbaceous Vegetation (Herbaceous), Temperate Flooded Riparian Vegetation (Wooded Wetland), Temperate Meadow and Freshwater Marsh (Herbaceous Wetland), Lithomorphic or Wetland Associated Naturally Sparse or Unvegetated Areas (Natural Unvegetated), Water, Urban Built Up (Urban), and Agriculture categories. Guidelines used to define vegetation formation and oak communities follow the National Vegetation Classification Hierarchy summarized in the San Luis Obispo County Vegetation Mapping Report, Photo Interpretive and Mapping Guidelines (2009) and are described below.


While the 2009 County vegetation data provide precise locations of general vegetative communities, geographic data produced by the County in 1998 provided detailed data for generalized locations. These data reveal where estuary, riparian scrub, riparian woodland, coastal oak woodland, coast mixed scrub (chaparral and coastal scrub), Monterey Pine, and annual grassland communities exist in the watershed. These data are less accurate than the 2009 vegetation data however they provide reference data for vegetative species found in the watershed. For instance, Monterey Pine species are known to exist in the watershed, however were not mapped in the 2009 vegetation data. It was therefore necessary to reference the 1998 vegetation data to identify the stand locations (Fig. 8). The more precise data (2009) were used to map vegetation in the watershed while the older datasets (1998) were used to explain the data in greater detail.


Using the 2009 vegetation data, the total acreage and percent of watershed area was calculated for vegetation formations (Table 3). Mesomorphic Herbaceous Vegetation (Herbaceous) is the most common vegetation type accounting for over 19 thousand acres in the watershed, or 63 percent of the entire watershed area. Mesomorphic Tree Vegetation (Tree) is the second most abundant formation accounting for 5,536 acres, or 18 percent. Mesomorphic Shrub Vegetation (Shrub) is the next abundant with 2,961 acres, or nearly ten percent of the total watershed area.


The watershed's vegetation formations and oak communities are listed and described below using the County's Vegetation Mapping Report (2009). Vegetative communities have been identified for each formation using 1998 County vegetation data. These communities are described in greater detail using information from *California Vegetation* (Holland and Keil, 1995) and the *Manual of California Vegetation* (Sawyer and Keeler-Wolf, 1995).

Mesomorphic Tree Vegetation-Forest and Woodlands

The National Vegetation Classification Hierarchy defines this category as locations where all tree forms dominate the canopy with at least eight to ten percent cover (County of San Luis Obispo, 2009a). There are approximately 5,536 acres of trees in the watershed. They are located throughout the lower watershed, including developed areas, along drainages in the upper foothills, and scattered in the headwaters with shrubs and herbs. Trees in the lower watershed are mostly Monterey Pine, while oak communities are dominant in the foothills and headwaters.

The watershed tree formation data were divided in the 2009 County data into three categories of oak communities: Coast Live Oak, Coast Live Oak-mixed Hardwood, and Valley Oak (also with other hardwood including Coast Live Oak) (Fig. 7). There are a total of 4,348 acres of oak communities in the watershed, or about 14 percent of the total watershed area. Coast Live Oak-mixed Hardwood is the most common with 2,346 acres, or approximately eight percent of the total watershed area. Coast Live Oak accounts for 1,979 acres, or nearly seven percent of the total watershed area. Valley Oak with Hardwoods including Coast Live Oak accounts for only 23 acres, or less than one percent of the entire watershed area (Table 4). The Mesomorphic Tree Vegetation-Forest and Woodland mapping unit can be described in greater detail by identifying the forest and woodland communities that exist in the watershed.

Table 3. Santa Rosa Creek Watershed vegetation formation categories, total acres, and percent of watershed area, identified by the County of San Luis Obispo and AIS, 2008.

Vegetation Formation	Acres	Percent Watershed Area
Mesomorphic Tree-Forest and Woodlands	5,536	18
Mesomorphic Shrub	2,962	10
Mesomorphic Herbaceous	19,200	63
Temperate Flooded Riparian	671	2
Temperate Meadow and Freshwater Marsh	50	<1
Lithomorphic or Wetland Associated Naturally Sparse or Unvegetated Areas	17	<1
Water	17	<1
Urban Built Up†	1,141	4
Agriculture	789	3

[†]Using 2007 aerial imagery of the watershed, it was discovered that Urban Built Up areas correlated with rock outcrops or exposed soil in the upper watershed and that observable mapping errors exist within this formation type in this watershed.

Tree Category		Percent Watershed Area
Coast Live Oak	1,979	7
Coast Live Oak-mixed Hardwood	2,346	8
Valley Oak (with hardwood including Coast Live Oak)		<1

Table 4. Santa Rosa Creek Watershed tree category vegetation identified by the County of SanLuis Obispo and AIS, 2008.

Oak Woodland

In the Santa Rosa Creek Watershed, coastal live oak woodlands occur in two conditions. The first is in moist, often north-facing slopes, where coast live oak (*Quercus agrifolia*) form dense communities and intermix with species such as California bay-laurel (*Umbellularia californica*), madrone (*Arbutus menziesii*), and big-leaf maple (*Acer macrophyllum*) with shade-tolerant understory plants. The second condition in which coastal live oak woodlands occur is in drier, more exposed areas where sparsely scattered oaks are associated with shrubby or herbaceous understory plants, or grasslands, in open woodland communities. The most common shrubs associated with open woodlands are Manzanita (*Arctostaphylos spp.*), gooseberries and currants (*Ribes spp.*), lavendar (*Ceanothus spp.*), bush monkeyflower (*Mimulus auranitiacus*), black sage (*Salvia mellifera*), coyote bush (*Baccharis pilularis*), and California sagebrush (*Artemisia californica*) (Holland and Keil, 1995).

Coast live oak communities usually exist on slopes tangent to streams in the Santa Rosa Creek Watershed. As elevation increases oak communities integrate into riparian vegetation and become more complex. In the lower foothills oak communities are classified exclusively coast live oak. In the headwaters, the oak forests intermingle with other hardwood species.

Valley oak (*Quercus lobata*) exists in the watershed as well. A small patch of valley oak is located along the northeastern border, southeast of Cypress Mountain. Valley oak woodlands are found on alluvial terraces and low rolling hills from Lake Shasta to Los Angeles. They are usually found in fertile alluvial valleys where they grade into foothill woodlands (Holland and Keil, 1995). In the Santa Rosa Creek Watershed, the valley oak population is located on a steep hillslope with coast live oak mixed hardwood forests, shrubs, and herbs.

Monterey Pine Forest (Closed Cone Coniferous Forest)

Monterey Pines only grow naturally in three locations in the state, including Cambria. Natural stands of Monterey pine are in danger due to a fatal pine pitch canker disease and urban development. In Cambria, stands of Monterey Pine grow as a closed canopy forest with Coast Live Oak and toyon growing as a short-tree understory (Holland and Keil, 1995). There are approximately 777 acres of undeveloped Monterey Pine forest in the watershed, or three percent of the total watershed area. An additional 772 acres of developed Monterey Pine forest exists in the watershed, and is impacted by residential areas and the community of Cambria. These

developed areas account for an additional three percent of the total watershed area. Stands of Monterey Pine are exclusive to the lower watershed.

Sargent Cypress

Although Sargent Cypress is not identified in the County's vegetation data, it is recorded in the upper watershed by Coffman in his book *The Cambria Forest: Reflections of its Native Pines and Eventful Past* (1995). Cypress Mountain, located in the upper Santa Rosa Creek Watershed is named after a stand of Sargent Cypress trees that grow there. The Sargent Cypress series is described by Sawyer and Keeler-Wolf (1995) as typically found in upland slopes and ridges, and in raised stream benches or terraces. These trees grow in sterile soils derived from ultramafic material. Ultramafic rock is an igneous rock formed from magma, and is usually high in magnesium and iron.

Mesomorphic Shrub Vegetation

The National Vegetation Classification Hierarchy defines Mesomorphic Shrub Vegetation when the dominant canopy is shrub forms, covering at least ten percent of a site. Oaks may occur in the stand but are generally not important in the canopy nor are they distributed regularly throughout the unit. Emergent trees may occupy eight to ten percent cover, but are not distributed evenly throughout the site (County of San Luis Obispo, 2009a). There are approximately 2,962 acres of shrubs in the watershed, or roughly ten percent of the total watershed area. The 1998 vegetation data show chaparral and coastal scrub communities exist in the watershed.

Chaparral

In the Coast Range, chaparral communities form on steep, dry slopes and are often closely associated with southern coastal scrub plant communities. Species composition can be highly variable, and depending on dominant species, several different chaparral communities can be found throughout the state. In general, chaparral vegetation grows in dense thickets. Plants form a canopy of needle-leafed or broad-leafed drought-tolerant plants. Chaparral species are characteristically very stiff, woody, and long-lived. Within mature stands, there is often no herbaceous undergrowth present. Chaparral vegetation is diverse with nearly 900 vascular species occurring in these communities; with approximately 240 different woody plants from several different plant families (Holland and Keil, 1995).

Coastal Scrub

Southern coastal scrub communities often form in shallow, nutrient-poor soils with little plantavailable water. As a result, vegetation is shallow-rooted and deciduous in the summer when leaves typically drop due to little or no water in the upper soil horizons. In contrast, vegetative growth often occurs in the winter, when moisture is available. Species common in coastal scrub communities include: California sagebrush (*Artemisia californica*), bush monkey-flower (*Mimulus aurantiacus*), sages (*Salvia sp.*), coyote bush (*Baccharis pilularis*), coffeeberry (*Rhamnus californica*), and poison-oak (*Toxicodendron diversilobum*) (Holland and Keil, 1995). Chaparral and coastal scrub communities are mixed throughout the watershed, occurring tangent to one another at some locations. These communities are common throughout foothills near streams on moderate slopes. As elevation and slope steepness increase, chaparral and coastal scrub become more common. In the headwaters these shrub communities are usually associated with tree formations and some herbaceous vegetation. There are fewer shrub communities in the Perry Creek Watershed. Shrubs here are more common on south-facing, moderate slopes and along the southwestern boundary of the watershed near the ocean.

Mesomorphic Herbaceous Vegetation

The National Vegetation Classification Hierarchy defines Mesomorphic Herbaceous Vegetation when all upland herbaceous life forms (forb-like and grassland vegetation) dominate the ground layer with at least ten percent cover. Emergent tree or shrub vegetation, or all woody life forms, can occupy up to ten percent of the site. Herbaceous cover can be present in "fallow" agricultural lands where annual grasses and forbs exist. This can occur as little as one season after harvesting a crop. Some areas classified as herbaceous may contain more than ten percent shrub communities due to the difficulty in distinguishing seral scrub growing in post disturbance situations (County of San Luis Obispo, 2009a). There are approximately 19,200 acres of herbs in the watershed, or roughly 63 percent of the total watershed area. The 1998 vegetation data show grassland communities exist in the watershed.

Grassland

In California, grasslands have been altered more than any other plant community. Experts speculate what unaltered, natural grasslands look like in California, because none exist. Coastal grasslands are often located on marine terraces and grow with coastal scrub, chaparral, and coast live oak woodland communities. Native grasses growing in coastal areas would have been dominated by slender needlegrass (*Nassella lepida*), large needlegrass (*Achnatherum coronatum*), purple needlegrass (*Nassella pulchra*), and nodding needlegrass (*Nassella cernua*). Junegrass (*Koeleria macrantha*), melic grass (*Melica imperfect*), three-awn (*Aristida spp.*), and deergrass (*Muhlenbergia rigens*) would have also been common (Holland and Keil, 1995).

Today, grassland communities that exist are altered landscapes, largely composed of annual cool-season Mediterranean non-native grasses. These non-native grasses were introduced for livestock grazing during early Spanish colonization. Over time, un-grazed native grasslands were inevitably overtaken by non-native grasses, such as wild oats (*Avena fatua*). Many non-native grasses out-competed native grasses for water, nutrients, and space. Other common introduced grasses occurring in southern coastal grassland communities are: slender wild oats (*Avena barbata*), rip-gut brome (*Bromus diandrus*), soft chess brome (*Bromus hordeaceus*), and annual ryegrass (*Lolium multiflorum*) to name a few (Holland and Keil, 1995).

Grassland vegetation is the dominant vegetation throughout the watershed's foothills. They exist on land used for rangeland, grain production, residential, or open space. Grasslands occur sparsely in the lower watershed, where Monterey Pine forests are dominant. Grasslands are also less frequent in the headwaters where they are usually found along steep slopes near streams.

Temperate Flooded Riparian Vegetation

The National Vegetation Classification Hierarchy defines Temperate Flooded Riparian Vegetation as a woodland and shrubby riparian dominated canopy with at least eight to ten percent cover. Either trees or shrubs can dominate or co-dominate the site. Stands are temporarily or seasonally flooded, generally early in the growing season. Valley or coast live oak can be a component to a mixed community of riparian woodland but they do not dominate the canopy (County of San Luis Obispo, 2009a). There are approximately 671 acres of temperate flooded riparian vegetation in the watershed, or roughly two percent of the total watershed area. The 1998 vegetation data show scrub and woodland riparian communities exist in the watershed.

Riparian Communities (Scrub and Woodland)

Riparian communities border streams, lakes and springs and usually consist of deciduous trees and various shrubs and herbs. Riparian vegetation is typically confined to banks and floodplains of waterways. Riparian scrub communities occur on relatively fine-grained sand and gravel bars, close to gravel bars, and along streambanks. Riparian scrub communities consist of various willow species, such as arroyo willow (*Salix lasiolepis*), that form scrubby streamside thickets. Additional species found in riparian scrub communities include California blackberry (*Rubus ursinus*) and stinging nettle (*Urtica dioica ssp. holosericea*). Common Central Coast riparian woodland species include: arroyo willow (*Salix lasiolepis*), red willow (*Salix laevigata*), sycamore (*Platanus racemosa*), box elder (*Acer negundo*), black cottonwood (*Populus balsamifera*), and coast live oak (*Quercus agrifolia*) (Holland and Keil, 1995).

Scrub and woodland riparian communities are found throughout the watershed tangent to streams. This vegetation forms an almost continuous line from the Santa Rosa Creek outlet at the Pacific Ocean, to the headwaters. Some discontinuity occurs in the foothills where water flow is subterranean. As elevation increases riparian corridors become narrower and coast live oak forests encroach riparian communities. In the Perry Creek sub-watershed riparian vegetation is less apparent. Riparian corridors are not continuous and are extremely narrow here. The dominant land use in this watershed is rangeland with grassland vegetation prevalent.

Temperate Meadow and Freshwater Marsh

The National Vegetation Classification Hierarchy defines Temperate Meadow and Freshwater Marsh Vegetation in meadow settings (temporarily to seasonally flooded environments typically with species from *Carex* or *Juncus* genera) or marsh-like settings (permanently flooded environments) where *Typha sp.* and or *Scirpus sp.* dominate the stand. Stands are usually less than five acres in size (County of San Luis Obispo, 2009a). There are approximately 50 acres of temperate flooded riparian vegetation in the watershed, or roughly less than one percent of the total watershed area. The 1998 vegetation data show marsh and meadow communities exist in the watershed. Only the estuary, located at the confluence of Santa Rosa Creek and the Pacific Ocean, is defined below, however temperate meadow communities associated with seeps and springs likely exist throughout the watershed as well.

Estuary (Coastal Estuarine Community)

Estuaries occur where freshwater and saltwater mix at the confluence of a stream and an ocean. Because estuaries are protected from waves and wind, brackish water and thick layers of sediment can form. Estuarine vegetation is adaptable to extreme variations of salinity levels due to daily tidal fluctuations, along with seasonal fluctuations occurring with increased precipitation in the winter months. Plants occurring in estuaries are often soft-bodied and flexible because they are continuously saturated. Common estuary plants include eel-grass (*Zostera marina*), ditch-grass (*Ruppia maritime*), and algae (Holland and Keil, 1995).

The watershed's estuary is located at the confluence of Santa Rosa Creek and the Pacific Ocean. It provides habitat for two federally listed fish species, Tidewater goby (*Eucyclogobius newberryi*) and steelhead (*Oncorhynchus mykiss*). Tidewater goby spend their entire lives in coastal lagoons/estuaries, spawning when freshwater flows increase during higher creek flows. In contrast, steelhead are an anadromous species that hatch in freshwater, enter the ocean as adults, and return to their natal stream to spawn. Steelhead use the brackish waters in the estuary to acclimate from freshwater to saltwater as smolts. During this stage, fish feed heavily to increase their size. More information about tidewater goby and steelhead is found in Section 4.3 of this report.

Special Status Plant Species

In addition to the diversity of plant communities listed above, there are several "special status" plant species found in the watershed. "Special status" species are considered by Fish and Game to be taxa of the greatest conservation need and fit into one or more of the following categories (State of California The Resources Agency, 2008):

- Officially listed or proposed for listing under the State and/or Federal Endangered Species Acts.
- State or Federal candidate for possible listing.
- Taxa which meet the criteria for listing, even if not currently included on any list, as described in Section 15380 of the California Environmental Quality Act Guidelines.
- Taxa considered by the Department to be a Species of Special Concern (SSC)
- Taxa that are biologically rare, very restricted in distribution, declining throughout their range, or have a critical, vulnerable stage in their life cycle that warrants monitoring.
- Populations in California that may be on the periphery of a taxon's range, but are threatened with extirpation in California.
- Taxa closely associated with a habitat that is declining in California at an alarming rate (e.g., wetlands, riparian, old growth forests, desert aquatic systems, native grasslands, vernal pools, etc.).
- Taxa designated as a special status, sensitive, or declining species by other state or federal agencies, or non-governmental organization (NGO).

"Special status" species were identified using Fish and Game's California Natural Diversity Data Base and the California Native Plant Society's Inventory of Rare and Endangered Plants online database. Each database was queried by location, using Cambria and Cypress Mountain 7.5 minute quadrangles. A list of "special status" species was produced from the results of both database searches and summarized in Appendix A.

Currently, there are 21 "special status" species within the watershed. Most of these species are perennial herbs and shrubs. San Luis Obispo fountain thistle (*Cirsium fontinale* var. *obispoense*) is the only state and federally listed endangered species in the watershed. No other species are listed as either endangered or threatened by the state or federal government.

Non-native Invasive Plant Species

In 2006, the California Invasive Plant Council updated its inventory of state-wide non-native invasive plants that threaten state wildlands. The Invasive Plant Council set the following criteria to define these species: non-native invasive plants are species that 1) are not native to, yet can spread into, wildland ecosystems, and that also 2) displace native species, hybridize with native species, alter biological communities, or alter ecosystem processes. Non-native invasive plant species are significant in that they change natural communities by altering habitat and impacting food sources for sensitive animal species, such as steelhead.

A list of non-native invasive plant species was produced from the California Invasive Plant Council online database (http://www.cal-ipc.org/ip/inventory/weedlist.php) and is located in Appendix B. A species list was created using the Central Western Floristic Province, the geographic system in which Cambria is part of. Within this province, 202 non-native invasive plant species exist. There are 38 species labeled "Evaluated But Not Listed", meaning there is either insufficient data, or the species does not presently have significant impact. There are 52 species labeled "High" or "Alert", meaning they have high potential to invade new ecosystems. The Central Western Florist Province is large so other data sources were used to edit the list.

In the Cambria Forest Management Plan (2002), developed by the Cambria Forest Committee, invasive species found in the watershed are listed. There are 22 invasive species found in the Cambria Forest and vicinity. Pampas grass (*Cortaderia selloana*), French broom (*Genista monspessulana*), Scotch broom (*Cytisus scoparius*), and Cape ivy or German ivy (*Delairea odorata*) are the most abundant and requiring the most aggressive treatments. Invasive species listed in the Cambria Forest Management Plan are labeled "CFMP" in Appendix B.

3.8. WILDLIFE

Santa Rosa Creek Watershed hosts diverse habitats from the sandy beaches and marshes at the Pacific, to the steep, rocky forests of the headwaters. Within these habitats, a wide array of animal species live, feed, and reproduce, providing this area with a rich assortment of wildlife. Geneva Hamilton, in her book *Where the Highway Ends* (1999), describes the animals found in Rancho Santa Rosa around the early nineteenth century. "In the fertile valleys through which Santa Rosa Creek and its tributaries wandered lived many deer, bear, fox and small animals such as the rabbit, squirrel and marsh rat."

Today, a diverse assortment of animal species still exists within the watershed. A list of animal species found within the Fiscalini Ranch, previously known as East-West Ranch, was composed in the Fiscalini Ranch Preserve Environmental Impact Report (EIR) (County of San Luis Obispo, 2009b). The Fiscalini Ranch Preserve is a coastal property located in the lower watershed and subdivided by State Highway 1 (Appendix C, Fig. C-1). Most habitat types present within the preserve can be found elsewhere in the watershed; therefore wildlife species present on the

preserve are likely to be present in similar habitats throughout the watershed. The list of animal species is not a comprehensive account for all wildlife present in the watershed. Additional habitats exist, such as Sargent Cypress forests. Wildlife from these communities could be missing from the list produced from the EIR. Animal species found within the Santa Rosa Creek Watershed as described in the Fiscalini Ranch Preserve EIR are listed (Appendix C).

Special Status Animal Species

Using California Department of Fish and Game's California Natural Diversity Data Base, 10 "special status" animal species were identified in the watershed. Federally endangered species in the watershed include Tidewater goby (*Eucyclogobius newberryi*) and California condor (*Gymnogyps californianus*). Federally threatened animal species include: bald eagle (*Haliaeetus leucocephalus*), south-central California coast steelhead (*Oncorhynchus mykiss irideus*), and California red-legged frog (*Rana aurora draytonii*). The "special status" species found in the watershed are listed (Appendix D).

Of particular importance to the Conservation Plan is the presence of south-central California coast steelhead (*Oncorhynchus mykiss irideus*) found in local streams. Santa Rosa Creek is considered to be one of the most pristine streams along the Central Coast with one of the best steelhead fisheries in the region. A primary goal of the Conservation Plan is to study the limiting factors to steelhead in the Santa Rosa Creek Watershed, thereby providing the information needed to identify conservation strategies to protect this and other species.

3.9. GEOLOGY

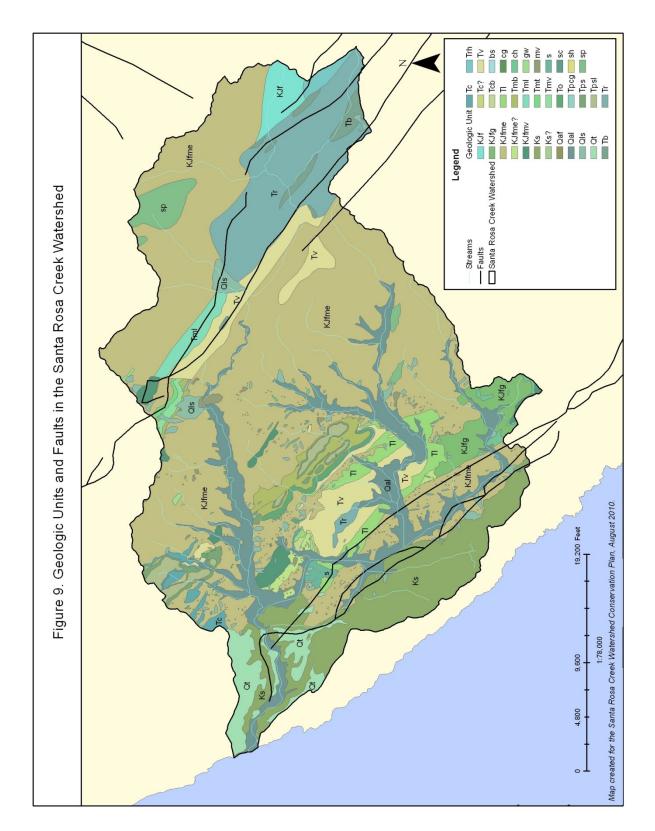
The watershed lies along the south-western edge of the Santa Lucia Range, within the Coast Range Geomorphic Province. To describe the geologic formations within the watershed, printed references were used, geologic GIS data were acquired from SLO Datafinder (http://lib.calpoly.edu/collections/gis/slodatafinder/), and USGS geologic maps were studied. The geologic data from SLO Datafinder were created by SLO County in 2007. Scanned geology maps created by USGS and the California Geologic Survey were digitized to create the GIS data. In addition, two USGS geologic maps were acquired from Cal Poly, San Luis Obispo (Cal Poly) to describe geologic units and verify units with missing data. Cal Poly USGS maps were produced by Clarence Hall, in 1974 and 1979 and are no longer in print. (Geologic terminology is described in Section 9.1 of the Conservation Plan).

There are 37 distinct geologic units in the watershed that are listed in Appendix E. Some geologic unit symbols could not be identified using the resources listed above. The symbols are identified in the table with their map labels in parenthesis. Figure 9 shows the distribution of geologic units throughout the watershed.

Geologic formation of the watershed began on the seafloor of the Pacific Ocean, 180 million years ago (mya). During that time, the coastline was located further east, where the Sierra Nevada foothills now exist, and a marine trench was located where the Coast Ranges now lie. For millions of years the Pacific Plate was pushed eastward under the North American Plate along a subduction zone, or trench. As a result, sediments and debris were mixed and the complex geologic formations of the Central Coast were created (Chipping, 1987).

From the late Cretaceous period (66 mya) through the Eocene period (38 mya) the Franciscan Formation was created. This formation was created from subducted basalts and sediments

falling into the subduction zone. In general, the Franciscan Formation is composed of a mixture, or mélange, of igneous and metamorphic rocks, such as greywacke, greenstone, diabase, gabbro, serpentine, chert, shale, tuff, blue schist, and other metamorphic rocks (Yates and Van Konyenbur, 1998). Using GIS, approximately 48 percent of the total watershed area is composed of Franciscan mélange rocks which are common in the upper elevations of the watershed.


Ultramafic outcrops, present in the Franciscan Formation are highly fractured and faulted and contain springs, seeps, and other continuous water sources. In climates where seasonal streams go dry in the summer, ultramafic areas such as serpentines tend to foster year-round water flow. Because these areas are typically barren of vegetation, sheet erosion is common. Other forms of erosion are common on soils derived from serpentine where excavation activities occur, such as road development (Kruckeberg, 1984).

Red chert metavolcanic outcrops of the Franciscan Formation occur in just a few locations along the eastern edge of the Santa Rosa groundwater basin and east of the Santa Rosa Creek and Perry Creek confluence near town. The Franciscan Formation is common throughout the watershed, evident by the numerous springs occurring through the highly brittle and fractured rock. Springs also occur within the interbedded shales of an unnamed Upper Cretaceous (144-66 mya) sandstone, however they are not as common (Yates and Van Konyenbur, 1998).

Between the Cenozoic and uppermost Mesozoic periods (144 mya and younger), marine sedimentary rocks, also known as the Cambria Slab, were thrust over the Mesozoic rocks of the Franciscan Complex. During the late Cretaceous period (66 mya), the Franciscan Complex was fragmented and mixed, creating an aggregation of rocks while the Cambria Slab was moved relatively intact (Chipping, 1987).

Approximately 40 mya, sediments deposited by water, created the Lospe Formation. The Lospe Formation occurs in small areas along north-west trending inactive faults in the western portion of the watershed (Chipping, 1987). Cambria Felsite, an Oligocene (38-24 mya) volcanic complex is located near the center of the town of Cambria, and is contained within the Lospe Formation. The Cambria Felsite is the same age as the Morro Rock-Islay Hill Complex of volcanic rock outcroppings located between Morro Bay and San Luis Obispo (Hall, 2007). Franciscan Formation pebbles are also present within the Lospe Formation, coinciding with continental uplift (Chipping, 1987).

The Monterey Formation was created during the Miocene epoch (24-5 mya) and is dominated by thin bedded, siliceous shales, siltstones, and claystones. At this time, the Coast Ranges were submerged and the coastline was located near where the present-day San Andreas Fault lies (Chipping, 1987). The Monterey Formation exists along the northern watershed boundary and is nearly completely surrounded by the Franciscan Formation.

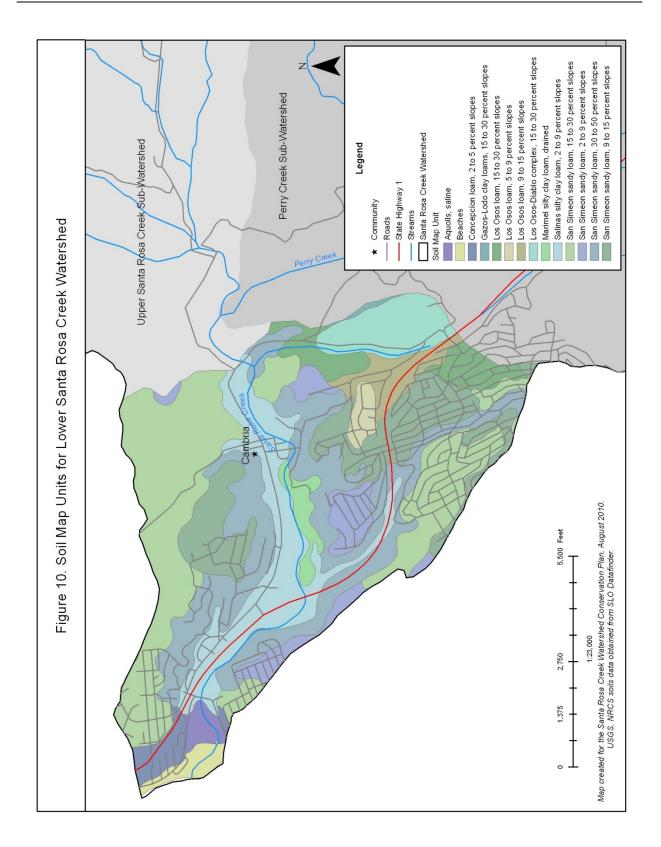
The Pismo Formation developed between 2-5 mya and is closely associated with the Monterey Formation. It was deposited as the Coast Ranges were created and sea levels dropped (Chipping, 1987). Near the coast, stream terrace deposits overlie sedimentary rocks. These marine deposits formed during a middle-to-late Pleistocene period, approximately 2 mya, in which sea levels were high (Yates and Van Konyenbur, 1998). Cyclical changes in sea level, occurring during the Ice Ages created extensive marine terraces, such as the one located at Moonstone Beach. The more recent stream terraces have developed from alluvium. In the lower watershed, stream bank deposits sit atop relatively impermeable bedrock, forming the Santa Rosa groundwater basin. It is estimated that the alluvium in this basin is approximately 130 feet thick (Chipping, 1987).

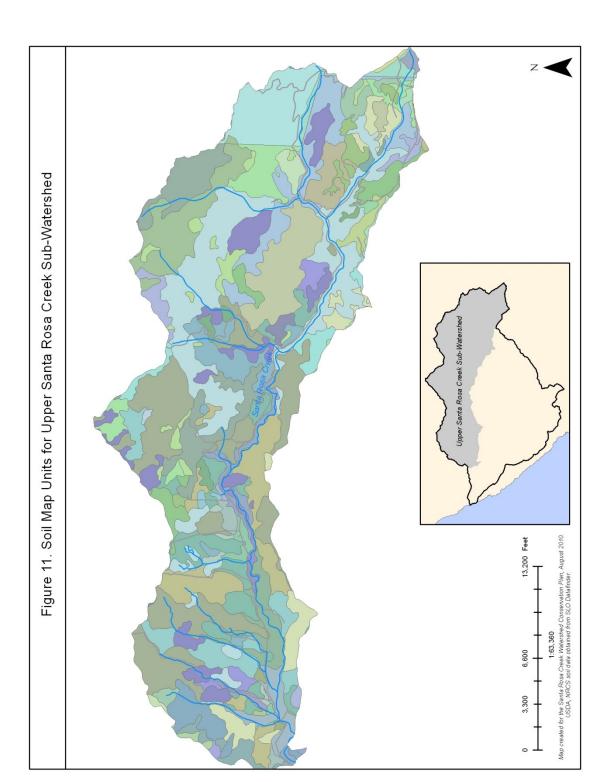
Several inactive north-west trending faults lie within the watershed. There are six faults with maximum earthquake magnitudes between 6.25 and 8.25 within 66 miles of the watershed (Cambria, Hosgri, Oceanic, Los Osos, Rinconada, and San Andreas Faults) (County of San Luis Obispo, 2008). On December 22, 2003 a moment magnitude 6.5 earthquake occurred with its epicenter located seven miles northeast of San Simeon, California, north of Cambria. Landslides were observed along State Highway 46 (Green Valley Highway). Due to seismic compression and slope instability, significant road damage occurred along State Highway 46 (EERI, 2004). The estimated recurrence interval with faults located within the watershed is long, the hazards associated with these faults remains low (County of San Luis Obispo, 2008).

Impacts of seismic activity can still be felt as a result of the 2003 San Simeon earthquake. Local ranchers have noticed significant differences in detention pond water levels. Ranchers in the upper portions of the watershed experienced a draining of their detention ponds and overall decrease in their water supply, while ranches located in the lower watershed gained water in areas that were previously dry (personal communication, J. Fitzhugh).

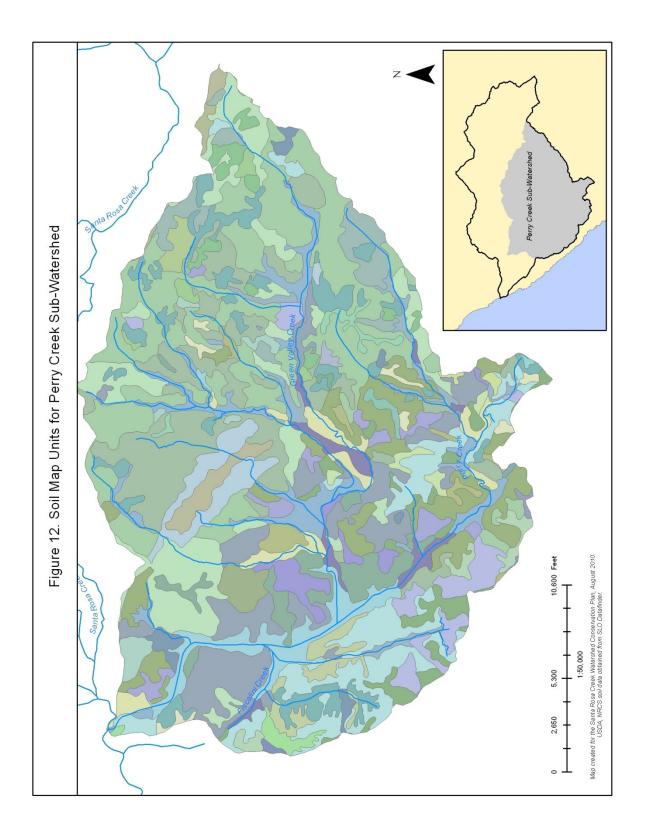
3.10. SOILS

The geologic diversity in the Santa Rosa Creek Watershed is the foundation of the complex soils present in the area. Factors that control soil formation are parent materials, climate, biota, topography, and time. (Soil terminology is described in Section 9.2 of the Conservation Plan). Parent materials are the organic or geologic sources in which soils are formed. They are important because they dictate soil characteristics which determine important watershed functions. For instance, parent material determines soil texture, which in turn controls the rate of water percolation, thereby directing a soil's susceptibility to water erosion. The chemical and mineral components of soils also influence how soils weather and what vegetation can grow. Some soils are highly productive, such as those found in valley floodplains, while other soils are characteristically unproductive due to their high magnesium content, and are subject to accelerated erosion on steep slopes (Gasser & Dahlgren in Dixon & Schulze, 2002).

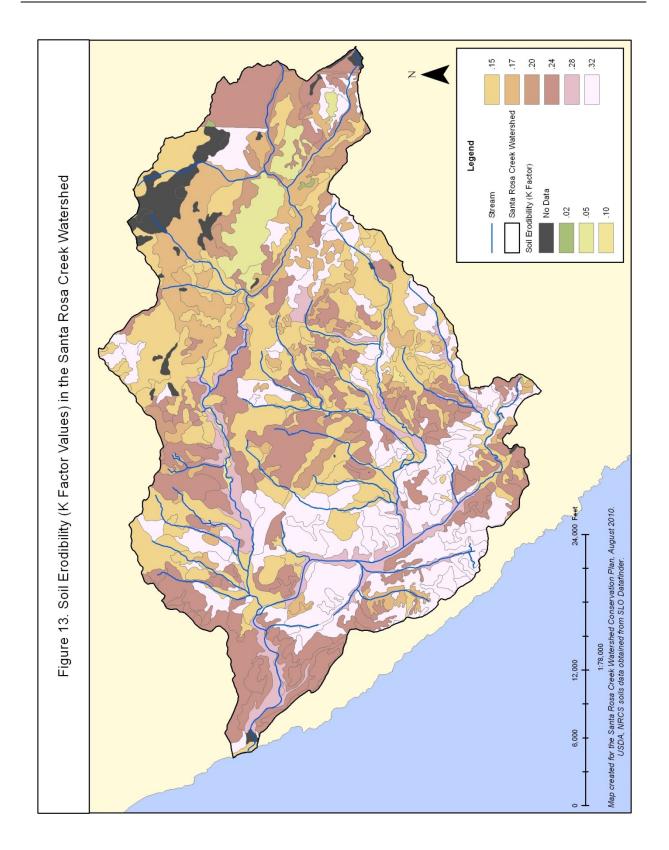

In 2005, the National Cooperative Soil Survey created digital soil surveys from existing maps. Soil Survey geographic data were prepared by USDA, NRCS and downloaded from SLO Datafinder (http://lib.calpoly.edu/collections/gis/slodatafinder/). These data describe the distribution of soil map units in the watershed. Soil map units are areas on the landscape mapped as one or more soil. To study soils located within the Santa Rosa Creek Watershed, digital soil data were extracted using GIS. The *Soil Survey of San Luis Obispo County, California, Coastal Part* (1984) and the *Soil Survey of San Luis Obispo County, California, Paso Robles Area* (1977) (referred to as Soil Surveys) were used as reference documents to describe the soil map units


found in the watershed. Figures 10, 11, and 12 show the distribution of soil map units throughout the Santa Rosa Creek Watershed.

There are 64 soil map units within the Santa Rosa Creek Watershed. These soils are listed with the total watershed area and percent of watershed area for each unit in Appendix F. Appendix F also includes descriptions of each soil map unit as discussed in the Soil Surveys, Soil Data Viewer online at Geospatial Data Gateway (http://soildataviewer.nrcs.usda.gov/), and on SLO Datafinder. "No Data" is used to describe soil erodibility of soil map units such as Rock outcrop complexes, Beaches, and Xerorthents. Soil erodibility data are not applicable to these soils.


The most common soil map unit within the watershed is the "Diablo-Lodo complex, 15 to 50 percent slopes". This soil is located on moderately steep to steep terrain and accounts for approximately 13 percent of all soils within the watershed. "Diablo-Lodo complex, 15 to 50 percent slopes" soil is mostly vegetated by grasslands with some woodland habitats located along stream corridors. The component soil within this complex has moderate to high water erosion hazards, rapid surface runoff, low productivity, and is sensitive to overgrazing, leading to excessive sheet erosion.

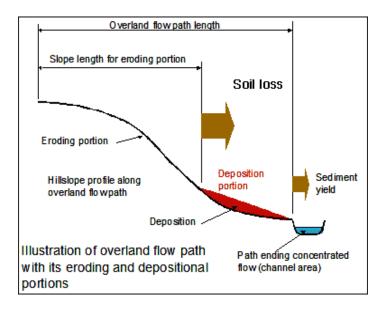
The digital soil data describes soil erodibility using "K Factor" of the whole soil. The "K Factor" is a soil's susceptibility to sheet and rill erosion from water. In general, "K Factor" values range from 0.02 to 0.69 with higher values more susceptible to erosion (USDA, 1984). Soils found in the Santa Rosa Creek Watershed have "K Factor" values ranging from 0.02 to 0.32. These soils are described as "low" to "moderately" erosive in the GIS data. Most of the soils in the upper watershed have low "K Factor" values, while soils in the lower watershed have moderate erosion values and are more susceptible to erosion (Fig. 13). Soils with rock outcrop complexes, mostly located in the upper watershed, have no "K-Factor" values. Additionally, an Aquoll soil, which has an aquatic moisture regime and thick organic-rich topsoil (mollic epipedon), did not have a "K-Factor" value. This soil is located in the lower watershed near the confluence of Santa Rosa Creek and the Pacific Ocean. It is located in a wetland vegetated with wooded wetland species. Further information about soils and soil erosion is described in detail in Section 4 of this report.



4. ASSESSMENT COMPONENTS

4.1. RUSLE2 PREDICTED SOIL LOSS

Predicted soil loss values for the Upper Santa Rosa Creek Watershed were calculated using GIS and the Revised Universal Soil Loss Equation, Version 2 (RUSLE2) program, developed by the USDA-Agricultural Research Service (ARS) and USDA-Natural Resources Conservation Service (NRCS). RUSLE2 calculates predicted soil loss from rill and interrill erosion using climate, soil, topography, and land use data.


RUSLE2 Background

Long-term annual erosion rates occurring on upland landscapes can be predicted using the RUSLE2 program and supporting data that describe field conditions. The program calculates the estimated amount of sediment produced from upland rill and interrill erosion. RUSLE2 does not account for additional erosion occurring at concentrated flow areas such as ephemeral gullies, classical gullies, stream channels, mass movements, and other major sources of sediment. The output values from RUSLE2 calculations are intended to be used as a guide for conservation planning and are not a precise estimator of soil loss or residue cover (Forester, 2004).

Erosion consists of three processes including detachment, runoff, and deposition. Detachment is the separation of soil particles from the soil surface and occurs through different erosive processes such as runoff, raindrop and waterdrop impact, and overland flow. Runoff on the soil surface produces rill erosion occurring in small channels. Raindrop and vegetative waterdrop impact produces interrill erosion which occurs between rills. Additionally, soil is detached and transported through overland flow, a thin flow of water over the soil surface that moves sediment to rills and concentrated flow areas, or channels (Forester, 2004).

Once soil is detached, deposition can occur within the overland flow path if the surface terrain is not uniform. The total amount of soil deposited is the difference between total detachment (sediment production) and sediment yield. Sediment yield is the total sediment leaving the overland flow path and can be calculated using RUSLE2 (Forester, 2004). Figure 14 shows the relationship between detachment, runoff, and deposition. Local deposition is deposition of sediment close to the location where sediment was detached. Remote deposition is the deposition of sediment far from its point of origin such as deposition in a terrace channel or on the toe of a concave slope (http://www.ars.usda.gov/Research/docs.htm?docid=6016). Remotely deposited sediment can make its way into stream channels and degrade critical habitat for listed species such as steelhead. In addition, sediment deposited in streams can carry harmful pollutants into waterways, degrading water quality, and can increase stream embeddedness, burying potential spawning gravels.

RUSLE2 calculates predicted erosion rates using climate, soil, topography, and land use data collected at an assessment site. These data allow any site to be analyzed where mineral soil is exposed to the impacts of raindrops or waterdrops. Cropland, mined land, disturbed forestland, rangeland, construction sites, landfills, parks, and reclaimed land are examples of sites that can be analyzed using RUSLE2 (Forester, 2004). These sites were not, however, studied individually in the Santa Rosa Creek Watershed Conservation Plan because access to these lands was not acquired and field data could not be collected.

Figure 14. Detachment, runoff, and deposition as described in RUSLE2 calculations (USDA-ARS http://www.ars.usda.gov/Research/docs.htm?docid=6016).

Variables Used in RUSLE2 Calculations

In the erosion study conducted for the Conservation Plan, a uniform slope was used to describe each site. Uniform slopes generalize the overland flow path as a straight line from the top of the site, to the bottom. This creates a condition where detached sediment would not be deposited on site. In this case, sediment production equals sediment yield. Figure 15 shows the relationship between soil loss and sediment yield of a uniform slope, as calculated in RUSLE2.

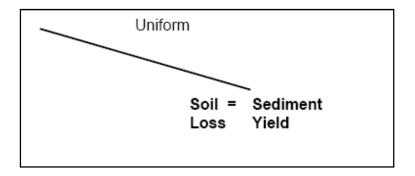


Figure 15. Sediment yield of a uniform slope in RUSLE2 (Forester, 2004).

RUSLE2 uses many different mathematical equations to calculate predicted annual soil loss values. With no deposition occurring in our analysis, the equation that is of greatest significance for the study computes net detachment.

Net detachment for each day is computed using the following variables in Equation 1 (Forester, 2004):

$$\mathbf{a} = \mathbf{r} \, \mathbf{k} \, \mathbf{l} \, \mathbf{S} \, \mathbf{c} \, \mathbf{p} \tag{1}$$

where:

a = net detachment (mass/unit area)

r = erosivity

k = soil erodibility

l = slope length

S = slope steepness

c = cover management

p = supporting practices

The USDA-NRCS tested various soils for erodibility using "unit plots" of 72.6 feet in length with nine percent slopes. Plots were not vegetated and were maintained in a continuously tilled fallow state using periodic tillage up and down slope creating a "seedbed-like" condition. Daily sediment production of a "unit plot" is a result of erosivity "r" of a location and soil erodibility "k". Slope length, slope steepness, cover management, and supporting practices data then adjusts the "unit-plot" sediment production value based on site-specific conditions. These factors used in the RUSLE2 calculation help describe the climate, soil, topography, and land use of a site (Forester, 2004).

Climate

Erosivity "r" is the most important climatic variable used by RUSLE2. Erosivity is the relationship between the amount and intensity of rainfall occurring at a location. Annual erosivity values are determined by analyzing historic weather records with erosivity values calculated from the total energy produced during an individual storm's maximum 30-minute intensity (Forester, 2004). A broad range of erosivity values occur throughout the United States. In the west, erosivity index values as low as eight exist, however in areas like New Orleans, erosivity values range as high as 700 (USDA, May 1, 2008). Erosivity values are listed in the RUSLE2 database by precipitation zones and counties in the western United States.

Soil

Different soils have different degrees of soil erodibility. In Equation 1, the "k" value is the soil erodibility factor on a given day of the year. It is calculated by RUSLE2 as a function of temperature and precipitation. In RUSLE2, base erodibility, or upper-case "K factor", is used to calculate the daily "k" value. Base soil erodibility is determined using a soil erodibility nomograph developed from the "unit plot" experimentations. Soil properties such as texture, organic matter, structure, and runoff potential due to soil permeability, affect a soil's "K factor" (Forester, 2004).

Soil properties such as texture give some insight into the soil's erodibility. For example, high clay soils are generally resistant to detachment and have low "K factors". Sandy soils usually

have high infiltration rates, reduced runoff, and are not easily transported, so they have low "K factors" as well. In contrast, soil particles in silty soils can be detached easily and readily produce high runoff. These soil types usually have high "K factors" (USDA, 1984).

Topography

Topographic features that affect rill and interrill erosion are slope length, steepness, and landscape shape. Slope steepness and overland flow path length are site-specific values used as input fields in RUSLE2. Overland flow path length extends from a point of origin to a concentrated flow area, or channel. Steepness is the percent slope along the overland flow path (Forester, 2004).

The "l" and "S" values used in Equation 1 represent the slope length and steepness. Slope length affects rill erosion rates primarily caused by runoff. As length increases, rill erosion increases. In contrast, interrill erosion rates are not affected by slope length because this type of erosion is caused by raindrop or vegetative waterdrop impact only (Forester, 2004).

In addition, slope steepness and shape can affect the rate of erosion. As slope steepness increases, the rate of erosion increases. Slope shape, or the spatial variation of steepness along a slope, determines if an increase or decrease in the rate of erosion occurs on a landscape. In this study, slope shape was generalized into a uniform slope shape, or straight line.

Land Use

Land use practices are the most important factors affecting rill and interrill erosion because they have the greatest effects on soil erosion and are the most easily changed factors contributing to erosion. Soil loss is controlled by modifying land use with cover-management practices and supporting practices. Cover-management practices include vegetative cover, crop rotations, conservation tillage, and applied mulch. In turn, supporting practices are features that "support" cover-management practices. These include contouring, strip cropping, terracing, and creating drainage basins, and subsurface drainage (Forester, 2004).

Cover-management practices can be defined in RUSLE2 by editing input fields to describe sitespecific conditions of vegetative cover. Variables that represent cover-management include percent canopy cover; fall height (from vegetation to soil surface); ground cover provided by live vegetation; plant litter; crop residue; applied materials; surface roughness; soil biomass; degree of soil consolidation; and ridge height (Forester, 2004). RUSLE2 does not model vegetative growth, but uses the vegetation description to make calculations. Vegetation is selected in a drop-down menu in RUSLE2, and production level and yield can be changed to describe site conditions.

Activities occurring on site that reduce erosion rates by causing deposition and decreasing erosivity are described using the supporting practices menu in RUSLE2. On-site features such as ridges (contours), vegetative strips and barriers (buffer strips and fabric fences), runoff interceptors (terraces and diversions), and small impoundments (sediment basins and impoundment terraces) are examples of supporting practices defined in RUSLE2. Supporting practices describe the actual activity occurring at the site.

RUSLE2 Outputs

There are four predicted soil loss values calculated using RUSLE2.

Soil Loss from the Eroding Portion of Slope

This value is the total sediment loss from the eroding overland-flow path. The soil loss value is used to identify cover-management and supporting practices that decrease soil loss to a value less than the soil loss tolerance, or some other conservation planning parameter (http://www.ars.usda.gov/Research/docs.htm?docid=6016).

Detachment for Entire Overland Path

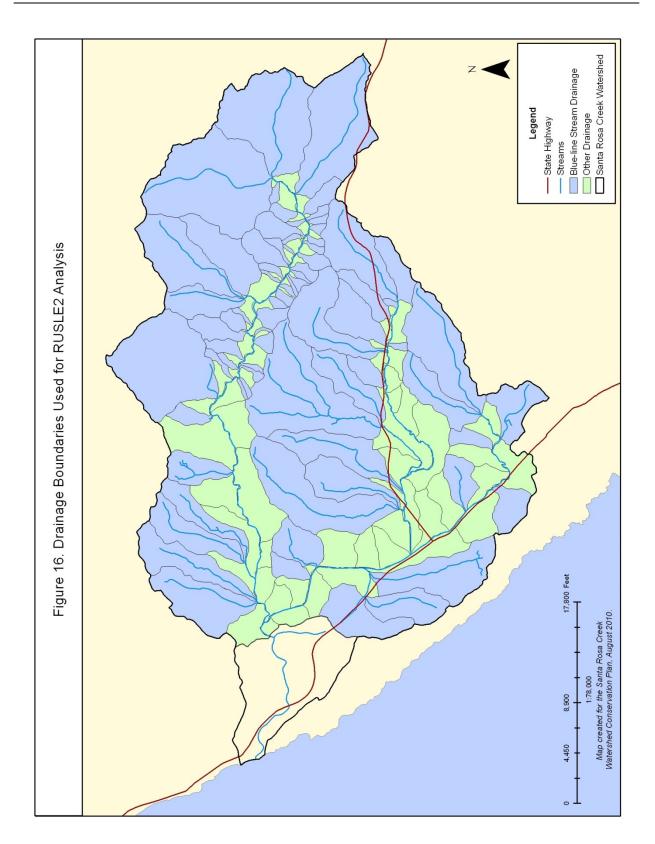
Detachment is the sediment produced over the entire length of the overland flow path.

Conservation Planning Soil Loss

Conservation planning soil loss accounts for some remote deposition of soil along the overlandflow path. It is generally less than the sediment production value, or total detachment, but greater than sediment yield.

Sediment Delivery (Yield)

Sediment delivery is the total sediment leaving the overland flow path.


RUSLE2 Assessment Methods

Predicted annual erosion rates were calculated for the upper watershed using ArcView 9.2, RUSLE2, Microsoft Excel, and Soil Surveys. Site visits were conducted to verify general vegetation, land use, and erosion types occurring in the watershed. GIS spatial data were acquired from the County of San Luis Obispo Planning and Building Department, the Geospatial Data Gateway, SLO Datafinder, and the California Spatial Information Library. GIS data used in the Conservation Plan, including the RUSLE2 assessment, are described in Appendix G.

Digital Soil Survey data were used to show the distribution of soil map units throughout the watershed. Published Soil Survey reports were used in conjunction with the GIS data to describe soil properties used in RUSLE2 calculations. To pinpoint locations where predicted soil loss values are high, soils were studied in blue-line stream drainages and areas in between blue-line streams in the upper watershed (Fig. 16). Drainage assessment areas are tributaries to Santa Rosa, Perry, or Green Valley Creeks.

There are 64 different soils found in the Santa Rosa Creek Watershed. Using RUSLE2, a profile was created for each soil occurring in each assessment area. A RUSLE2 profile is the data entry spreadsheet where site conditions can be defined and calculations are run. Once climate, soil type, slope topography, base management, and supporting practices were defined in the profile, the predicted soil loss value was calculated for the soil.

In RUSLE2, a uniform hillslope was used to analyze each soil therefore all four calculated predicted soil loss values were the same. The resulting value is given in tons of soil, per acre, per year. The resulting predicted soil loss value was multiplied by the soil acreage in the assessment area to determine the total predicted soil loss occurring at each soil. The soil loss values were then summarized for each assessment area.

Boundaries of erosion occurring at gravel pits, gullies, and roads were mapped in GIS however RUSLE2 was not used to analyze potential soil loss at these sites. Site visits to these locations are necessary to gather the appropriate data. It was determined that site visits should not be conducted on private property during this assessment to avoid landowner confusion and duplication of efforts with the developing restoration plan conducted by Greenspace. A detailed description of the erosion analysis methodology is included in Appendix H.

RUSLE2 Assessment Results

Land uses and vegetative communities in the lower watershed are highly diverse and are difficult to model, therefore it was determined that RUSLE2 should not be used to assess this area. Impermeable surfaces such as roads, parking lots, and buildings cannot be assessed using the program. In order to use RUSLE2 to predict erosion rates in the lower watershed, it is necessary to identify individual sites of interest and assess them separately with more detailed site information. In contrast, the upper watershed land uses were less variable and largely undeveloped therefore it was easier to assess using RUSLE2.

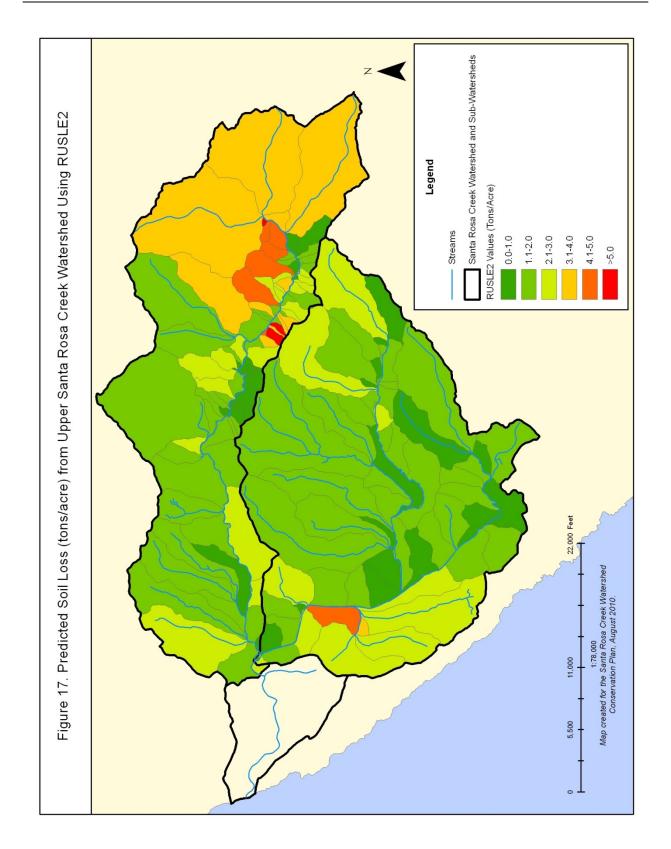
Using GIS, the upper watershed was subdivided into 74 blue-line stream drainage assessment areas (also referred to as "drainages" in GIS data) with an additional 85 assessment areas (also referred to as "other drainages" in GIS data) identified between drainages. Dividing the upper watershed into assessment areas allowed smaller geographic locations to be identified as potentially contributing higher amounts of soil to the system due to soil erosion. Table 5 shows the acreage and potential soil loss values for the upper watershed, separating values for the Santa Rosa Creek sub-watershed, and Perry Creek sub-watershed (including Green Valley Creek).

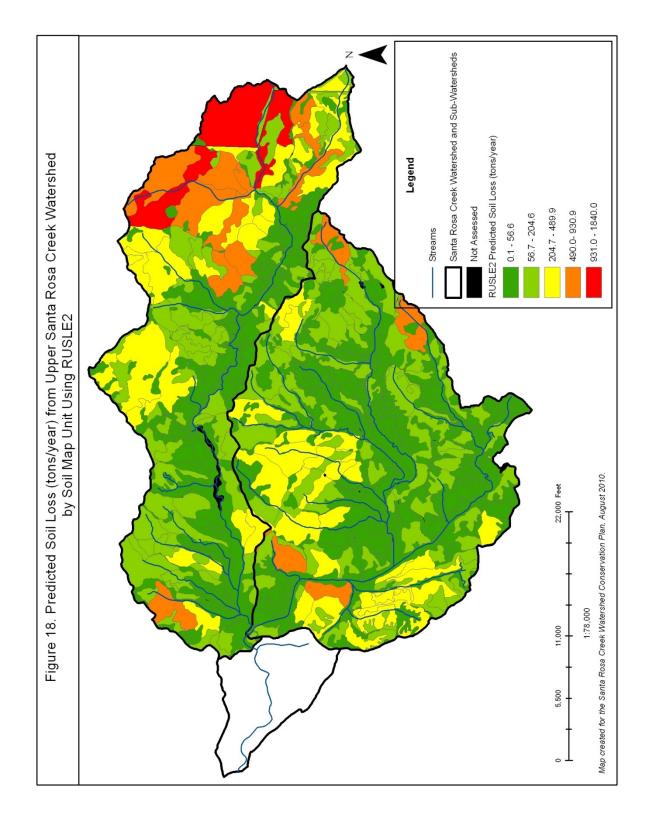
Watershed	Acres	Percent Upper Watershed Area	Predicted Soil Loss (tons/year)	Percent of Total Predicted Soil Loss
Upper Santa Rosa Creek	28,624		56,270	
Santa Rosa Creek (sub-watershed)	13,941	49%	32,757	58%
Perry Creek (sub-watershed)	14,683	51%	23,513	42%

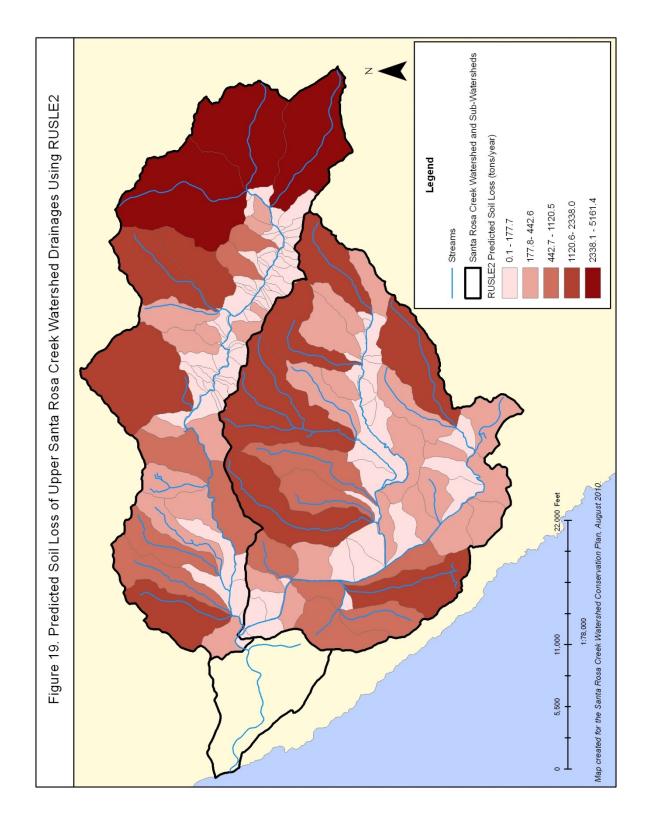
Table 5. Acreage and predicted annual soil loss values for the upper Santa Rosa Creek

 Watershed and sub-watersheds.

RUSLE2 soil erosion prediction assessment results were summarized in a map showing the distribution of soil erosion rates throughout the upper watershed, by drainage (Fig. 17). Potentially 56,270 tons or 1.97 tons/acre of soil is eroded each year in the Upper Santa Rosa Creek Watershed. NRCS considers five tons of soil loss, per acre as the sustainable annual soil loss threshold of deep soils (personal communication, B. Hallock). Soil erosion values greater than five tons/acre/year would be considered non-sustainable. This value decreases for shallow soils to bedrock. The threshold soil loss value was established according to the time it takes for one inch of topsoil to develop, equating 30 years and weighing approximately 150 tons.


The highest potential rates of erosion occur in the headwater reaches of both sub-watersheds and along the western drainage of Perry Creek. Steep north-facing slopes in the upper Santa Rosa Creek sub-watershed have the highest values of potential soil loss. A high frequency of gully erosion was observed using 2007 aerial imagery and observations made during field reconnaissance, confirming these results.


The upper Santa Rosa Creek sub-watershed encompasses 49 percent of the entire upper watershed land area. Within the upper Santa Rosa Creek sub-watershed 32,758 tons of soil can potentially erode each year. This represents 58 percent of the total potential soil loss in the entire upper watershed. The relative frequencies of erosion are shown throughout the upper watershed by soil map units, or soils, defined by the Soil Surveys (Fig. 18). Appendix I lists the total predicted soil loss values for each soil in the upper watershed.


The total predicted erosion values (tons/year) were calculated for each assessment area by adding each soil map unit's predicted erosion value together. Results show that assessment areas between blue-line stream assessment areas are not significant soil contributors due to their small sizes (Fig. 19). There are, however, a few of these sites with the greatest values of soil loss per acre of all areas studied. Slope steepness may be a factor influencing the high potential for soils to erode at these locations. The predicted annual soil loss value for each of the assessment areas are listed in Appendix J.

The RUSLE2 predicted soil loss values show "Gazos-Lodo clay loams, 30 to 50 percent slopes" soil map units are the most abundant soils throughout the blue-line stream assessment areas, accounting for 2,198 acres, or roughly 10 percent of the total area. These soils have the greatest potential to contribute the most soil loss in blue-line stream drainages. Potential soil loss from this soil is 115 tons of soil each year. "Los Osos-Diablo complex, 30 to 50 percent slopes" soils were also significant contributors to soil loss in blue-line stream drainages, potentially contributing approximately 99 tons of soil each year. These soils account for 1,337 acres, or roughly six percent of the blue-line stream drainage assessment area.

The "Gazos-Lodo clay loam, 30 to 50 percent slopes" soil described above has a high predicted soil loss value in assessment areas between blue-line stream drainages as well. In the upper Santa Rosa Creek sub-watershed, this soil potentially erodes approximately 40 tons of soil each year between blue-line stream drainages. In contrast, the most erosive soil within the Perry Creek sub-watershed is the "Los Osos-Diablo complex, 15 to 30 percent slopes". These soils potentially contribute nearly 47 tons of soil each year in assessment areas between blue-line stream drainages.

In describing total predicted erosion values within the upper watershed, it is important to note that some data gaps exist at sites where erosion likely occurs. Approximately 76 acres, or less than one percent of the entire upper watershed area, could not be assessed because "normal rangeland production" values used to describe "base management" in RUSLE2 were not provided in the Soil Survey data. This occurred with soil complexes including rock outcrops and soils that produce very little vegetation, such as soils derived from serpentine rock parent material. In addition, soil map units that were less than 0.065 acres were not assessed because accurate slope length and slope percent could not be captured using the Digital Elevation Model in GIS.

Soil map units without "normal rangeland production" values include "Riverwash", "Xerorthents", and "Water". Approximately 60 acres are "Riverwash" soils, located tangent to streams. These soils are highly susceptible to erosion and should be evaluated using other methods. In addition "Xerorthents, escarpment" soils account for approximately six acres within the upper watershed, and could not be assessed. Soil Surveys describe "Xerorthents, escarpment" soils as highly erosive, having rapid runoff. "Xerorthents, escarpments" are fairly well stabilized, but in bare areas, gullies do exist. These soils occur along State highway 46 on the southern boundary of the Perry Creek sub-watershed. In studying the site using 2007 aerial imagery, no gullies appear to exist within this unit. Finally, there are also approximately seven acres represented in the Soil Survey data, labeled "Water" that were not assessed. These map units are nonsoils and do not apply to the erosion assessment.

4.2. UPLAND EROSION MAPPING

Upland erosion was mapped to identify the location of existing sediment sources and assess the severity and extent of upland erosion throughout the watershed. Upland erosion was mapped using ArcView 9.2, 2007 digital aerial imagery, and field reconnaissance. ArcView 9.2 was used to digitize GIS layers, or on-the-ground features such as a road or a gully, observed using the aerial imagery. (GIS terminology is described in further detail in Section 9.3 of this report.) Digital aerial imagery was flown in the summer of 2007 with a ground resolution of one foot. The high resolution of the aerial allowed the soil surface to be viewed clearly, making identification of erosion features less difficult. Field reconnaissance was conducted to verify mapping results on public lands only. Erosion located on private property could not be checked for accuracy unless it was viewable from public lands or roads.

Several erosion types were identified in the watershed, and include: rill, interrill, ephemeral gully, gully, road, and stream bank erosion. Photographs of erosion occurring in the watershed are included in Appendix K of this report. Although some erosion is typically associated with agricultural land use, such as orchards, vineyards, row crops and tilled fields, they were not mapped as sediment sources in this portion of the Conservation Plan, but are included in the land use assessment as mapped crop boundaries.

Rill and interrill erosion are the two most common erosion features in the watershed. These erosion types occur from soil detachment caused by rainfall and the associated overland water flow during rain events. The overland flow path begins at the top of slope and ends in a concentrated flow channel. RUSLE2 was used to calculate annual predicted soil loss from rill and interrill erosion in the watershed. Results of this assessment are described in Section 4.1 of the Conservation Plan. Rill and interrill erosion were not mapped using GIS because they are difficult features to identify using aerial imagery however gully, ephemeral gully, and road

erosion are more distinct features and were digitized for this assessment. Stream bank erosion is an additional source of sediment in the watershed and is briefly discussed by Fisheries Biologist, Don Alley in Appendix L.

Gully erosion is defined by the Soil Science Society of America as "the erosion process whereby water accumulates and often recurs in narrow channels and, over short periods, removes the soil from this narrow area to considerable depths, often defined for agricultural land in terms of channels too deep to easily ameliorate with ordinary farm tillage equipment, typically ranging from 0.5 m to as much as 25-30 m". Ephemeral gullies are defined by the Soil Science Society of America as "small channels eroded by concentrated flow that can be easily filled by normal tillage, only to reform again in the same location by additional runoff events" (http://www.soils.org/sssagloss/index.php).

Gully and ephemeral gully erosion are common throughout the watershed, and are typically found in annual grassland drainages and grazed hillsides. The soil erosion occurring at these sites would increase the total predicted annual soil erosion values calculated by RUSLE2 for the erosion assessment described in Section 4.1 of the Conservation Plan. Gullies associated with cattle grazing were mapped separately as "Cattle Trails" or "Cattle Gully" layers depending on the erosion occurring at the site. "Cattle trails" are features where exposed soil has been caused by a high density of cattle trails at a particular location, such as a watering trough, exacerbating the likelihood of erosion at the site during rainfall events. "Cattle Gully" is a gully created in association with cattle grazing land use. It is important to note that the relationship between cattle grazing and soil erosion is not fully understood. Although at some locations soil erosion appears to be caused by a high density of cattle trails that contour hillslopes may actually slow water flow and reduce erosion.

Ephemeral gullies can be difficult to identify using aerial photography because they are smaller, more-subtle features. Ephemeral gullies distinct enough to be viewable using the aerial imagery were mapped. It is likely however; additional ephemeral gullies exist within the watershed and were not identified during this assessment.

Additional gullies were identified in the watershed and were mapped based on landform features such as drainages and stream banks in the "Gully Erosion" layer. Gullies associated with concentrated flow channels that are not blue-line streams were mapped and labeled "gully/drainage". Gullies occurring on banks of blue-line streams or other major drainages were mapped and labeled "gully/bank". Both gully types were identified based on exposed soil surface on the gully floor and headcutting. According to the Soil Science Society of America, headcutting is defined as "small abrupt elevation drops (1-5 cm) on the floor of rills or irrigation furrows that result in accelerated erosion as they undercut the rill floor and migrate upstream" (http://www.soils.org/sssagloss/index.php). Stream bank erosion is common among blue-line streams in the Santa Rosa Creek Watershed. Erosion on stream banks where headcutting appears to be forming a channel migrating upslope of the stream were mapped and labeled "gully/bank".

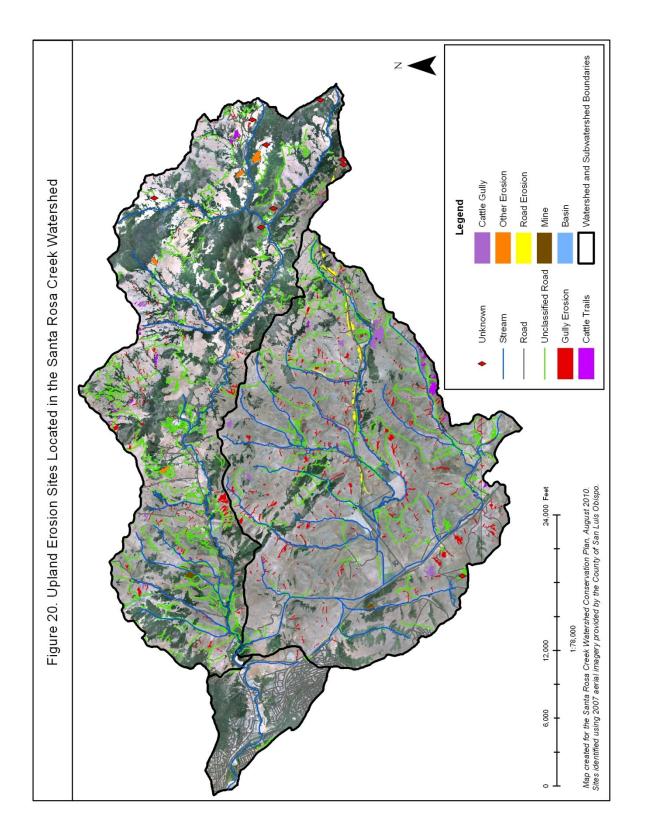
Some locations in the watershed could not be evaluated for soil erosion due to reflective glare on the aerial imagery. There are six sites located in the upper watershed where erosion appears to be occurring but could not be positively identified. These sites were located in grassland habitats and around rock outcrops. The locations were mapped as points in GIS and labeled "Unknown".

Other upland erosion features were also difficult to identify using the aerial imagery. For instance, road erosion could not be identified where the road is obstructed from view due to vegetative canopy cover or the road bank is difficult to view overhead due to extremely steep slopes. Dense vegetative canopy also obstructs view of the soil surface in coastal scrub and chaparral communities, making it difficult to map upland erosion in these areas as well.

Upland Erosion Mapping Results

To describe sediment transport and local sediment deposition in upland habitats of the Santa Rosa Creek Watershed, nine GIS layers were created. "Cattle gully", "Cattle trails", "Gully erosion", and "Road erosion" layers were created to identify upland erosion sites. Additionally, ranch roads, agricultural roads, and other private roads are known sources of sediment and were mapped as "Other roads". Excavation and mining sites are other sources of sediment and were mapped as "Mines". All remaining upland erosion sources were mapped as "Other erosion". Unconfirmed sites that could not be identified using the aerial but had potential to contribute eroded soil were mapped as "Unknown". Detention basins or ponds were also mapped to show locations where soil deposition occurs. These sites were located mostly on agricultural properties in the upper watershed and were mapped as "Basins".

While gullies associated with stream banks were mapped in the "Gully erosion" layer, severe stream bank erosion was identified only while mapping other upland erosion features. Stream bank erosion mapping was not included in the upland erosion assessment because of difficulty in identifying locations under riparian vegetative canopy. Field data collection of these features is required for an accurate assessment of stream bank erosion throughout the watershed. The stream bank erosion layer created for the Conservation Plan is not a complete layer and one should be cautious while using these data.


Figure 20 shows upland erosion locations in the watershed while Table 6 includes erosion statistics for the entire watershed and sub-watersheds. In addition, Table 7 describes unclassified road types within the watershed and sub-watershed. It is important to note the combined road lengths of both sub-watersheds are greater than the watershed total road lengths resulting from the inclusion of road lengths that cross sub-watershed boundaries in both sub-watershed road length statistics.

Cattle Trails

Sites where a high frequency of cattle trails have disturbed the soil surface, leaving the ground bare, were mapped in the "Cattle trails" layer. Approximately 1,775 acres in the entire watershed have been mapped as "Cattle trails". These sites are typically associated with a trough, spring, or stream crossing, and are formed where multiple cattle trails coalesce forming a highly disturbed site. Vegetation at these sites is usually sparse with some annual non-native grasses present. "Cattle trail" sites have the potential to erode during rainfall events due exposed soil surface and likely soil compaction which reduces water infiltration rates and increases runoff. In addition, riparian zones which are instrumental in filtering sediment from runoff entering streams are sometimes reduced at sites where high intensity grazing occurs.

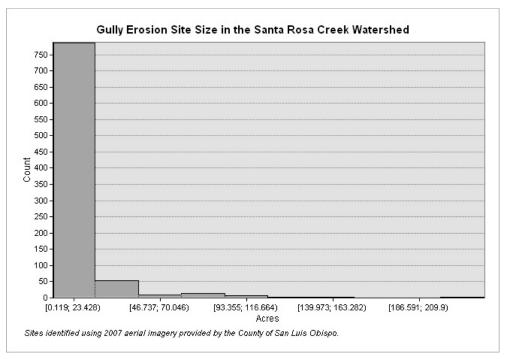
Table 6. Mapped upland erosion site statistics for Santa Rosa Creek Watershed and subwatersheds.

Feature Type	Santa Rosa Creek Watershed (acres)	Upper Santa Rosa Creek Sub-watershed (acres)	Percent Total Watershed	Perry Creek Sub- watershed (acres)	Percent Total Watershed
Ephemeral gully	781	373	48	407	52
Gully	1523	1172	77	351	23
Gully (severe)	40	40	100	0	0
Gully/bank	916	202	22	714	78
Gully/drainage	6099	874	14	5182	85
Gully/drainage (severe)	182	0	0	182	100
Gully/scrub	16	16	100	0	0
Cattle gully	3202	338	11	2863	89
Cattle trails	1775	953	54	821	46
Other erosion	1287	1225	95	62	5
Road erosion	94	17	18	75	80
Mines	31	19	61	12	39
Basin	14	3	21	11	79
TOTAL	15961	5233		10680	

Feature Type	Santa Rosa Creek Watershed (miles)	Upper Santa Rosa Creek Sub-watershed (miles)	Percent Total Watershed	Perry Creek Sub-watershed (miles)	Percent Total Watershed
Agricultural road	26	20	78	7	25
Mining road	3	1	56	1	44
Other road	3	1	39	2	70
Ranch road	114	64	57	55	49
Residential road	5	3	64	2	34
TOTAL	150	90		67	

Table 7. Mapped unclassified road lengths within Santa Rosa Creek Watershed and subwatersheds.

Cattle Gully


Gully erosion associated with cattle trails were mapped in the "Cattle gully" layer. These sites are often located in the upper reaches of tributaries and unnamed drainages. "Cattle gully" sites are similar to "Cattle trail" sites except that they have a gully within the disturbed area. There are approximately 3,202 acres of land where gullies are associated with observed cattle grazing activities. The smallest site is approximately two acres and the largest site, located on a steep, north-facing slope tangent to a bend in Green Valley Creek, is approximately 1,554 acres. At this site, cattle trails and rill erosion are common throughout the property and few gullies exist.

Gully Erosion

There are 877 "Gully erosion" sites identified in the watershed. Approximately 9,558 acres of land is susceptible to soil loss from gully erosion. Gully site sizes range from 0.1 acre to 233 acres, with a mean gully erosion size of 10.9 acres. The mean gully erosion size is likely skewed due to the presence of a few outlier values, or values that fall far above the normal size of gully erosion occurring within the watershed. Only 35 sites with approximately four percent of the total gully erosion area are over 50 acres in size; of these, two sites are over 200 acres. Large erosion sites are typically observed in sparsely vegetated drainages where the entire drainage appears as one large gully with eroding banks and exposed soil throughout. At these sites the entire area was mapped as "gully/drainage" to represent gully erosion occurring in association with drainages. A histogram of upland gully erosion sizes show most gullies are less than 24 acres in size (Fig. 21). Very few sites are greater than 46 acres.

Areas most impacted by gully erosion were observed to be foothill grassland habitats with steep slopes. Many gully erosion sites are located in association with small, unnamed drainages, as described above. Headcuts are commonly found at the top of unvegetated drainages and tributaries throughout the watershed. These sites typically have more cattle trails than other areas because cattle cannot cross drainages and tributaries in other locations due to steep banks.

Gully erosion appears more evident throughout the Perry Creek sub-watershed with approximately 6,837 acres of gully erosion existing within the Perry Creek sub-watershed, or 72 percent of the total gully erosion occurring within the entire watershed.

Figure 21. Histogram of ephemeral gully and gully erosion site size in the Santa Rosa Creek Watershed.

In general, fewer gullies were identified in headwater locations. This could be due to aerial photography viewing restrictions caused by camera glare and vegetation. Less than five percent of the entire watershed area, or less than 1,520 acres, could not be viewed due to reflective glare on the aerial image. At locations where glare is present the ground surface appears almost white and distinct features such as vegetation are muted making mapping erosion features difficult. In addition, grassland communities of the lower foothills are replaced by chaparral, coastal scrub, and forests in upper elevations of the Santa Lucia Mountains. Gullies could exist within densely vegetated areas however the ground surface could not be viewed due to obstructions resulting from vegetation canopy.

Cattle grazing activities are also common in the upper watershed however fewer erosional features exist where vegetation forms dense thickets and steep, rocky hillslopes make navigating the terrain difficult for cattle. Impacts to riparian areas surrounding streams and drainages appear to decrease as well. Although the amount of erosion appears less in the upper watershed, there are issues viewing the aerial imagery at some locations, as discussed above, and erosional features could exist that were not identified.

Road Erosion

Erosion associated with concentrated water flow leaving the surface of a paved or unpaved road were mapped in the "Road erosion" layer. "TIGER" road data acquired from SLO Datafinder (http://lib.calpoly.edu/collections/gis/slodatafinder/) was used to identify road locations. Erosion tangent to these road features were mapped. Road erosion was not studied in the lower

residential and business areas of the watershed; however erosion sites were identified along State Highway 1 and Main Street, within the lower watershed.

There are 244 road erosion sites in the Santa Rosa Creek Watershed, totaling 93.5 acres of soil susceptible to erosion due to roads. The minimum road erosion site size is less than 0.1 acre; the maximum site size is 7.1 acres; and the mean road erosion site size is 0.38 acre. Additional road erosion likely exists within the watershed, however could not be identified using the aerial due to vegetation cover or steepness of eroding slope. Road erosion site sizes are displayed on a histogram (Fig. 22). There are 225 sites between 0.003 and 1.423 acres in size, with only 19 additional sites larger than 1.423 acres.

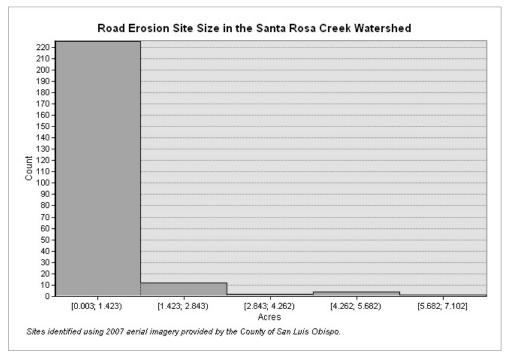


Figure 22. Histogram of road erosion site size identified using GIS and 2007 aerial imagery.

Landslides exist along State Highway 46, located in the Perry Creek Watershed. Construction of the highway occurred in the early seventies when preconstruction slope failure was noted and has since been exacerbated. In some locations, the cut slope is impacting personal property and rock armor is transported by slides into Green Valley Creek (Serafini, 2000). After the San Simeon earthquake in 2003, many landslides were noted along State Highway 46 due to liquefaction (EERI, 2004).

Other Roads

Roads not included in the "TIGER" database were mapped in the "Other roads" layer. Roads mapped in this layer include ranch, agricultural and private roads located in the upper watershed mainly. Additional ranch roads were located and mapped in the lower watershed; however roads within the residential and business areas of the community of Cambria were not mapped. Unpaved roads included in this layer have exposed soil surfaces with likely soil compaction making them susceptible to erosion during rainfall events.

Approximately 150 miles of "Other roads" exist in the watershed. There are approximately 26 miles of agricultural roads associated with tilled fields, vineyards, orchards, and row crops. Roads associated with mining operations total 2.5 miles in length. The most common types of unpaved roads in this watershed are ranch roads, with 511 separate ranch road segments totaling 113 miles in length. Ranch roads were identified as unpaved roads located in rangeland. In grazed areas where cattle trails were also observed, ranch roads were identified having two distinct tire tracks, as opposed to one narrow trail. Several ranch roads were identified and mapped, however appear to be abandoned. These roads are faded on the landscape and often-times dissipate in a field, ending at no distinct feature.

Private residential roads such as driveways were also mapped and total 4.7 miles in length. Other private roads that could not be classified in the above categories total 3.3 miles in length and are often associated with large agricultural facilities.

Mines

Using county mines data acquired through SLO Datafinder

(http://lib.calpoly.edu/collections/gis/slodatafinder/) and information from aerial imagery and topographic quadrangles, seven mines, gravel pits, and sites where excavation activities exist, were mapped. These sites were mapped in the "Mines" GIS layer and were observed as areas of excavated land and/or exposed rock. Approximately 30.6 acres of land was observed to be excavated in the watershed. The Bianchi Quarry is the largest site at 16.1 acres, with the Cambria Pit being the second largest site at 9.7 acres. Both sites are active rock quarries. The Bianchi Quarry is located in the upper Santa Rosa Creek sub-watershed and the Cambria Pit is located in the Perry Creek sub-watershed, along a tributary to Fiscalini Creek.

Photographs of small excavation activities, the Bianchi Quarry, and other erosion features found within the watershed are included in Appendix K of this report. The gravel pits and mercury mine are located on private property and could not be accessed. Field reconnaissance shows that smaller gravel pits are difficult to identify on the aerial image therefore additional gravel pits may exist.

Historic information of mining activities in the watershed reveals that dozens of mines were created at the height of the mercury mining boom, in the nineteenth century. Many mines were dispersed in the foothills of the Santa Lucia Mountains, as prospectors searched frantically for ruby red cinnabar ore. Rough, hummocky topography located in portions of the headwaters may be remnants of old mining activities. Although vegetation has now covered many of these sites, alterations to the landscape may impact drainage, accelerating erosion in some locations and providing local deposition in others.

Other Erosion

Sites where erosion type could not be confirmed but a feature was distinct enough to indicate possible erosion, were mapped using the "Other erosion" layer. These sites include locations such as rocky hillsides in serpentine areas where erosion appears to be creating ephemeral gullies. Other sites, such as possible excavation sites, were also identified and mapped using this layer. There are 1,287 acres in the watershed mapped as "Other erosion". With permission from private landowners, additional data should be gathered about these sites.

Unknown

Point features were created in the "Unknown" layer to identify locations in which erosion could be occurring but a perimeter could not be mapped using the aerial imagery. There are nine "Unknown" sites mapped in the watershed. These sites differ from "Other erosion" sites in that an area was not mapped around the perimeter of the site because the entire site could not be viewed due to obstructions or reflective glare on the aerial image.

Basins

Basins were mapped to identify locations where detached sediment could be locally deposited during rainfall events. The amount of soil lost to erosion through streams and drainages decreases when eroded soil is collected in features such as basins or ponds. Detention basins and ponds located in the watershed appear to be used in association with ranching activities in the upper watershed. There are 31 basins located within the watershed, of approximately 14.1 acres. The minimum basin size is less than 0.1 acre and the maximum basin size is approximately two acres.

4.3. FISHERIES ASSESSMENT

Fisheries Resources

The following discussion of fisheries resources in the Santa Rosa Creek Watershed is excerpted from a summary report of extensive fisheries surveys conducted by D.W. ALLEY and Associates and supplemental information obtained from the California Department of Fish and Game. Appendix L contains the entirety of the D.W. ALLEY and Associates' report. The information in this discussion is focused on steelhead (*Oncorhynchus mykiss*), a species listed as threatened under the federal Endangered Species Act. Steelhead are considered the primary indicator species of stream health in the watershed. Information is also included describing habitat conditions and limiting factors for the Tidewater goby (*Eucyclogobius newberryi*), listed as an endangered species in the watershed.

Steelhead Ecology

Steelhead are a member of the salmonidae family, or salmonids, which include salmon, trout, chars, freshwater whitefish, and graylings. Steelhead are genetically indistinct from rainbow trout and differ only in their behavior. Steelhead exhibit a life cycle similar to other salmonids in that they are anadromous, meaning they develop into adulthood in the ocean and swim to their natal stream to reproduce. Most adult salmonids migrate to their home stream in January through early May after two years (range of one to three years) of feeding and growth over the continental shelf. However, adult steelhead differ from all other salmonids in that some survive the spawning process to return to the ocean and possibly spawn again the next spawning season. All other adult salmonids spawn only once and die soon after.

Once hatched from their eggs, the young steelhead are referred to as alevins and remain among their spawning gravel, or redd, to feed from their rich yolk sacks. After the yolk is completely absorbed the young fish emerge from the gravel to consume small insects and are then known as fry. These fry spend one to two years as juveniles in their natal, freshwater streams. Steelhead are considered juveniles unless they have entered the ocean. Once large enough to survive ocean

conditions, most make their way to the ocean in late winter and spring. At this time the young steelhead undergo physiological and coloration changes, a process known as smolting, which allows them to acclimate to the saline ocean environment, a process known as osmoregulation. The more variable life cycle of steelhead has made them more adaptable to habitat changes and more resilient to natural events that have been exacerbated by human development and water usage, such as floods and droughts, than the simpler life cycle of other salmonids, for instance coho salmon.

Spawning Habitat

Steelhead require spawning sites with gravels from 1/4" to 3 1/2" in diameter, having a minimum of fine material (sand and silt), and with good flows of clean water moving over and through them. Flow of oxygenated water through the redd to the fertilized eggs is restricted by increased fine materials from sedimentation causing the gravels to become cemented with sand and silt. These restrictions reduce hatching success. In many Central Coast streams, steelhead appear to successfully utilize spawning substrates with high percentages of coarse sand, possibly impacting hatching success. In addition, steelhead that spawn earlier in the winter are more likely to have their redds washed out or buried by winter storms. Steelhead spawning success may be limited by scour from winter storms in some streams. Unless hatching success has been severely reduced, survival of eggs and alevins is usually sufficient to saturate the limited available rearing habitat in most reaches of small coastal streams, such as Santa Rosa Creek. The production of young-of-the-year (YOY) fish is related to spawning success, which is a function of several factors including the quality of spawning conditions, the pattern of storm events, and the ease of spawning access to upper reaches of tributaries where spawning conditions are generally better.

Rearing Habitat

Growth of YOY steelhead appears to be regulated by available food and cover resources, as well as water depth. Steelhead YOY diet is mostly composed of insects, however they will also eat smaller fish and crustaceans. Cover habitat, such as undercut banks, large un-embedded rocks, surface turbulence, and so forth, is imperative to their success as well, providing hiding places from predators. Pool, run and riffle depth are also important in regulating juvenile numbers, especially for larger fish. Densities of yearling (second year) and smolt-sized steelhead in small streams, such as Santa Rosa Creek, are usually regulated by water depth and the amount of escape cover during low-flow periods of the year (July-October). In most small coastal streams, availability of this "maintenance habitat" provided by depth and cover appears to determine the number of smolts produced (Alley, 2006a; 2006b). Abundance of food and fast-water feeding positions for capture of drifting insects in "growth habitat" (provided mostly in spring and early summer) determine the size of these smolts. Aquatic insect production is maximized in un-shaded, high gradient riffles dominated by relatively un-embedded substrate larger than about four inches in diameter.

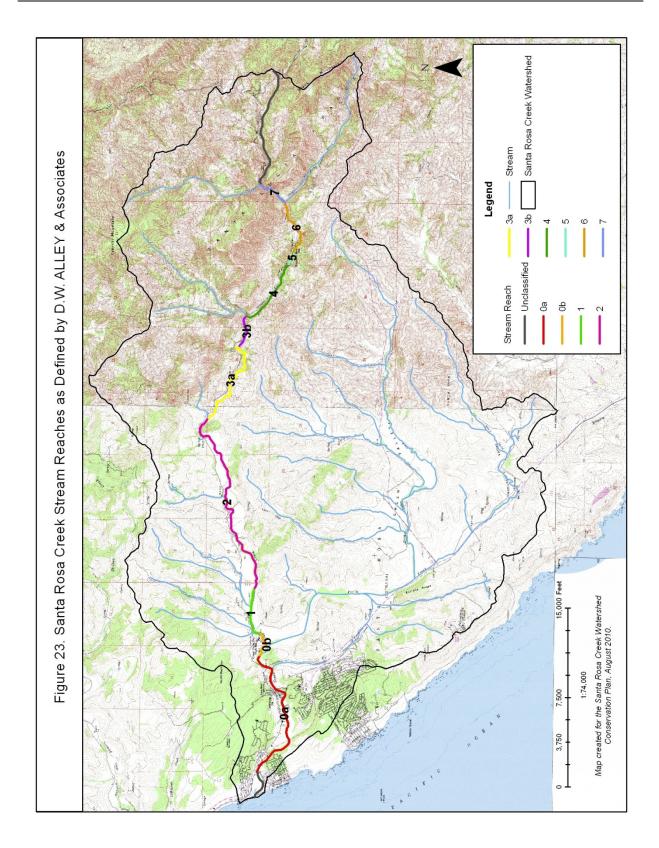
During summer in Santa Rosa Creek, steelhead use pool habitat primarily. Shallower fastwater riffles, runs and step-runs (step-runs present only in the upper canyon) are also used by mostly small YOY and the occasional yearling in deep pockets of step-runs. The shallow (typically 0.2 ft or less average depth and typically 0.4 ft or less maximum depth) fastwater habitat is used almost exclusively by small YOY, although most YOY are in pools. YOY and small yearling steelhead that have moved down into the lower valley from the upper canyon in spring can grow faster, especially if stream flows are high and sustained throughout the summer. Primary feeding habitat is at the

heads of pools and in the lower valley where step-runs are absent. The deeper the pools, the more value they have. Higher stream flow enhances food availability, surface turbulence, and habitat depth, which are all factors in increasing steelhead densities and growth rates.

Overwintering Habitat

Deeper pools, undercut banks, side channels, large un-embedded rocks and large wood clusters provide shelter for fish against the high winter flows. In some years, extreme floods may make overwintering habitat the critical factor in steelhead production, especially for smaller steelhead that must over-winter twice before they are ready to migrate to brackish waters to smolt. In years when bankfull or greater storm flows occur, these refuges are critical, and it is unknown how much refuge is actually needed.

Migration


Adult steelhead in small coastal streams tend to migrate upstream from the ocean through an open sandbar after several prolonged storms. The migration seldom begins earlier than December and may extend into May if late spring storms develop. Many of the earliest migrants tend to be smaller than those entering the stream later in the season. Adult fish may be blocked in their upstream migration by barriers such as bedrock falls, wide and shallow riffles and occasionally log-jams. Man-made objects, such as culverts, bridge abutments and dams are often significant barriers. In the Santa Rosa Creek Watershed, the concrete ford at Ferrasci Road between Reaches 0b and 1 has a denil fish ladder through the drainage culvert that may become a passage barrier during storm events. Stream reach boundaries in the Santa Rosa Creek as defined by D.W. ALLEY and Associates are mapped in Figure 23 and described in Table 8, pg. 97.

At times, some barriers may completely block upstream migration, but many barriers in coastal streams are passable at higher stream flows. If the barrier is not absolute, some adult steelhead are usually able to pass in most years, since they can time their upstream movements to match peak flow conditions. In drought years and years when storms are delayed, barriers can seriously impede steelhead spawning migration. Data indicated that in drier years, juvenile steelhead densities tended to increase in the lower valley reaches of Santa Rosa Creek and decrease in the upper canyon (and vice-versa in wetter years), indicating reduced adult passage in drier years.

Smolts (young steelhead which have physiologically transformed in preparation for ocean life and initiate their migration to the ocean) in local coastal streams tend to migrate downstream to the lagoon and ocean in March through early June. In streams with lagoons having adequate water quality, YOY and yearling fish may spend several months in this highly productive lagoon habitat and grow rapidly. Santa Rosa Lagoon has provided summer steelhead habitat after wet winters, however it is considerably reduced in size in drier years and/or has lethally high water temperatures due to tidal overwash, providing steelhead habitat only in the upper portion between Windsor Bridge and Shamel Park. In some small coastal streams, downstream migration can occasionally be blocked or restricted by low flows due primarily to heavy streambed percolation or early season stream diversions. Flashboard dams or early closure of the stream mouth or lagoon by sandbars after milder winters are additional factors, which adversely affect downstream migration to the Pacific Ocean. For example, the Santa Rosa Creek sandbar closed for the summer season on 28 March in 1994 after a mild winter, and numerous juvenile smolts that had been trapped in the lagoon after the sandbar closed were observed and some captured (50+) in early June in the lagoon and immediately upstream. In 2008, with the shortage of March and April storm flows and early sandbar closure, numerous smolts and adult steelhead were trapped in the lagoon behind the closed sandbar in mid-April and were unable to reach the Bay.

During the growing season juvenile steelhead do not move substantially from the location where they are captured and therefore juvenile densities are directly linked to the habitat conditions where they are captured. This deduction is supported by observation of sites in close proximity yet with widely different food availability. The lack of movement between sites is indicated by juveniles that are consistently larger at the mainstem sites where stream flow is greater and there is more food (Don Alley personal observation, e.g. San Lorenzo River and tributaries). Otherwise, juvenile steelhead size would standardize as fish moved between feeding areas. Other studies support this theory as well.

Davis, during an assessment of growth rates in various habitat types, marked juvenile steelhead in June, 1995, in Waddell Creek. In September of the same year, he recaptured the same fish in the same habitats, or immediately adjacent habitats. In addition, Shapovalov and Taft (1954) after nine consecutive years of fish trapping on Waddell Creek detected very limited upstream juvenile steelhead movements, concluding the relatively limited movement was mostly in the winter, perhaps after the lagoon sandbar opened and lagoon habitat was lost. Recent preliminary data from PIT-tag detectors installed by NOAA Fisheries researchers in upper Scott Creek and its tributary, Big Creek (Santa Cruz County) have also indicated little movement of juvenile steelhead during the growing season. PIT-tagging of estuary/lagoon-inhabiting and streaminhabiting juveniles over a two-year period has shown very little movement of juvenile steelhead during the months of May–November, it being insignificant at the population level (personal communication, S. Hayes). They, however, found that some estuary/lagoon juveniles moved upstream from the lagoon in fall prior to sandbar opening, perhaps due to deteriorating water quality, and after sandbar opening with the loss of lagoon habitat.

Growth Dynamics

"Growth habitat" provided by higher flows in spring and late fall (and in summer of higher baseflow years in lower valley reaches) is very important, since ocean survival to adulthood increases exponentially with smolt size (Shapovalov and Taft, 1954; Bond, 2006). It was determined from scale analysis of captured steelhead that in warm mainstem portions of the San Luis Obispo and Santa Rosa creeks (San Luis Obispo County), YOY steelhead are capable of growing to smolt size their first growing season (Size Class II =>75 mm Standard Length in fall) (Alley, 2008a; 2008b). Except in streams with high summer flow volumes (generally greater than about 0.2 to 0.4 cubic feet per second (cfs) per foot of stream width), steelhead require two summers of residence before reaching smolt size (Smith, 1984). For reaches where yearling steelhead stay a second summer, growth in summer and fall is slightly before leaf drop and fall storms (or even negative in terms of weight) as summer flow reductions eliminate fast-water feeding areas and reduce insect production (Smith, 1982a; Hayes et al., 2008). Data indicated that in Santa Rosa Creek, relatively few YOY reached a size enabling them to smolt the following spring except primarily in lower valley reaches.

The slow growth and often two-year residence time of most Central Coast juvenile steelhead indicate that any year class of steelhead can be adversely affected by low stream flows or other problems during either of the two years of freshwater residence. A small percent of yearlings may stay a third growing season to become 2+ year-olds before smolting if they spend much of their residence time in poor habitat that slows growth (usually in cooler headwater reaches) or if they have the genetically determined behavior to grow especially large before smolting.

Migration Barriers and Extent of Anadromy

Stream structures and potential barrier data in the Santa Rosa Creek were compiled by the California Department of Fish and Game (CDFG) in the California Fish Passage Assessment Database (ds69), last updated May, 2009. Using BIOS Public Viewer v 4.18 (http://imaps.dfg.ca.gov/viewers/biospublic/app.asp?zoomtobookmark=1562) the fish passage database was queried. Data showed one natural limit to anadromy along Santa Rosa Creek, and six structures listed as "total", "partial", or "temporal" barriers for fish migration in the Santa Rosa Creek Watershed. There are an additional 14 structures with a barrier status listed "unknown", and two structures that are not barriers within the watershed. Along the mainstem of Santa Rosa Creek, there is one "total" barrier (natural limit to anadromy), two "temporal" barriers (a road crossing and fish passage facility), one "unknown" (cascade falls), and one that is "not a barrier" (Highway 1 bridge).

Other barrier data are available for the Santa Rosa Creek Watershed from the Central Coast Watershed Studies Team (http://ccows.csumb.edu/scdp/data.htm) (Fig. 24). These data were published in 2006 by the CDFG for the California Fish Passage Assessment Database Project. The data show there are five road crossings and two non-structural sites that could act as barriers to steelhead migration. The end of anadromy is identified as the eastern-most non-structural site on the map. A dam located in the upper reaches of Perry Creek signifies the uppermost extent of anadromy in that stream. Additional migratory barriers could exist within the watershed, reducing total steelhead habitat.

Santa Rosa Creek Watershed Stream Structures & Potential Barriers

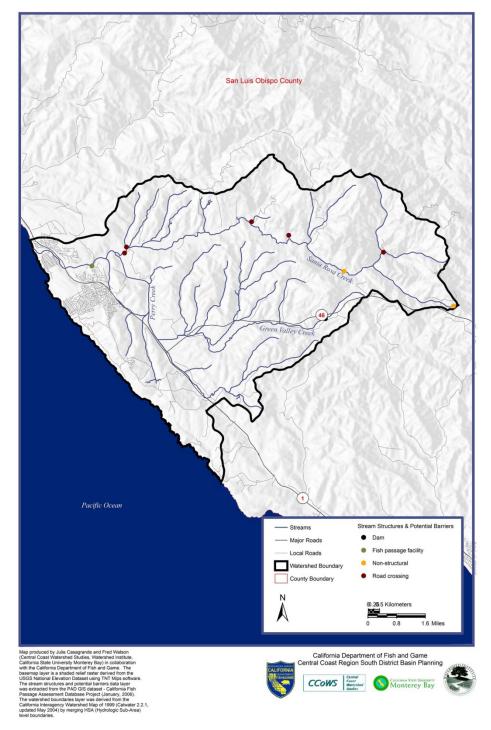
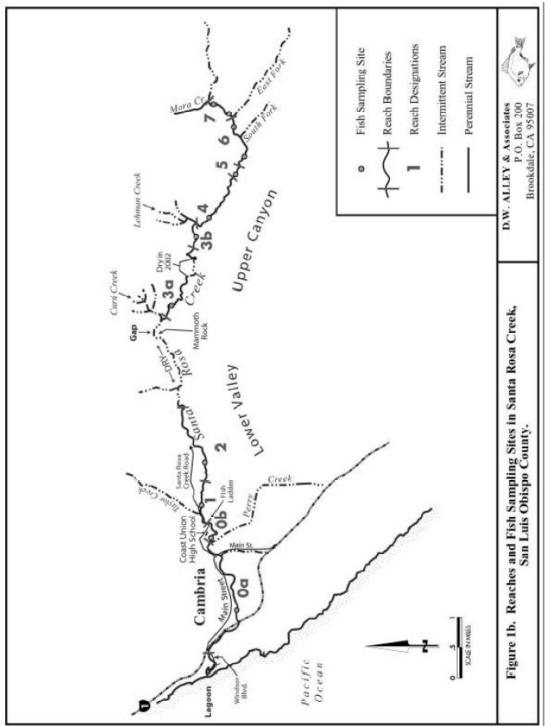



Figure 24. Map of structures and barriers in the Santa Rosa Creek Watershed, by CDFG.

D.W. ALLEY & Associates state that steelhead anadromy likely extends to the upper reaches of Santa Rosa Creek and upper tributaries, such as Mora, East Fork, and Lehman Creeks. Stream reach and tributary nomenclature along the Santa Rosa Creek were defined by D.W. ALLEY & Associates (Fig. 25). When the mainstem of Santa Rosa Creek was surveyed to the Mora Creek confluence in fall 1994, no passage impediments were observed other than wide transverse riffles in Reach 0a. Although perennial flow exists in Mora Creek, judging from the topography in that area, the gradient rapidly increases and passage impediments likely exist. As a result there may be as much as 1/4 -mile of spawning and rearing habitat on lower Mora Creek. Steelhead have been confirmed at other locations in the upper Santa Rosa Creek as well. It is unknown if perennial habitat exists in the East Fork of Santa Rosa Creek, however observations of adults and juveniles have been reported by a local resident. Limitations to migration are probable in this tributary due to gradient and water availability. Just upstream of the confluence with Santa Rosa Creek, the gradient of East Fork sharply increases. In addition, the confluence of East Fork was observed dry during fish sampling activities from 1994-2006. It is estimated that there may be ¹/₄-mile of spawning habitat on the East Fork as well. In addition, Lehman Creek has perennial flow at its mouth and is accessible to adult steelhead, however local topography suggests Lehman Creek may also have ¹/₄-mile of spawning and rearing habitat.

In contrast, Curti Creek and Taylor Creek, both located in lower reaches of the watershed (Fig. 25), are likely inaccessible to adult steelhead throughout the year due to perched culverts. Additional migration barriers include the concrete ford with laddered culvert at Ferracsi Road between Reaches 0b and 1 in the lower valley. This site is a potential steelhead passage impediment if instream wood collects inside or on the upstream entrance to the culvert during stormflows. Sean Grauel, formerly of the Cambria CSD, Don Alley, and Dave Highland of CDFG have cleared wood that has collected at the culvert multiple times throughout the years. Don Alley, however, has no observations of this culvert being completely impassable to steelhead, and sampling data for juvenile densities upstream of the culvert has indicated that the culvert was passable for the entire period of sampling (1993–2006). Based on fish sampling data, the denil ladder through the Ferrasci Road culvert is, however, a passage barrier to sculpins, except in rare instances.

Figure 25. D.W. ALLEY & Associates' map of stream reaches indicating stream nomenclature for tributaries along the Santa Rosa Creek (Appendix L, Fig.1).

Table 8. Santa Rosa Creek mainstem stream reach descriptions and reach lengths, from channel mile 0.5, to Mora Creek, as defined by D.W. Alley & Associates, in Fall 2006 (Appendix L, Table A1).

Reach	# Reach Boundaries	Reach Length (ft)
0a	Windsor Drive Bridge to Perry Creek Channel Mile (CM) 0.5 - CM2.92	12,777
d 0	Perry Creek to Fish Ladder; CM2.92-CM3.38	2,437
1	Fish Ladder to Bedrock Outcrop CM3.38 - CM4.19	4,257
2*	Bedrock Outcrop to Just Above Curti Creek Confluence CM4.19-CM7.94 (2,625 ft dry)	17,175 (36,646 ft Lower Valley)
3a	Above Curti Creek Confluence to Point Below Soto House CM7.94 - CM9.6	8,765
3ь	Below Soto House to First Tributary (Lehman Cr.) CM9.6 - CM10.1	2,567
4	From Tributary to Eroding Hillside CM10.1 - CM11.24	6,101
5	Eroding Hillside to Bank Erosion 6-8 Feet High and Gradient Change CM11.24 - CM11.45	1,134
6	Bank Erosion to Tributary Confluence and Bridge Crossing (East Fork) CM11.45 - CM12.42	5,152
7	East Fork Confluence to Northern Tributary Branch (Mora Creek) Confluence CM12.42 - CM13.0**	3,058
	тот	MI. 63,423 (26,777 ft. (12.0 mi) up.canyon)

* Dry section usually existed between Reaches 2 and 3: 3.9 miles in 1994 and 2.2 miles long in 2000, 2002 and 2003 except for short stretch at the Gap. High baseflow after the earthquake watered this entire segment in 2004 and all but 2,625 ft in 2005 and 2006.

**Slightly more habitat was beyond this point but inaccessible.

Benefits of a Properly Functioning Riparian Zone

A properly functioning riparian corridor will reduce limiting factors, such as warm water temperature, excessive stream sedimentation and the shortage of large wood recruitment to the stream channel. There is a growing body of evidence that buffers along streams are necessary to protect aquatic ecosystems from potential disruption and degradation. The purpose of riparian buffer strips is to allow natural interactions between riparian and aquatic systems to be sustained so that appropriate instream ecosystems, sediment regimes and channel forms can be maintained. Reid and Hilton (1998) enumerated specific roles of riparian zones in relation to the instream environment as follows:

- Maintenance of the aquatic food web through provision of leaves, branches and insects.
- Maintenance of appropriate levels of predation and competition through support of appropriate riparian ecosystems.
- Maintenance of water quality through filtering of sediment, chemicals and nutrients from upslope sources.
- Maintenance of an appropriate water temperature regime through provision of shade and regulation of air temperature and humidity.
- Maintenance of bank stability through provision of root cohesion on banks and floodplains.
- Maintenance of channel form and instream habitat through provision of wood and restriction of sediment input.
- Moderation of downstream flood peaks through temporary upstream storage of water.
- Maintenance of downstream channel form and instream habitat through maintenance of an appropriate sediment regime.

According to Reid and Hilton (1998), riparian zones are important to adjacent instream ecosystems because they strongly control the availability of food, distribution of predators, form of channels, and distribution of temperatures (Murphy and Hall, 1981; Naiman and Sedell, 1979; Theurer et al., 1985; Zimmerman et al., 1967). Riparian buffer strips have become a widely accepted way to help protect aquatic ecosystems and water quality from the effects of upslope activities. According to Reid and Hilton (1998), the Forest Ecosystem Management Assessment Team (FEMAT) recommended the establishment of riparian reserves to help sustain the proper functioning of processes that influence habitat, and thus to provide for habitat requirements for coho salmon and aquatic species. Because steelhead habitat requirements are similar to those of coho salmon, riparian reserves would offer them the same protection.

NOAA's National Marine Fisheries Service (NOAA Fisheries Service) considers riparian habitat to be critical habitat for the federally threatened steelhead. Removal of riparian canopy over a stream is considered an adverse modification and is subject to review by the NOAA Fisheries Service under the Endangered Species Act for projects requiring Army Corps 404 permits for modifications to stream channels. NOAA Fisheries Service typically recommends in short-term Habitat Conservation Plans that an Aquatic Protection Zone (APZ) be established from the outer edge of the bankfull channel, to a distance horizontally equivalent to the potential tree height on Class I and II watercourses in order "to protect the functions and processes of the riparian zone.

Santa Rosa Creek Habitat Characteristics

Classifying Habitat Types and Measuring Habitat Characteristics

In 1994, all watered steelhead habitat in the mainstem of Santa Rosa Creek [upstream of the fish ladder on Santa Rosa Creek at the Ferrasci Road crossing at channel mile (CM) 3.38 was surveyed and habitat typed. In Santa Rosa Creek, the surveyed habitat began at CM3.38 and ended at the Mora Creek confluence at CM13.0. The reach downstream of the fish ladder was not included because much of it was dry. The habitat proportions and stream lengths with surface flow found in 1994 were used in subsequent estimations of juvenile steelhead production through 1997. In 1998, habitat typing was repeated to update habitat conditions and obtain accurate habitat proportions after the two wet winters since 1994. Reaches 0a, 0b and 3a were added in 1998 because these parts of the watershed had newly occurring perennial surface flow due to the higher base flow. Table 8, pg. 90 shows stream reach nomenclature and channel mile markers along Santa Rosa Creek, as used by D.W. ALLEY and Associates during habitat typing.

Habitat parameters were measured at four-year intervals at a reach level beginning in 1994. The proportion of habitat types was determined for each stream reach. Habitat types were classified according to the categories outlined in the *California Salmonid Stream Habitat Restoration Manual* (Flosi et al., 1998). Survey sheets provided in the manual were used during stream surveys. In 1994, some habitat characteristics were estimated according to the manual's guidelines, including length, width, mean depth, maximum depth, shelter rating, substrate composition, and tree canopy.

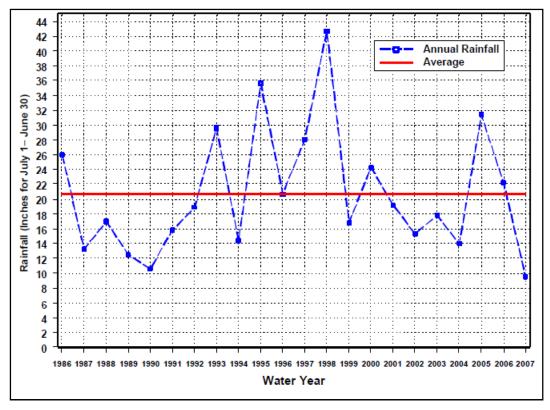
Limiting Factors Affecting the Steelhead Population in Santa Rosa Creek

Several factors appear to limit distribution, survival, and growth rate of juvenile steelhead. These factors include passage impediments such as shallow riffles, spawning habitat quality (proportion of fine sediment), spring and summer base flow, amount of escape cover (provided by instream wood, undercut banks, un-embedded boulders, water depth itself), water temperature and habitat depth. The habitat typing information collected in 2002 and 2006 indicate that each reach of Santa Rosa Creek had an ample diversity of habitat types. Therefore, availability of habitat types necessary for all life stages was not considered a limiting factor for steelhead (Alley, D.W., 2007a). For this assessment the limiting factors have been identified for the Santa Rosa Creek mainstem and lagoon (Table 9).

Location	Sediment- Spawning	Sediment- Rearing	Adult Passage Impediments	Spring and Summer Stream flow	Summer Water Temperature	Large Woody Material
Lagoon	No	Yes	Yes- Drier Years	Yes	Yes	Yes
Mainstem- Lower Valley	Yes	Yes	Yes- Drier Years	Yes	Yes	Yes
Mainstem – Upper Canyon	Yes	Yes	Yes- Drier Years	Yes	Yes- Short periods	Yes

Table 9. Limiting factors to steelhead in the Santa Rosa Creek mainstem and lagoon (Appendix L, Table 5).

Stream Flow for Rearing of Juvenile Steelhead


Stream flow, as a limiting factor, is the primary element that defines total available habitat for salmonids. It is a limiting factor affecting the migratory success of adults reaching spawning habitat and smolts reaching the ocean. Stream flow determines the ability of the stream to move sediment and the force to scour pools and spawning beds, thus affecting habitat quality and microhabitat features. These microhabitat features include habitat width, water depth, water velocity, surface turbulence (affects the amount of cover), rate of insect drift as food for drift-feeding salmonids and, to some degree, water temperature and oxygen concentration. Stream flow plays an important role in the balance between food availability and growth for steelhead. The quantity of stream flow not only dictates the amount of habitat available to fish and aquatic insects (juvenile steelhead. The more stream flow that is available in spring and summer, the more food that is available to be delivered to the fish. As summer flows recede and less habitat becomes available to fish and aquatic insects, the conveyor belt of food slows down. Water temperatures also rise as flows recede in the summer months, causing higher metabolic rates for fish and increased food requirements.

The result of interactions between stream flow, habitat availability, and the conveyor belt of food is higher growth rates for fish in the spring months and maintenance or reductions in fish size in the summer and fall months. The size of smolts reaching the ocean plays an important role in their survival in the ocean and the probability of them returning as adults. Larger smolts tend to have higher survival rates in the ocean because they are faster and can avoid predators more easily than smaller smolts. Also, mortality rates are reduced for YOY fish that smolt after one growing season, as compared to those fish that over-winter once twice in freshwater.

In addition to requiring adequate food for growth, juvenile steelhead have specific habitats that are essential for their survival including fastwater feeding areas and escape cover locations. Salmonids feed on drifting insects that have either dropped into the water from streamside vegetation or have been produced in riffles and runs as larvae. Generally, the faster the water velocity, the more insect drift along this "conveyor belt" that may be fed upon. Juvenile densities become reduced if fastwater areas become too shallow due to reduced stream flow or sedimentation that has filled in deeper water. Escape cover provides locations for steelhead to hide from predators and find refuge from high winter flows. Escape cover can include deep pools, undercut banks, side channels, large un-embedded cobbles and boulders, rootwads, large wood, and overhanging vegetation. Streams that lack adequate escape cover may have low fish densities, regardless of the amount of food available.

With seasonal rainfall, stream flow is often a scarce resource for human systems where there are water demands for municipal, agricultural, and industrial uses, as well as fire protection and recreation. Human demands for water compete with the need to maintain stream flow for biological systems. Human water demands also peak during summer and early fall when streams are experiencing their lowest flows of the year. Due to the low summer stream flow in most Central Coast streams, stream flow is a limiting factor for steelhead production even when not impacted by human uses. When water extractions are added, stream flow becomes a more severe limiting factor. Seasonal rainfall amounts in Santa Rosa Creek, from 1986-2007 are shown (Fig. 26).

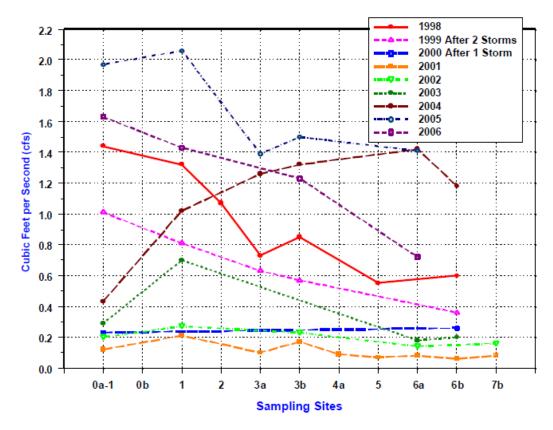

In Santa Rosa Creek, the seasonal water supply and demand have resulted in the need for groundwater pumping. According to Yates and Van Konyenburg (1998), the water supply for the Cambria area is vulnerable to drought because the groundwater basins of San Simeon and Santa Rosa creeks provide the only supply of water during the dry season and because groundwater storage capacity is small relative to the demand for water. The amount of usable groundwater storage capacity above sea level is about 3,800 acre-ft in the Santa Rosa Basin. Total annual pumpage during 1988-89 was about 30 percent of the storage capacity of the basin (Yates and Van Konvenburg, 1998). The average groundwater withdrawals from the Santa Rosa and San Simeon Creek aquifers was an average 729 acre-feet a year from 1988 to 2002. During that time, the Santa Rosa Creek aquifer provided an average 86 acre-feet of groundwater a year (Cambria Community Services District, 2008 and 2010). From 2003-2009, Santa Rosa and San Simeon Creek aquifer groundwater withdrawals increased slightly to an average 744 acre-feet of groundwater a year, with an average 141 acre-feet of groundwater from the Santa Rosa Creek aquifer. From 1988-2009, groundwater withdrawals from the Santa Rosa Creek aquifer have ranged from 254 acre-feet (1988) to zero (2000), with an average of 164 acre-feet in the past four years (Cambria Community Services District, 2010). Water storage in the aquifers at the beginning of the dry season is similar each year, but the length of the dry season varies. If the dry season were exceptionally long and pumping continued undiminished, wells could go dry or subsidence or seawater intrusion could occur before recharge begins the following winter. Land subsidence and ground deformation occurred in Cambria in the summer of 1976 could occur again if the minimum dry-season water level is close to or less than the record low level reached that year (Yates and Van Konyenburg, 1998). Partly for these reasons, there are legal limitations on annual and seasonal quantities of municipal pumping for the basin.

Figure 26. Rainfall amounts in Santa Rosa Creek, from July 1986-June 2007 (Appendix L, Fig. 6).

The impact of water extraction on fish populations depends on timing, magnitude, and location of the surface diversion/well. The timing of water extraction is important in determining which salmonid life stage is impacted. The magnitude is important in terms of amount being extracted and what remains for bypass.

In looking at stream flow measurements down the mainstem through the various reaches in fall of multiple years, the stream flow appears to increase from Reach 6 down to Reach 3b (except in 2004 after the 2003 earthquake) (Fig. 27). The stream loses flow from Reach 3b to 3a (except in 1999 after two storms). Prior to the earthquake, there was an approximate two-mile stretch of dry stream channel in upper Reach 2. In 2004, this normally dry stream segment had flow. In 2005 it had approximately 0.5 miles of dry streambed. In 1998, the stream gained stream flow from Reach 2 to Reach 1. The stream flow increased from Reach 1 to 0a in 1998, 1999, and 2006. There was a decrease in flow from Reach 1 to 0a in 2001–2005. The large decrease in stream flow from Reach 1 to Reach 0 a in 2003 and 2004 indicated that groundwater pumping had a significant impact on surface flow. In October 2007 prior to rainfall, stream flow upstream of the Ferrasci Road ford in lower Reach 1 was visually estimated at 0.5 cfs, and stream flow was absent in upper Reach 0a at the Main Street Bridge and downstream.

Figure 27. Measured streamflow in fall at sampling sites in Santa Rosa Creek, 1998-2006 (Appendix L, Fig. 17).

Yates and Van Konyenburg (1998) modeled the Santa Rosa Creek groundwater basin for summer 1988 (a drier year), producing a calibration simulation. When agricultural and municipal pumping were included in the model, it was predicted that the stream between the high school (Reach 0b) and the Highway 1 bridge downstream (Reach 0a) was dry from July through mid-December. Without agricultural pumping, but with municipal pumping retained in the model for 1988, the simulation predicted that a trickle of base flow emerged near well 27S/9E-19H2 and flowed continuously in all months except October when a short reach near well 27S/8E-27H1 (near Highway 1) went dry. Between 1998 and 2007, surface flows continued year round through Reaches 0a and 0b, when the stream channel went dry.

Water diversion locations are important in understanding the cumulative effect of multiple diversions on downstream habitat conditions and population numbers. In a very dry year, well pumping may reduce stream flow enough to dry up most of Reach 0a except a few isolated pools, and may reduce the lagoon to small, stagnant, warm pools, eliminating all viable steelhead habitat and nearly all tidewater goby habitat. This dewatering occurred in 2007 and was likely hastened and increased by well pumping. Though stream inflow continued through the dry season, in 2003 and 2004, the lower lagoon went dry at Stations 1 and 2 with only the upper lagoon between Shamel Park and Windsor Bridge providing habitat. The lower lagoon had become more sedimented in 2003, making it more prone to dewatering in both years. The tidewater goby population was very low in fall 2003 and not detected in either the fall or summer of 2004, or the fall of 2005. Tidewater goby were next detected in fall 2006 and early summer 2007. The loss of lagoon habitat in 2003 and 2004 was likely caused by well pumping. The

dewatering of the lagoon in 2007, except for two small pools at Stations 1 and 2, was likely hastened by, and was at least partially caused by, well pumping.

Water diversion, particularly in drier springs, may hasten the timing of sandbar closure at the creek mouth. The sandbar at the mouth of Santa Rosa Creek closes each year in the spring to early summer, when stream outflow is insufficient to maintain a channel through the beach. The minimum stream flow to maintain an open channel varies with the year, with records of the sandbar closing at stream flows of between approximately two and 12 cfs. It typically closes at stream flows of less than approximately seven cfs. Steelhead smolts and spawned kelts are outmigrating to the ocean in the spring. If the sandbar closes too early, smolts and kelts are trapped in the lagoon which in most years does not provide adequate habitat for survival until the next rainy season. Years in which many trapped smolts and kelts were observed in the lagoon were 1994, 1997, 2002, 2007 and 2008.

Stream flow for Adult, Kelt and Smolt Passage

As mentioned in the life history description, most adult steelhead migrate up their natal streams from January through early May. Adult salmonids typically migrate as water flow begins to subside from a storm event. Migration occurs primarily at night, though light is required to negotiate obstacles. The likelihood of spawning redds (nests) being scoured or smothered in sediment declines and percent egg survival generally increases in an upstream direction in any watershed. Usually quality of spawning gravel increases upstream, therefore, spawning success is generally highest in the upper reaches of the watershed. A spawning obstacle may be a partial impediment that is passable if the fish reaches it at a time when stream flow is high enough to allow passage but not too high to create a velocity barrier. Fish may congregate below impediments until storm flows are right, increasing their risk to predation and angling and delaying their egg laying. When adult salmonids are impeded or entirely blocked by obstacles to upper stream reaches, the number of YOY fish annually produced may be significantly curtailed. The most successful way to increase the juvenile salmonid population is often by improving passage over obstacles when significant spawning and rearing habitat exists upstream.

Since passage over many riffles in the mainstem is flow dependent, steelhead are more vulnerable to shallow passage conditions in drier years. If winter storms are delayed or drought conditions exist, flows may be inadequate to allow adult steelhead migration over certain critically wide riffles. Judging by the pattern of higher YOY production in the lower valley in drier years and higher YOY production in wetter years (see previous section on juvenile densities), shallow riffles impede adult passage into the upper canyon in some years. The opening and closing of the sandbar at the creek mouth determines the spawning period during the wet season. If storms are delayed, the sandbar remains closed longer. If storms come early and are largely absent in the spring, then the sandbar closes early, thus preventing adults from entering the creek afterwards and stranding kelts trying to return to the ocean after spawning.

Smolt out-migration by steelhead generally occurs from March through May. The primary limiting factor for smolt out-migration from Santa Rosa Creek is the early closure of the sandbar at the mouth before the migration is complete. Early sandbar closure occurs when spring stormflows are limited and low stream flow into the estuary allows closure. If smolts and kelts are stranded in the lagoon due to early sandbar closure (in a dry year), they will most likely not survive the summer because much of the lagoon will either dry up or become hypoxic making survival difficult. Another limiting factor could be the dewatering of the stream channel that

creates very shallow riffles or dry sections, which would be physical barriers to migration to the lagoon. In addition, from March through May complete dewatering of the channel could occur under drought conditions with heavy well pumping.

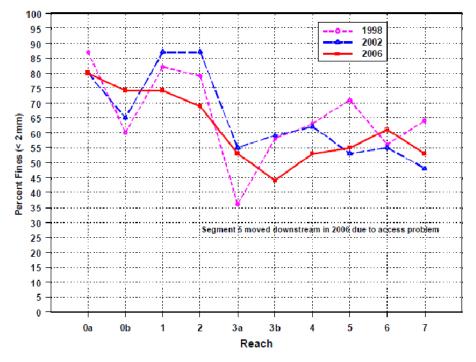
Temperature

In Santa Rosa Creek, as in other Central Coast streams, water temperature impacts food supply. In the lower valley, water temperature is probably not directly lethal except in the lagoon. But higher temperatures increase food demands and restrict steelhead to feed in faster habitats, such as riffles where food production is greater, especially above 21°C (70°C) (Smith and Li, 1983). The lethal level for steelhead is believed to be at temperatures above 24–28°C (75-82°F) for several hours during the day, depending on their acclimation temperature (Charlon, 1970; Alabaster, 1962; MacAfee, 1966). There are many Central Coast examples of steelhead surviving and growing well at water temperatures above 21°C. Smith and Li (1983) found juvenile steelhead selecting fastwater habitat at temperatures of 16-21°C in Uvas Creek, tributary to the Pajaro River. Many examples of steelhead using warm water habitat above 21°C come from coastal lagoons such as Soquel Lagoon (Alley, 2008c) and Pescadero Lagoon (as high as 26°C and 24°C on a regular basis) (Smith, 1990) and lower reaches of less shaded drainages, such as the lower valley of Santa Rosa Creek (Alley, 2007), lower San Luis Obispo Creek (Alley, 2008a), lower Soquel Creek (Alley, 2008b) the lower San Lorenzo River (Alley, 2008c), but only where food is abundant. When food is abundant, growth is actually better at warmer water temperatures because digestive rate is increased, allowing fish to consume and process more food and grow more quickly.

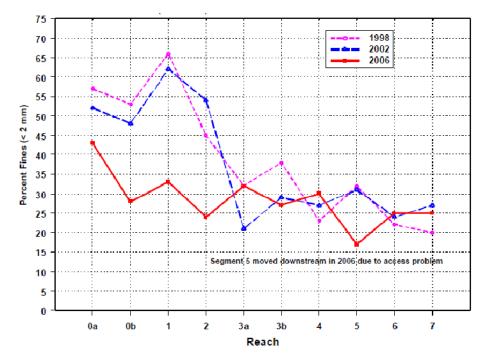
Water temperature is partially controlled by air temperature and stream shading. Stream shading is affected by topography (canyon versus valley), sun angle (daily and seasonal), stream orientation (east-west or north-south), stream flow (less water heats up quicker than more water), tree canopy (over the stream and on surrounding slopes), tree species (deciduous or evergreen, broadleaf or needle leaf) and seasonality of leaf production and leaf-drop by deciduous riparian trees. The volume of stream flow determines the amount of heat from solar radiation and air contact that is required to increase water temperature. The more flow, the slower the increase in daily temperature and the lower the maximum daily temperature for any given amount of sunlight and shading. Creeks will warm up faster in unshaded reaches on a hot summer day during a drought compared to a creek in summer after a wetter winter, given the same amount of shading and air temperature.

Fishes are poikilotherms, meaning their body temperatures conform to the temperature of the water they inhabit. As water temperature increases, fishes' bodies warm up, chemical reactions (metabolism) go faster inside their bodies, their ability for activity increases to a point, they consume more oxygen and they must consume more food to support higher metabolic rates. But the higher water temperatures that occur in the lower valley of Santa Rosa Creek and lagoon speed up primary (plant life) and secondary (aquatic insects) productivity that result in more food available to fish. Juvenile steelhead can digest food faster at warmer temperatures, allowing them to process more food and grow faster to reach smolt size the first year.

Sub-lethal effects of high temperatures on salmonids include increased metabolic rates and decreased scope for activity, decreased food utilization and growth rates, reduced resistance to


disease and parasites, increased sensitivity to some toxic materials, interference with migration, reduced ability to compete with more temperature resistant species, and reduced ability to avoid predation.

Sediment


Input of fine sediment to a stream channel degrades salmonid spawning and rearing habitat. Adult steelhead bury their eggs in streambed gravels in nests (redds) in winter and spring. The eggs incubate for weeks before fry emerge as much as two months after the eggs were spawned. Excessive fine sediment in the absence of coarse gravel fills the interstitial spaces and prevents water from moving through the gravel to provide adequate oxygen to the eggs and sac-fry, or alevins. As percent fine material increases, egg survival declines. Also, with spawning areas dominated by fine material, scour of redds by later storms is highly likely. Water depth and hiding places (under wood, boulders, undercut banks) are important for juvenile salmonids to avoid predators. High sediment inputs degrade rearing habitat because it shallows pools and embeds (buries with fine sediment) larger cobbles and boulders, reducing escape cover. Suspended sediment also creates high turbidity that prevents juvenile salmonids from efficiently feeding on drifting insects, thus reducing growth rate.

The Santa Rosa Creek drainage is subject to episodically high inputs of fine sediment during large flood events, such as occurred on March 10, 1995. During this event sediment entered the stream primarily from streambank erosion and landslides. Wide riffles are typically created during large flood events where sedimentation deposits soil into the stream channel. These wide riffles become critically shallow passage areas for migrating adult steelhead. Therefore, sedimentation can decrease water depths, increasing the minimum stream flow required for successful migrational passage of steelhead adults and juvenile smolts. (D.W. ALLEY & Associates performed a steelhead passage study in Reach 0a in lower Santa Rosa Creek in 1993 (Alley, 1993b). Refer to the summary of results in the adult passage section in Appendix L.)

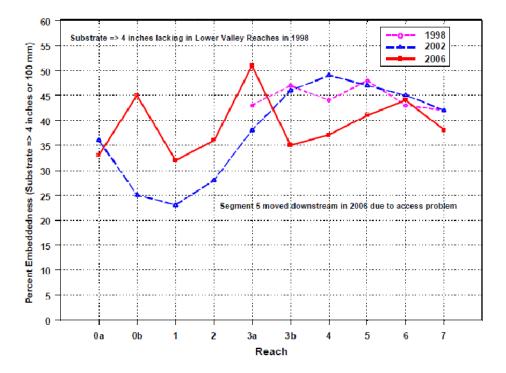
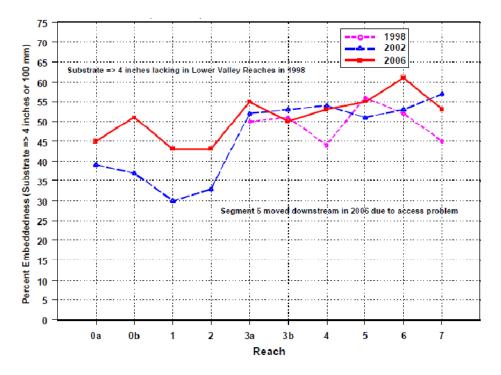
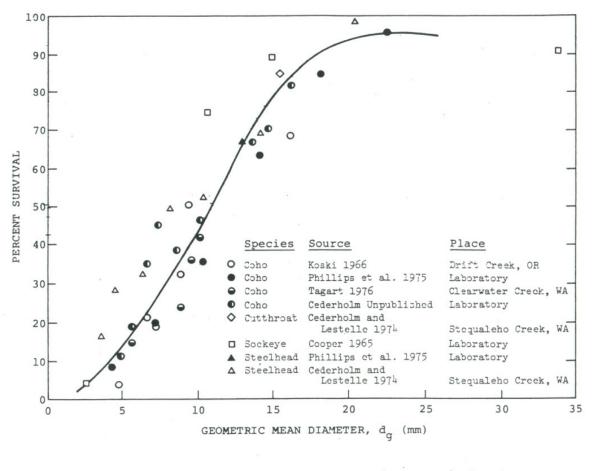
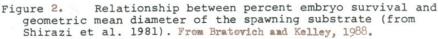
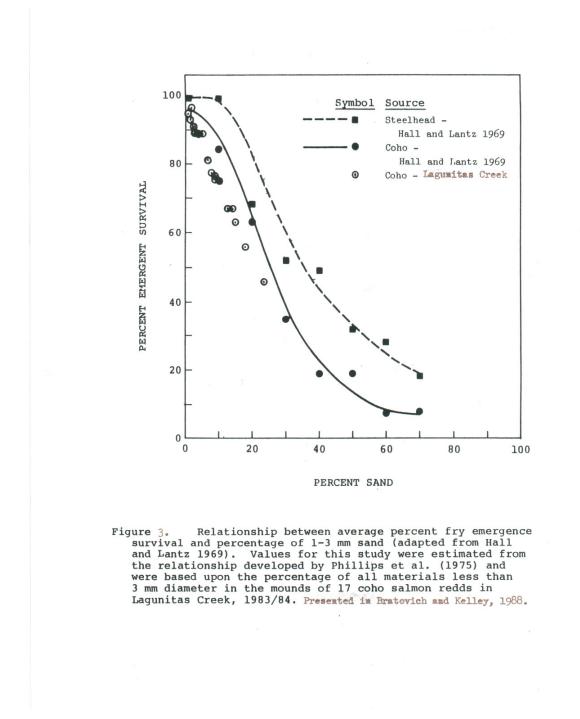

When embeddedness of cobbles and boulders in the streambed is greater than 25 percent, it limits the escape cover available under larger substrate. Cobbles greater than 250 mm (10 inches) in diameter that could provide escape cover were only found in the upper canyon reaches of Santa Rosa Creek. Embeddedness in upper canyon step-runs and runs was 35 percent or greater while embeddedness in upper canyon pools was 50 percent or greater in 2006. Therefore, embeddedness is a limiting factor for steelhead in Santa Rosa Creek. Figures 28-31 show percent fines and embeddedness in step-run, run, and pool habitat in Santa Rosa Creek in 2006.

Figure 28. Percent fines in pools in reaches of Santa Rosa Creek at four-year intervals, from 1998-2006 (Appendix L, Fig. 19).

Figure 29. Percent fines in step-runs and runs in reaches of Santa Rosa Creek, at four-year intervals, from 1998-2006 (Appendix L, Fig. 20).

Figure 30. Substrate embeddedness in step-runs and runs in reaches of Santa Rosa Creek, at four-year intervals, from 1998-2006 (Appendix L, Fig. 21).


Figure 31. Substrate embeddedness in pools in reaches of Santa Rosa Creek, at four-year intervals, from 1998-2006 (Appendix L, Fig. 22).

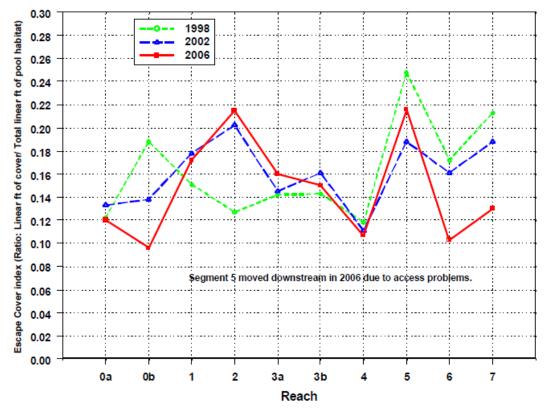
Stream sedimentation from erosion has destroyed spawning and rearing habitat in Santa Rosa Creek. Figures 32 and 33 show the relationships between particle size and survival of embryos in the spawning redd and between percent sand in the spawning redd and fry emergence survival. Survival of both life stages is increased with larger particle size and less sand. Sediment also fills pools and buries objects of cover. Juvenile steelhead do best where deep pools exist that possess overhanging tree branches, boulders and large wood for them to hide under.

Figure 32. Relationship between percent embryo survival and geometric mean diameter of the spawning substrate (from Shirazi et al. 1981) (Appendix L, Fig. 23).

Figure 33. Relationship between average percent fry emergence survival and percentage of 1-3 mm sand (adapted from Hall and Lantz, 1969) (Appendix L, Fig. 24).

Instream Wood

Large instream wood (previously called large woody debris- LWD) in the active channel is important for providing structure necessary for development of pools and backwaters, which are vital summer and overwintering habitat for juvenile steelhead (Smith, 2000). It also serves important habitat functions for other species, such as California red-legged frog. Large wood (1foot in diameter and 20 feet or more in length) and smaller wood that accumulate in pools are extremely important sources of escape cover for juvenile salmonids. The highest quality large wood includes downed trees or logs with their rootwads attached, whose lengths are about 1.5 times the bankfull width of the channel, or more, and positioned with a sufficient proportion of their lengths on the streambank, or otherwise well-anchored. This positioning of large wood provides stability during high flows as well as scour of the channel bed. The quality of pools formed by large instream wood can vary considerably with the size (length, diameter), type of wood (single or multiple trunks or rootwads) and its position within the channel. Complex pools formed from large logs or rootwads, which extend out into the channel, can provide a variety of water velocities in summer and excellent escape cover. These complex pools are the preferred summer habitat for yearling-sized steelhead. Wood clusters also provide extremely important summer foraging habitat for California red-legged frogs and western pond turtles (Clemmys marmorata).


The backwaters and pockets formed by large, current-obstructing wood can also provide refuges during stormflows, and may provide much of the crucial overwintering habitat necessary to prevent heavy loss of juvenile steelhead in wet winters during high storm flows (Smith, 2000). These winter backwater areas may actually be stagnant, shallow or even dry in summer. However, backwater areas may provide important habitat for overwintering fish and recently emerged steelhead fry in spring. They may also provide important reproductive habitat for amphibians, including newts (*Taricha* spp.), Pacific tree frogs (*Hyla regilla*) and California red-legged frogs.

In contrast, wood clusters can produce impediments or complete barriers to fish movement, but the majority of clusters are not significant impediments (Smith, 2000). In weakly entrenched channels, the stream can usually cut around wood clusters. In sandy channels, scour under the cluster usually provides passage. In addition, during high flows a portion of the wood cluster may float. In steeper, entrenched gravel/cobble channels the wood cluster may plug with coarse sediment, producing a pronounced step (grade control) or falls. Even in those cases, removing only a few key pieces may provide passage around the cluster at regular winter flows. In headwater reaches, these grade control clusters may store significant sediment behind, which may prevent sedimentation downstream and outweigh the passage benefit of rearranging or removing the wood cluster. However, if wood clusters are causing lateral (sideways) scour into streambanks with significant bank erosion or landslides, their modification may be necessary. In some cases, protection of the toe of the eroding bank or slide can be accomplished by rearranging the wood, which maintains fish cover. In other cases, more complicated streambed alteration may be necessary.

Steeper, narrow, entrenched channels have high velocities during floods, resulting in poorer wood retention and less complex configurations of the wood that remains (Smith, 2000). In the Santa Rosa Creek Watershed, alder tree species grow along stream banks, in addition to other species such as oak, Monterey pine, California bay, bigleaf maple, cottonwood, willow, and

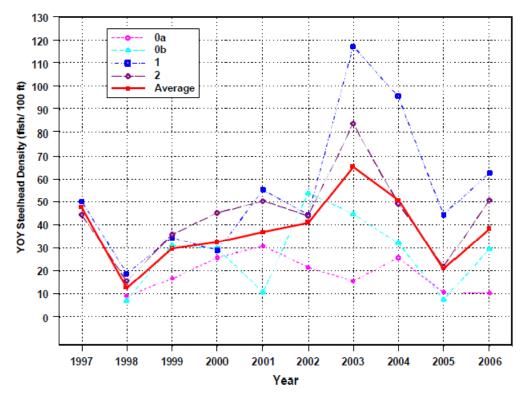
sycamore, to name a few. Alders provide a more continuous supply of in-channel wood, but they are relatively small and have relatively short-term benefits because of their small size and low durability (Smith, 2000). They break up during flood flows and rot quickly. Other broadleaf trees, including bigleaf maple, cottonwood, sycamore, California bay and oak also have small trunk diameters and short longevity in the stream. In Santa Rosa Creek, alders may create much of the pool habitat in wood-scoured pools and much of the wood clusters. Figure 34 shows the escape cover index values for pool habitats throughout the Santa Rosa Creek Watershed. Escape cover includes features such as wood clusters, undercut banks, bubble curtain (water surface disturbance caused by turbulence), and un-embedded rocks.

Santa Rosa Creek has a history of massive influxes of wood during large flood events, such as the March 1995 flood. This is typical of coastal watersheds where recruitment of wood into the channel may be sporadic and occurs mainly during large flood events. At any one time, the majority of the wood within the channel may provide little or transitory habitat benefit, and individual pieces may shift locations, orientation and clustering. However, the total amount of wood available is important in order to maintain the number of beneficial habitat features. The habitat value of new, naturally recruited wood and much of the old wood can be increased by repositioning it in the channel and flood plain. Since much of the cost of habitat improvements is from transporting wood to the site and into the channel, it makes sense to treat episodic flood-year wood as a "windfall" where nature has done most of the work.

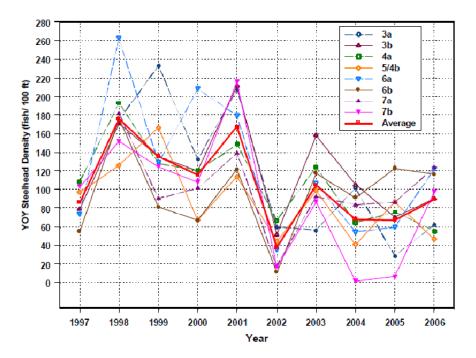
Figure 34. Escape cover index for pool habitat types in habitat typed segments of reaches in Santa Rosa Creek, at four-year intervals, from 1998-2006 (Appendix L, Fig. 18).

Dissolved Oxygen

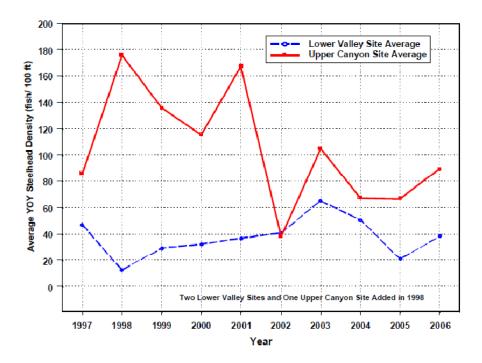
Oxygen levels are typically lowest at dawn or shortly after, however oxygen levels at these times may be increased if tidal overwash can be minimized or prevented. Water circulation with the air can raise oxygen concentrations and cool water temperature at night. In the lagoon, shading water by maintaining water depth may prevent complete filamentous algae growth throughout the water column. Algal growth prevents water circulation if lagoon inflow is maximized to ideally 0.9 cfs or more. Filamentous algae may be reduced if lagoon shading is increased.


Steelhead Population Assessment

Juvenile steelhead were sampled in the mainstem of the Santa Rosa Creek annually from 1994-2006 by D.W. ALLEY & Associates (with funding from the Cambria Community Services District (CCSD)) using electrofishing techniques. Steelhead habitat was initially evaluated in 1994 (a very low-flow year) in seven reaches (from the fish ladder at the beginning of Reach 1) and in 1998 (a very high-flow year) onward in 10 reaches (from Windsor Boulevard Bridge upstream) (Figures 23 and 25). Electrofishing and habitat data for steelhead were analyzed in annual reports to the CCSD (Alley, 1995a-2007a). Choice of sampling sites was based on their average habitat quality for each reach in terms of the escape cover and water depth in pool habitat. Juvenile steelhead densities from each site were extrapolated to reach densities, with habitat proportioning from habitat-typing during survey work.


Santa Rosa Lagoon was sampled by D.W. ALLEY & Associates in early summer and late fall in 1993–2005, using a fine-meshed beach seine to capture tidewater gobies and occasional steelhead (incidentally). Lagoon monitoring reports were completed every other year for monitored years 1993–2005 (Alley, 1995b–2006b). In most years, one electrofishing site was sampled immediately upstream of the lagoon in early summer at the time of lagoon sampling. Refer to Sub-Appendix A in Appendix L for a more complete description of sampling methods. CCSD staff assisted in lagoon sampling and also collected lagoon water quality and stream inflow data through this period (Sean Grauel). Bailey (1973) and Nelson (1994) previously sampled Santa Rosa Creek. However, their methods and timing of sampling differed significantly from Alley's, so a direct comparison of the data was not possible.

Key Steelhead Density and Population Trends in Santa Rosa Creek


Young of the Year (YOY) densities at sampling sites were generally higher in the upper canyon than the lower valley (individually and on average) except in 2002 (Figs.35, 36, and 37). Two wet years, 1998 and 2005, had the lowest YOY densities in the lower valley. In another wet year, 1995, although YOY densities were not determined, total juvenile densities were low in the lower valley, indicating that YOY densities were also low that year (Fig. 38). In some drier years (1994, 1997 and 2002–2004), YOY densities were relatively higher in the lower valley than other years, and relatively lower in the upper canyon.

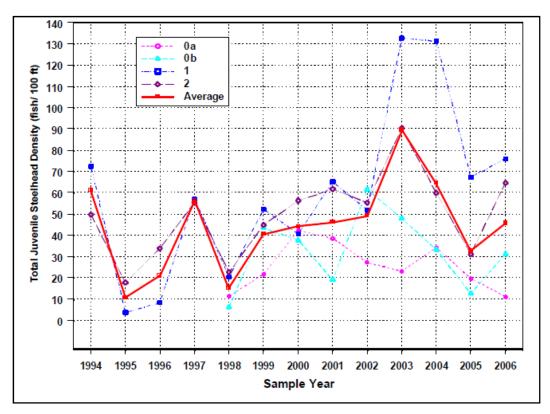

Figure 35. Annual young-of-the-year densities at Lower Valley Santa Rosa Creek sites, from 1997-2006 (Appendix L, Fig. 2).

Figure 36. Annual young-of-the-year densities at Upper Canyon Santa Rosa Creek sites, 1997-2006 (Appendix L, Fig. 3).

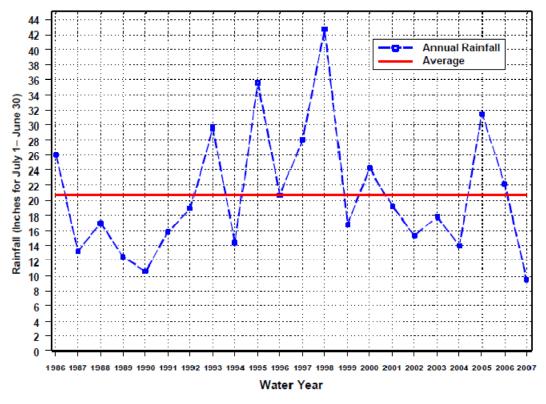


Figure 37. Average site density for young-of-the-year steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1997-2006 (Appendix L, Fig. 4).

Figure 38. Annual total juvenile densities at Lower Valley Santa Rosa Creek sites, 1994-2006 (Appendix L, Fig. 5).

These patterns indicated that in wetter years, adults had better passage opportunities through the estuary and lower valley to access the upper canyon to spawn more YOY. It also indicated that more habitat was available in the upper canyon in wetter years due to higher stream flow (especially in spring) and presumed greater insect drift and food supply. Whereas in drier years, spawners likely had a narrower window of spawning opportunity due to earlier sandbar closure (Table 10) and shallower passage conditions related to smaller stormflows. This likely caused more spawning effort in the lower valley with less spawning and YOY production in the upper canyon. In drier years, habitat in the upper canyon likely supported fewer fish, with reduced stream flow and reduced insect drift. In 2002, there was very little rain from January-May and the YOY densities in the upper canyon were very low (Fig. 39). That year there was only one storm event in January totaling more than one inch in precipitation. The sandbar closed in mid-April with lagoon inflow likely less than 2.5 cubic feet per second (cfs) most of the time from January until then (Table 10).

Figure 39. Annual rainfall measured at the Cambria Wastewater Treatment Plant in the Lower Santa Rosa Creek Watershed, 1986-2007 (Appendix L, Fig. 6).

Another significant event which potentially impacted steelhead densities in the Santa Rosa Creek Watershed includes the earthquake of December 2003, with the epicenter located just north near San Simeon, California. This earthquake caused cementing of the streambed and likely poor water quality with heavy seepage of hydrogen sulfide into the stream at Sites 7a and 7b in 2004–2005 (Alley, 2005a; 2006a). This likely contributed to lower YOY and yearling densities than normal there.

991 (San Simeon Lagoon) Before 2 April 1991 - - 992 (San Simeon Lagoon) 10 Jan (opened 8 Feb) 29 April 1992 - 4.35 2.75 993 24 May 1993 closed (Re-opened after light rain on 25 May 1993) 7.9
Lagoon) 29 April 1992 2.75 993 24 May 1993 closed (Re-opened after light rain on 25 May 1993) 7.9
(Re-opened after light rain on 25 May 1993)
11 June 1993 (or
sooner) Yes (few) 4.15 on 11 June
994 28 March 1994 Yes (many) 2.49 on 29 April
995 28 May 1995 Yes (few - upstream only)
996 3 June 1996 Yes (very few upstream only) 5.13 on 29 May 2.98 on 12 June
997 23 March 1997 Yes (many) 12.60 on 26 March
998 13 July 1998 Yes (very few upstream only) 4.65 on 15 July
999 28 May 1999 No (upstream not 6.18 sampled)
000 31 May 2000 No (upstream not 3.00 on 15 June sampled)
001 14 May 2001 No (upstream not 4.40 on 23 May sampled)
002 14 April 2002 Yes (many) 2.14 on 28 Feb. 2.11 on 28 March
003 9 June 2003 No 1.50 on 3 July
004 7 May 2004 Yes (few 2.69 on 21 May upstream only)
005 27 May 2005 Yes (few upstream only) 6.25 on 16 June
006 Between 24 May and 26 June 2006 No 18.67 on 24 May 3.23 on 12 July
007 15 March 2007 Yes (many) 21.94 on 1 March

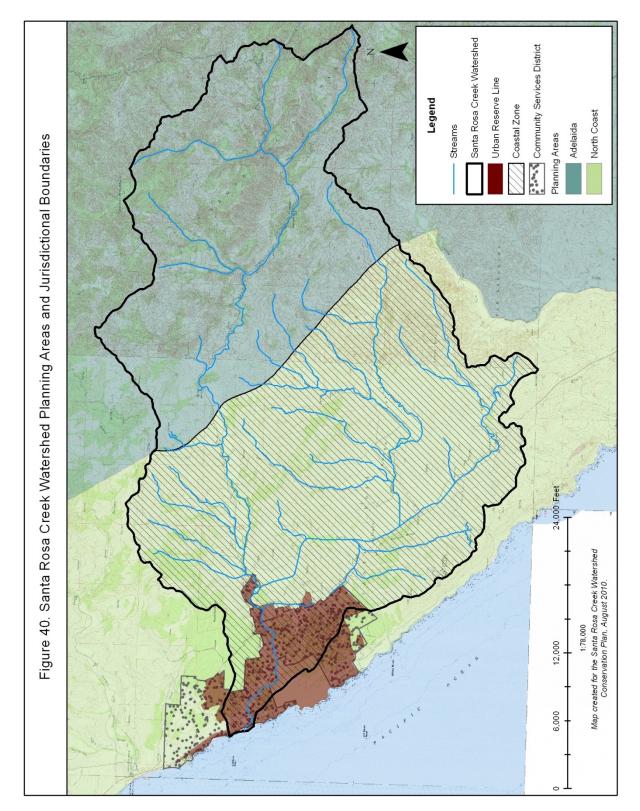
Table 10. Historical record of sandbar closure at Santa Rosa Lagoon (1993-2007) and San Simeon Lagoon (1991-92) (Appendix L, Table A13).

Tidewater Goby Ecology

Tidewater goby populations are restricted to coastal, brackish-water habitats in California (Swift et al., 1989). There is no marine phase, although tidewater gobies are periodically flushed out of lagoons during winter stormflows and must find their way back to estuaries. There is evidence that tidewater goby is capable of repopulating adjacent lagoons after being extirpated because they were apparently lost from Santa Rosa Lagoon in 2004 and were again detected in 2006.

Although they tolerate widely varying salinities and oxygen concentration, tidewater goby spawning must occur in freshwater resulting from stream inflow to lagoons, upstream of major tidal fluctuations. Spawning begins mainly in spring (April and May) but continues to a lesser degree into summer and fall. Lagoons should be allowed to seasonally close off from the ocean during the dry season so that tidal fluctuation is absent or minimal. During spawning, males excavate a nest burrow 8–12 inches deep into sandy substrate. Fresh, unconsolidated sand is optimal for burrowing. Females court males and aggressively compete to enter the burrow to mate. Males occupy enlarged areas in the burrow where the eggs hang from the ceiling and walls. Males do not feed during the 9–10 day egg incubation period, and mortality is high for these males after hatching due to starvation, especially with multiple clutches that extend the period with minimal feeding. Older female mortality is high over the winter.

Tidewater gobies are bottom dwelling, and they escape predators by fleeing in long dashes (1–2 m) into deeper water or aquatic vegetation. They are typically abundant in shallow water (<=1 m deep). They feed on bottom invertebrates, such as ostracods, snails, dipteran fly larvae, amphipods and mayfly larvae. When lagoons are especially saline, tidewater gobies are more abundant where stream water enters the lagoon and salinity is reduced. During summer, they avoid areas where algal blooms are thick and hydrogen sulfide builds up in the substrate due to decomposition. Major threats to tidewater goby include 1) groundwater pumping and water diversion that drastically reduce freshwater inflow to lagoons, 2) sandbar breaching in summer after stream flow has declined, 3) dredging to maintain a constant estuary opening, and 4) introduction of non-native predators, such as centrarchids (bass family of fishes), bullfrog, and possibly crayfish.


4.4. LAND USES AND OWNERSHIP PATTERNS

Land Use Assessment Background

From the time Cambria was founded in the late 1860's land use has evolved in response to the community's changing needs. Early Cambria was a town bustling with activities taking advantage of the wealth of natural resources in the area. Teams of horses pulled wagons along dirt roads and winding mountain paths transporting materials to and from mineral mines, dairies, ranches, and lumber mills located throughout the watershed. Cambria was so prosperous that by the late 1870s parcels were subdivided to lots as small as 25 x 50 feet (Hamilton, 1999). Today growth has slowed and most of these historic activities have ceased. Today, Cambria is a peaceful retreat where vacationers from all around the world settle in among the small shops and coastal inns, while old-time farmers continue to work the ground along the streams, coastal foothills, and rustic mountains, ranching, growing crops, and residing.

Existing Plans

Both the County of San Luis Obispo and the Cambria Community Services District (CCSD), include the Santa Rosa Creek Watershed in planning documents. The watershed is included in the San Luis Obispo County General Plan, within the North Coast and Adelaida Inland Planning Areas. In addition, the CCSD provides a variety of services to the urban area of Cambria, including water, fire protection, recreation, garbage pickup, and transportation. Figure 40 shows planning area and jurisdiction boundaries within the watershed.

San Luis Obispo County General Plan

The San Luis Obispo County General Plan (General Plan) is the framework for future development within the county. The General Plan outlines development goals of local communities and public policy relating to future land uses. The County's Land Use Ordinance (Title 22 of the County Code) and the Coastal Land Use Ordinance (Title 23 of the County Code) contain site development standards for the County. These standards include drainage, grading, erosion, and sedimentation, and can be viewed online at the San Luis Obispo County Planning and Building Department website

(http://www.slocounty.ca.gov/planning/General_Plan_Ordinances_and_Elements.htm).

The coastal zone covers roughly half of the Santa Rosa Creek Watershed. The Local Coastal Plan (LCP) is part of the County's General Plan and provides policy direction for land use within the coastal zone. The LCP is organized into four documents, including the Coastal Zone Land Use Ordinance which provides detailed planning guidance. The coastal zone within the Santa Rosa Creek Watershed is part of the North Coast Planning Area. The goals, objectives, policies, programs, and standards for the North Coast Planning Area are outlined by the North Coast Area Plan (Area Plan). The Area Plan was originally approved by the County Board of Supervisors in 1988, updated in 2007, and revised again in 2008. The Urban Reserve Line is the area within the Area Plan that defines urban areas for regional planning. The land area within the Urban Reserve Line in the Santa Rosa Creek Watershed is approximately 2,351 acres, or 7.7 percent of the watershed.

North Coast Area Plan

In the North Coast Area Plan (revised, 2008) agriculture is defined as the primary land use in the rural North Coast Planning Area, outside the urban reserve areas. Rangeland used for cattle grazing accounts for nearly 99 percent of all agricultural land use, with other agricultural activities such as orchards, vineyards, row crops and dry farming covering the remaining one percent. Most crops grown in the area are used as cattle feed. North Coast rangeland is considered some of the best in the county with 10 to 20 acres per animal unit (cow with a calf at her side).

Many of the agricultural properties in the Santa Rosa Creek Watershed hold Agricultural Preserves and Conservation Contracts developed according to the Williamson Act. The Williamson Act restricts land for agricultural uses for 10 years and reduces property tax. Much of the agricultural land outside of the Hearst Ranch in the North Coast Planning Area is contracted under Williamson Act (California Coastal Commission, 1998).

The urban areas of the north coast are mostly single family residences with some commercial uses. Cambria demographics have changed significantly in recent years with larger "family" households replacing smaller "vacation homes" and creating a larger demand on water supplies (California Coastal Commission, 1998).

In 2007, the area within Cambria's urban reserve line was 25 percent "built out" to its capacity. There were 3,408 dwelling units in Cambria with a population of 5,800. Ninety years ago land was parceled into small lots sometimes located on steep terrain unsuitable for development, and, while many of these lots remain today, water service is not available and the lots remain vacant. Projected population growth is estimated to exceed the capacity for providing water services to all parcels. According to Water Wait List information posted by the Cambria Community

Services District website April 2010,

(http://www.cambriacsd.org/cm/water_wastewater/water_permits/wait_list.html) a water wait list was created in 1990 for lots planned for development in Cambria. Because of Cambria's limited water supply, in 2000 the County reduced Cambria's growth limit from 2.3 percent to 1 percent annually and placed a hold on all positions on the wait list until viable water resources are implemented. Therefore, no new water hookups for residential or commercial properties are currently being issued. Those properties which received an "Intent to Serve" notice, which allows for a new water hookup, before the current water moratorium can receive water services.

The County North Coast Area Plan evaluates water supply, sewage disposal, schools, roads/circulation, and air quality for the north coast using the Resource Management System (Management System). The Management System annually estimates resource capacities within the planning area and identifies issues that could arise in the future. The County Board of Supervisors reviews these findings which for several years have found that Cambria's water supplies will be inadequate to serve projected future demand.

A list of environmental goals, general goals, and land use standards as defined by the North Coast Area Plan (2008) is included in Appendix M. The goals and criteria included in the appendix deal with key factors discussed in this Plan and provide measures that protect natural resources in this watershed, such as water quality and supply, and fish habitat.

Adelaida Inland Area Plan

The Adelaida Planning Area includes the central northwestern portion of the county. In the Santa Rosa Creek Watershed, the Adelaida Planning Area includes the western slopes of the Santa Lucia Mountains east of the coastal zone. The landscape here is highly scenic, with rural and agricultural areas, extensive farming, range, and watershed lands. Historically, the area was mined extensively, with cinnabar and limestone minerals extracted.

Land in the Adelaida Planning Area is primarily used for agriculture, with steeper and more remote areas providing grazing capabilities and serving as watershed. Agricultural property sizes are generally large, while many smaller properties consolidated to allow for agricultural use as well. Smaller properties are often leased to nearby farmers for agricultural uses. There are two key recommended actions listed in the Adelaida Inland Area Plan that address issues important to the Santa Rosa Creek Conservation Plan. The first is the encouragement of agricultural preserves, and the second is the enlargement of agricultural parcels.

- Agricultural Preserves The County should continue to encourage owners of eligible lands to participate in the agricultural preserve program.
- Agricultural Ownership Enlargement The County should encourage addition of parcels to existing agricultural ownerships through such means as the Agricultural Preserve

program and other appropriate specially-funded programs that may become available.

"Combining Designations" are applied in areas with hazardous conditions or special resources. "Combining Designations" are special overlay categories where a more detailed review of potential projects is necessary in order to avoid negative environmental impacts. Within the Adelaida Inland Area Plan, the Santa Rosa Creek is identified as an area that falls under "Combining Designation" rules. Because Santa Rosa Creek has potential flood hazards, development within the creek corridor must either be avoided or mitigation measures must be incorporated.

In addition to the above items, combining designations for the Santa Rosa and San Simeon Creek reservoir are described. Studies indicate that surface storage expenses would outweigh storage capacity. Loss of riparian habitat and the creation of another barrier to anadromous fish migration are other concerns associated with development of the facility. In the Adelaida Inland Area Plan it was stated that it is unlikely for this project to move forward.

Cambria Community Services District

<u>Cambria Community Services District: Water Master Plan (Program Environmental Impact</u> <u>Report)</u>

The Cambria Community Services District (CCSD) is the current provider of water services to its customers surrounding Cambria. The CCSD uses wells located along Santa Rosa and San Simeon Creeks to pull water from groundwater aquifers. In the Water Master Plan EIR (2008), it was determined, however, that both basins cannot reliably meet the increasing water demand that currently exists with residential customers, the water waiting list, and grandfathered connections, without an additional source of water recharge.

Currently, the CCSD uses water rights diversion permits issued by the State Water Resources Control Board (SWRCB) to pump 1,118 acre-feet of water during the wet season, and 630 acre-feet during the dry season from the Santa Rosa and San Simeon Basins. In contrast, California Coastal Commission's (CCC) Development Permit only allows the CCSD to pump a maximum of 1,230 acre-feet of water from both basins annually, therefore setting the cap on the maximum groundwater pumpage at 1,230 acre-feet a year. From 1988 to 2002, the average groundwater withdrawal from both basins was 729 acre-feet a year

In recent years existing wells along Santa Rosa Creek have been shut down due to a Methyl Tertiary Butyl Ether (MtBE) plume, necessitating the development of a new well, SR-4, in the area. This well has been used in moderation during the dry season due to possible impacts to listed species. As a result, the reliability of this well, as well as additional wells along Santa Rosa Creek, has been compromised creating the need for a supplemental water source during dry months. To mitigate this issue, the Water Master Plan recommends several actions or tasks.

The "Buildout Reduction Program" (Task 1) in the Water Master Plan seeks to cap the maximum number of potential water service connections to 4,650 within the Services District boundary. In order to do so, potential building sites in Cambria would be retired or merged to match the 864 outstanding residential water connections that the Services District has committed to provide. Most lots would eventually be retired with a deed restriction or conservation easement that the Services District would purchase. Ultimately, if fully implemented this program would effectively control future demands on existing local water supplies.

"Potable Water Distribution" (Task 3) in the Water Master Plan would improve the water distribution system, focusing on advancing fire fighting capabilities. Projects to increase fire water flows and water storage tanks would be completed as recommended by the Cambria Fire Department.

Task 4 of the Water Master Plan outlines strategies the CCSD could pursue to expand its longterm water supply, including seawater desalination, recycled water, and water demand management. Seawater desalination would provide up to 602 acre-feet of water during the dry season using saltwater purified in a desalination plant and distributed. Recycled water would reduce the use of potable water by using recycled water for irrigation throughout Cambria; however, no net change in the volume of water in the aquifer would occur. The Water Demand Management strategy would reduce the use of potable water for landscaping by improving the current conservation program and regulations.

Cambria Community Services District Code

The Cambria Community Services District, California Municipal Code, was published in 2004. Title 4: Water Systems, details water conservation measures implemented by the CCSD to reduce water waste and conserve water during drought years. A summary of elements of interest to the Conservation Plan are included in Appendix N.

GIS Land Use Assessment Methods

Land use for the Santa Rosa Creek Watershed was described using geographic data from SLO Datafinder (http://lib.calpoly.edu/collections/gis/slodatafinder/) and the Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/). Parcel information and aerial imagery were also acquired from the County of San Luis Obispo and used to assess Santa Rosa Creek Watershed land use.

"Rural land use" GIS data were obtained from SLO Datafinder and were created by the County of San Luis Obispo for land use designation. The GIS data were created by digitizing county-wide land use information by township, range and section. The categories are general designations that are not parcel-specific; however they represent a simplified description for land use throughout the watershed (Fig. 41).

National Land Cover Data (Land Cover Data) GIS data were acquired from the Geospatial Data Gateway. The Land Cover Data were created by the USDA, NRCS National Cartography and Geospatial Center from the USGS Land Use Land Cover Data Set at a 30 meter scale, in 1999.

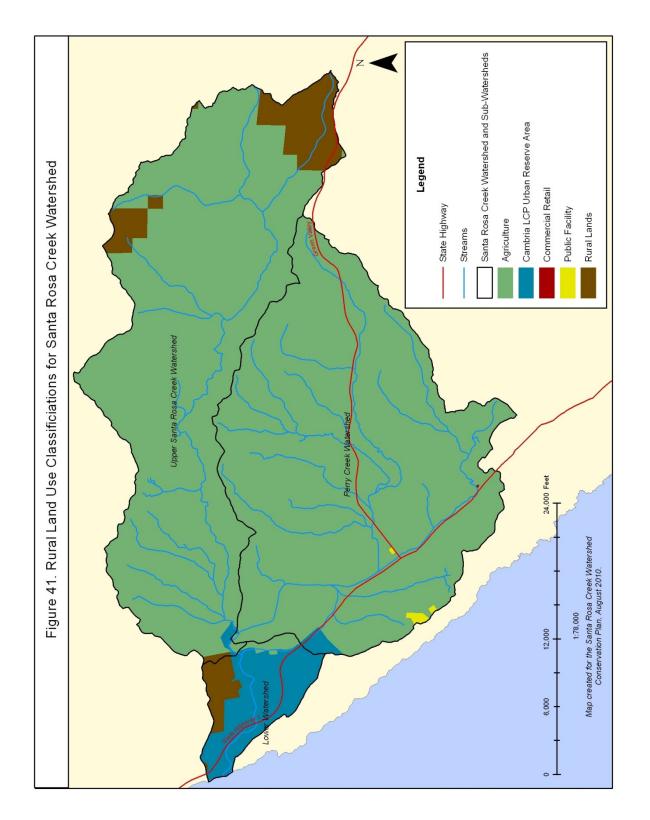
To separate the more densely populated lower watershed from the larger landowners of the upper watershed, a watershed boundary located at the intersection of Santa Rosa Creek and Main Street was developed. This boundary roughly coincides with the eastern edge of the Services District boundary (Fig. 40, pg. 94); however District jurisdiction extends approximately 0.7 miles east; up Santa Rosa Creek Road to include the Coast Union High School parcel. By separating the watershed into upper and lower regions, a more simplified assessment was conducted for the lower watershed using the County of San Luis Obispo Assessor's Office parcel data. A detailed analysis was conducted for the upper watershed, integrating multiple GIS layers. Each parcel was observed over digital aerial and topographic data to locate any data discrepancies or fill in data gaps.

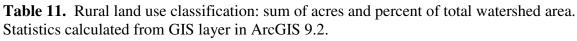
Land uses in the lower watershed were primarily summarized using parcel Land Use Codes (LUCs) from the County Assessor's parcel database. For each parcel, up to four codes are included in the database. "PrimLUC" describes the zoned primary land use, while "LUC1", "LUC2" and "LUC3" are used for subsequent modifications to zoned land uses that occur on the property. The codes were simplified into categories of land use and summarized in Appendix O.

In addition to the parcel data, parks, coastal zone, roads, and category rural land use data layers were used in GIS to help describe land use in the lower watershed.

To assess land uses in the upper watershed, several data layers were overlaid on top of digital aerial photography of the watershed and Digital Raster Graphics (DRG) topographic quadrangles in GIS. The following GIS layers were used to assess land use in the upper watershed: "land use land cover", "roads", "category rural land use", "parks", "parcels", "schools", "mines", and "crops". A detailed description of all GIS data used for this project, along with their source information, is included in Appendix G.

Additional data analysis was necessary to assess grazing practices on parcels lacking detailed land use data. If all of the following conditions were met for the parcel in question, then the parcel was determined to be grazed: 1) the parcel was surrounded by other parcels where grazing is said to occur according to the parcel data; 2) grassland vegetation was present on the property (which is more suitable for grazing than other habitats); 3) no fence-lines were observed separating the parcel from other parcels where grazing is occurring; and 4) the parcel land use codes were vague.


In addition, the county crop data is an incomplete dataset including only parcels that have permitted pesticide applications on file with the Agricultural Commissioner's Office. Crop data were therefore updated based on aerial observations while referencing other county GIS data labeled "agricultural commodities", "vineyard", and "graze". New "crop" locations identified using the aerial imagery were noted in the database as "observed crop location (aerial)".

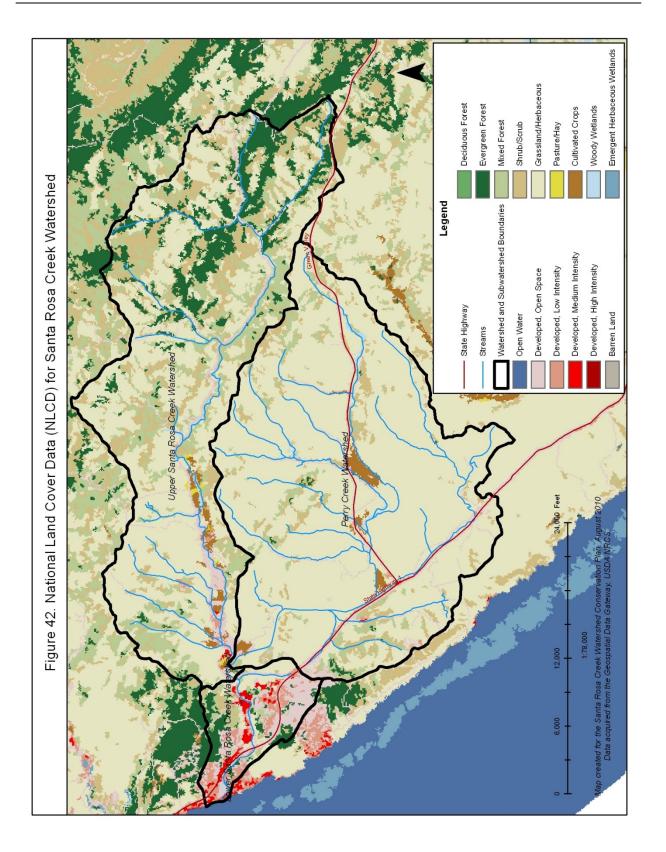

The land use maps created for the land use assessment were verified through field reconnaissance. To confirm general land use in the upper watershed, the San Luis Obispo County Farm Bureau was consulted. The Farm Bureau was able to verify the approximate boundaries between crop and grazing locations. Edits made to the GIS data were described in the GIS metadata.

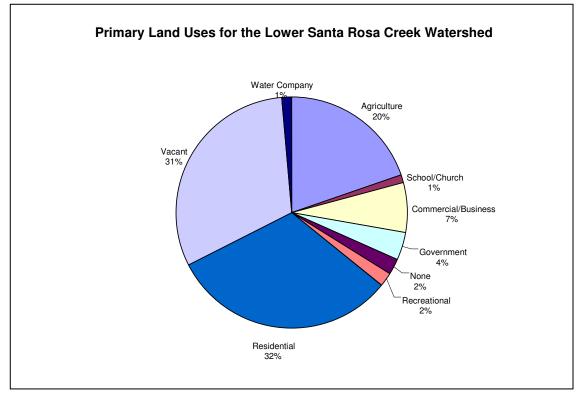
GIS Land Use Assessment Results

Rural Land Use Classification

Lower watershed land uses are distinctly different than upper watershed land uses. While the lower watershed is predominately designated urban, the upper watershed is almost entirely designated agriculture. A map showing rural land use designations for the entire watershed is included in Figure 41. Table 11 lists each land use category with total acres and percent of total area, for each category in the Santa Rosa Creek Watershed. "Rural Lands" are loosely defined by the County as large parcel low density residential zones, and the "Cambria LCP Urban Reserve Area" is generally comprised of smaller parcel higher density residential zones.

DESCRIPTION	ACRES	PERCENT
Agriculture	27323.7	89.9%
Cambria LCP Urban Reserve Area	1505.8	5.0%
Commercial Retail	1.2	<1%
Public Facility	44.1	<1%
Rural Lands	1518.2	5.0%
TOTAL	30393.0	100%


National Land Cover Data (Land Cover Data)


Land use classes and vegetative land cover data from the National Land Cover Data (Land Cover Data) dataset represent the watershed fairly accurately. Figure 42 shows Land Cover Data for the Santa Rosa Creek Watershed and surrounding areas. Interviews with San Luis Obispo County Farm Bureau and field reconnaissance has confirmed that most of the upper watershed is cattle grazed, with crops (vineyards, orchards, avocados, and others) and rural residence land uses common as well. Grazing often occurs in grasslands; however it is not restricted to those areas.

GIS Land Cover Data were checked in the field by conducting site visits and comparing data with field observations. In addition, Land Cover data were also consistent with the results from the parcel land use code assessment from the County Assessor's Office parcel data.

Lower Watershed Land Use

The lower watershed is 1,349 acres in area and accounts for less than five percent of the entire watershed. This portion of the watershed includes all land draining into the Santa Rosa Creek from the Santa Rosa Creek and Main Street crossing, extending to the ocean. The lower watershed is densely populated with 4,012 parcels, or 83 percent of parcels located in the entire watershed. The primary land use designations for the lower watershed, by land area, used by the County of San Luis Obispo Assessor's Office are presented in Figure 43. Primary land uses in the lower watershed include school/church, commercial/business, government, recreational, residential, water company, agriculture, vacant, and none. Additional land uses occur in the lower watershed, such as open space, public facilities, and roads, but are not represented within the County's general land use descriptions. The following summary of land uses is derived from GIS analysis and summation of existing land use documentation from the Cambria Community Services District Water Master Plan (2009).

Figure 43. Lower Santa Rosa Creek Watershed land uses based on Primary Land Use Codes (PrimLUC) from the County of San Luis Obispo Assessor's Office parcel data.

<u>Residential</u>

The primary land use in the lower watershed is residential (including vacant lots) totaling 847 acres or 63 percent of the total land in the lower watershed. More restrictive coastal development policies are enforced in the lower watershed because these lands are located within the County's designated Coastal Zone. Because residential lots are typically small in Cambria, averaging 25 feet by 50 feet, over the years landowners have opted to acquire and merge adjacent vacant lots to expand the size of residential property.

Residential multi-family land only occurs in a few areas; however most of this land has been developed with single-family dwellings. Residential multi-family land is considered important for providing affordable housing. Residential single-family units are the dominant feature outside of the East and West Village commercial areas. One residential suburban area exists in the eastern portion of the community, but is presently used for agriculture.

<u>Agriculture</u>

The second largest land use in the lower Santa Rosa Creek Watershed is agriculture which accounts for 264 acres, or approximately 20 percent of the total land use in the lower watershed. There are three agricultural parcels located in the lower watershed exclusively and two additional agricultural parcels in the lower watershed that partially drain into the Perry Creek sub-watershed. Agricultural activities occurring at these parcels include grazing, open space, and orchards.

Commercial, Office and Professional

Business and commercial uses are centrally located east of State Highway 1, along Main Street in the East and West Villages of Cambria. They are connected by the mixed-use area of the Mid-Village. These uses account for only 95 acres, or seven percent of the land in the lower watershed.

Open Space

Open space areas include Fiscalini Ranch, state-owned floodplains located at the mouth of Santa Rosa Creek, flood-prone areas along Santa Rosa Creek, and significant pine stands. In partnership with the Coastal Conservancy and CCSD since 1986, The Land Conservancy has spent over two decades protecting land in the lower Santa Rosa Creek Watershed by acquiring parcels for open space and resource protection though the County's Transferable Development Credit (TDC) Program. As a part of this program, Fern Canyon Reserve near State Highway 1 and Burton Drive was created when the Land Conservancy acquired 260 lots as part of the Monterey Pine Forest Protection Program. The Land Conservancy also purchased 63 lots east of State Highway 1, in Ramsey Canyon, and three lots west of State Highway 1. These were acquired to develop a wildlife corridor around State Highway 1, to Fiscalini Ranch. The Henry Kluck Memorial Trail allows access from Burton Drive to the Fiscalini Ranch. Additionally, the Land Conservancy, the CCSD and the California Conservations Corps (CCC) created a hiking trail on the west side of Santa Rosa Creek at a stream restoration site. The trail is located between Windsor and State Highway 1, and connects to the Fiscalini Ranch. In 2007, the Coastal Conservancy provided additional funding to the Land Conservancy to continue acquiring high priority lots within the boundaries identified in the TDC program.

Recreation

In the addition to the Fiscalini Ranch Preserve and other trails mentioned above, San Simeon Beach State Park is located at the Pacific coastline on the northwestern edge of the watershed. There are approximately 54.7 acres of the park within the watershed boundary. The portion of the park within the Santa Rosa Creek Watershed is the southern extent of the park boundary. The entire park extends north to San Simeon Creek Watershed, and includes hiking trails, preserves, camping and beach access. There is also a community park run by the County of San Luis Obispo, a swimming pool, and a resort within the lower watershed. Ocean shorelines, creek sides, and forests also provide recreation to the public throughout the lower watershed.

Public Facilities

Public facilities include community meeting sites, a fire station, Cambria Community Services District offices, facilities and yards, a library, post office, hospital, and two cemeteries. The former grammar school on Main Street has no current use at this time. The new Cambria Grammar School is located in the upper watershed, on the corner of State Highway 1 and Main Street.

<u>Roads</u>

According to the "TIGER roads" database from SLO Datafinder

(http://lib.calpoly.edu/collections/gis/slodatafinder/), there are nearly 40 miles of major and minor roads located within the lower watershed, including 147 separate roads that are each less than one mile in length. State Highway 1 and Main Street are major roads and are each

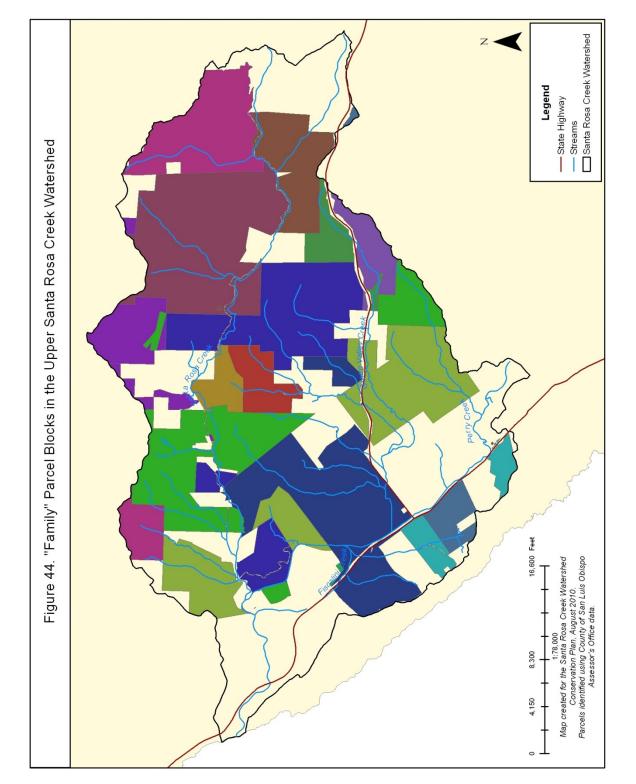
approximately three miles in length. Paved and unpaved roads mapped in the TIGER database are common in the lower watershed.

An erosion study conducted by the USDA, NRCS in 1999 found 46 percent of roads located in the Lodge Hill residential area were unpaved. Lodge Hill is a residential community located south of the village, on the west side of the Main Street and State Highway 1 intersection. The erosion study suggests that due to degeneration from erosion, a typical dirt road should be rebuilt every nine years, while asphalt roads last for approximately 24 years (USDA, 1999).

Upper Watershed Land Uses

The upper Santa Rosa Creek Watershed is composed of both Santa Rosa Creek and Perry Creek sub-watersheds. The upper watershed includes all land draining upstream of the Santa Rosa Creek and Main Street crossing. A residential area located along the western edge of Perry Creek sub-watershed was separated from the rest of the upper watershed for analysis. This area has 436 parcels totaling approximately 67 acres, or less than one percent of the entire upper watershed area. The high-density area was assessed as the lower watershed was, using the County Assessor's Office Primary LUC data, and was found to be nearly completely residential in land use, with one property on the Services District water wait list, and approximately one-half acre without land use data.

The rural area of the upper Santa Rosa Creek Watershed is 28,057 acres with 383 parcels. The upper watershed is owned by far fewer landowners than the rest of the watershed, with 17 families owning 20,962 acres, or 69 percent of the total Santa Rosa Creek watershed area. The average size of the 17 "family" parcels is 1,165 acres, with one family owning 3,100 acres. Some "family" parcels are owned by several different members of the same family. The 17 "families" were selected from the County Assessor's Office parcel data if the combined parcel size in which one family owns, is over 300 acres. Figure 44 shows combined parcels according to the 17 families owning a large portion of the upper watershed. Family names have been withheld for confidentiality. Some families own parcels in more than one area of the watershed, and therefore not all "family" parcels are located together. Approximately 20,954 acres of "family" parcels are agricultural, while the remaining eight acres are designated residential.


<u>Parks</u>

There are no federal, state, or county parks located in the upper watershed. There are 120 acres owned by the federal government in the Cypress Mountain area of the headwaters that is designated "grazing" in the County's parcel data.

<u>Roads</u>

According to "TIGER roads" data acquired from SLO Datafinder

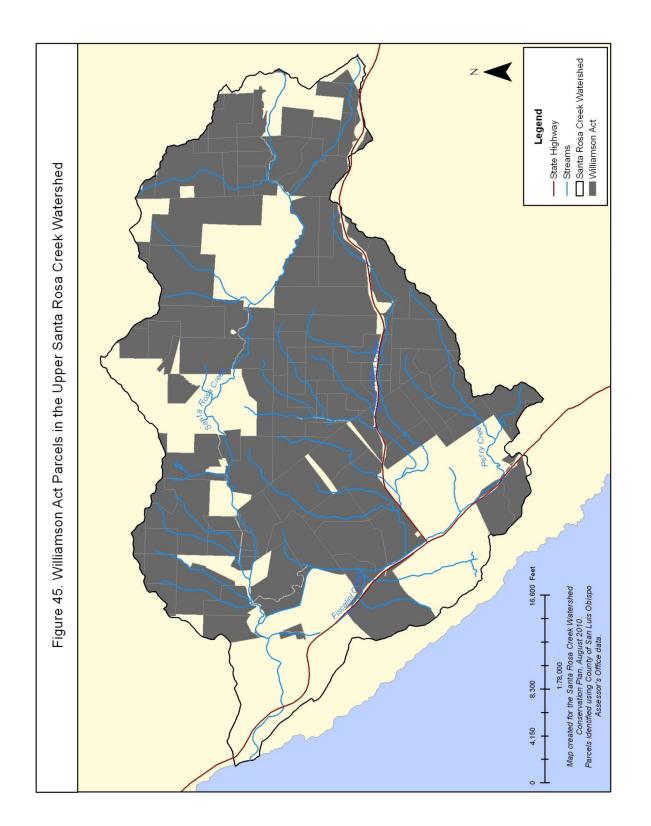
(http://lib.calpoly.edu/collections/gis/slodatafinder/) there are 75 miles of major and minor roads within the upper Santa Rosa Creek Watershed. The longest road in the upper watershed is Santa Rosa Creek Road, which is 11.7 miles in length within the upper watershed boundary. In addition, 9.7 miles of Green Valley Road, also known as State Highway 46, and 4.4 miles of State Highway 1 is within the upper watershed boundary.

Santa Rosa Creek Watershed Conservation Plan

Mines

There is no current mineral extraction within the upper Santa Rosa Creek Watershed, however rock quarries do exist. The County "mine" data acquired from SLO Datafinder identifies three rock quarries within the upper Santa Rosa Creek Watershed. The Cambria Pit and Bianchi Quarry are both owned by Winsor Construction and the land is leased. The Land Red Rock Pit is owned by Negranti Construction. Excavation appears to be occurring at all three sites. Additional sites were located using information from topographic quadrangles and aerial imagery. The Oceanic Mine is a retired mercury mine located tangent to Curti Creek. The site is unvegetated and excavated soil and rock still exists. Additionally, three gravel pits were located at sites east of Coast Union High School along Santa Rosa Creek Road. A total of 30 acres of gravel pits exist in the upper Santa Rosa Creek Watershed. The retired Oceanic Mine is 1.3 acres in size.

<u>Agriculture</u>


The primary land use in the upper Santa Rosa Creek Watershed is agricultural. Cattle grazing is the most common land use, with irrigated crop, dry farming, and rural residential land uses occurring in the upper watershed as well.

The livestock industry in San Luis Obispo County is large, with over 95,000 heads of cattle produced in the county, bringing nearly \$60 million in revenue to the county in 2006 alone (San Luis Obispo County Department of Agriculture, 2006). The upper Santa Rosa Creek Watershed is a large contributor to this industry, with 79 percent, or 22,690 acres of the upper watershed land area designated grazing according to the County's parcel data.

The North Coast Area Plan Update identifies agriculture as the primary land use in the rural North Coast Planning Area. Rangelands account for nearly 99 percent of all land use, with the remaining land used for orchards, vineyards, row crops and dry farming. Most crops grown in the area are used as feed on associated ranges.

Most agricultural properties are under Agricultural Preserves and Conservation Contracts developed according to the Williamson Act. Within the upper watershed, 149 parcels with 20,672 acres of land are contracted under Williamson Act. Williamson Act parcels in the upper watershed account for 72 percent of the entire upper Santa Rosa Creek Watershed land area. Within the lower watershed, two additional parcels totaling 41 acres are also contracted under Williamson Act. Figure 45 shows all parcels in the watershed that are under the Williamson Act.

"Crops" data developed by the County of San Luis Obispo Agricultural Commissioner's Office are used to track parcels with pesticide permits. It is not a comprehensive account of all crop locations within the watershed. Digital aerial photography was used to edit the "crops" data by observing on-the-ground land use activities. From this analysis, there are approximately 988 acres (3.5 percent of upper Santa Rosa Creek Watershed land area) of various crops grown in the upper watershed, including both Santa Rosa Creek and Perry Creek sub-watersheds. Total acres for each crop type recorded by the County's Agricultural Commissioner's Office for pesticide application and edited using 2007 aerial imagery are shown (Table 12).

CROP TYPE	LOCATIONS	TOTAL ACRES
Aerial-assessment	21	297.1
Berry	1	0.9
Field-rotational	6	199.3
Orchard	28	142.2
Total site	1	22.5
Uncultivated ag	2	8.9
Undeclared	1	1.3
Vegetable-rotational	16	278.3
Vineyard	5	37.7

Table 12. County Agricultural Commissioner's Office crop data edited.

County of San Luis Obispo Assessor's Office data show the largest land uses in the upper watershed are vacant single family, vacant rural, agricultural property, and grazing (Table 13). The data represent only the primary land use; however three additional land use classifications are recorded in the Assessor's Office parcel data for each parcel of land. Most parcels located in the upper watershed have "agriculture property" and/or "graze" as subsequent land uses if not identified as a primary land use.

PLUC	Defined	Count	Min Acres	Max Acres	Ave Acres	Sum Acres	Percent of Upper Watershed
	No Data	21	0.09	637.15	76.73	1611.3	5.7%
100	Vacant Single Family	5	0.01	2856.62	889.77	4448.9	15.9%
106	Vacant Rural	3	9.18	39.92	20.97	62.9	<1%
107	Vacant Rural	7	8.91	45.04	25.88	181.1	<1%
108	Vacant Rural	11	17.53	649.56	102.79	1130.7	4.0%
109	Vacant Rural	17	4.87	779.27	224.90	3823.2	13.6%
110	Single Family	14	0.22	968.93	189.36	2651.0	9.4%
133	Mobile Home	1	19.78	19.78	19.78	19.8	<1%
134	Mobile Home	1	369.38	369.38	369.38	369.4	1.3%
170	Single Family with Secondary Unit	2	2.23	286.93	144.58	289.2	1.0%
171	Single Family with Secondary Unit	1	4.01	4.01	4.01	4.0	<1%
172	Single Family with Secondary Unit	1	488.89	488.89	488.89	488.9	1.7%
173	Single Family with Secondary Unit	5	12.49	780.45	171.48	857.4	3.1%
174	Single Family with Secondary Unit	12	5.40	90.90	31.75	381.0	1.4%
175	Single Family with Secondary Unit	5	15.64	54.76	37.33	186.7	<1%
176	Single Family with Secondary Unit	13	5.54	624.36	185.31	2409.0	8.6%
205	Mixed Living	3	2.84	435.31	156.68	470.0	1.7%
310	Retail Sales	1	1.95	1.95	1.95	1.9	<1%
600	Agricultural Property	5	12.37	2320.77	766.75	3833.7	13.7%
612	Trees/Vines/Lemons	1	87.12	87.12	87.12	87.1	<1%
636	Winery	1	16.20	16.20	16.20	16.2	<1%
650	Graze	21	0.39	660.94	204.21	4288.5	15.3%
660	Specialty	1	217.97	217.97	217.97	218.0	<1%
857	Government	7	3.41	120.25	32.06	224.4	<1%
860	Public Utility	1	2.10	2.10	2.10	2.1	<1%
861	Water Company	1	0.23	0.23	0.23	0.2	<1%
	TOTAL	161				28,056.6	100%

Table 13. Primary Land Use Code statistics for Upper Santa Rosa Creek Watershed, excludingthe densely populated residential area of Perry Creek Sub-watershed.

5. RECOMMENDED CONSERVATION STRATEGIES

Santa Rosa Creek Watershed is a healthy and productive ecosystem that supports a robust steelhead population and provides valuable rangeland and farmland for the production of food and fiber. There are common concerns throughout the watershed related to soil health, water supply, degradation of wildlife habitat, and sustainability of ranching and farming operations. Fortunately, there are many tools available to landowners and other stakeholders to help improve land management practices, identify and implement priority conservation activities, and continue the cultural heritage of ranchers and farmers.

To facilitate the compilation of strategies and practices specific to the Santa Rosa Creek Watershed, and to develop specific recommendations, the following objectives (in no particular order) were identified:

- Protect and restore the natural function of streams and associated riparian zones, giving priority to those reaches of Santa Rosa Creek that support steelhead.
- Protect and restore native floral and faunal communities, especially Monterey Pine Forest and Oak Woodland.
- Protect and restore wildlife corridors to maintain connectivity between important habitats.
- Maintain and improve water quality in Santa Rosa Creek and its tributaries at levels sufficient to provide healthy drinking water and support natural resources.
- Provide a sustainable water supply for farms, ranches, wildlife and residents.

Successful conservation to sustain and improve watershed health relies on three primary strategies: land acquisition, restoration, and long term management practices.

5.1. LAND ACQUISITION STRATEGIES

The conservation of the natural resources of the Santa Rosa Creek Watershed relies on continued land protection efforts. Conservation of land is achieved in a variety of ways including traditional land use controls such as zoning requirements, the general plan, and associated local coastal plan, as well as targeted incentive-based programs and agreements such as the Williamson Act, conservation easements, and land purchases for parks, open space and natural resource protection. Future conservation of the watershed's land and water will rely largely on compliance with, and enforcement of, existing land use rules and regulations. However, additional non-regulatory tools and measures are available to ensure conservation of important resources, as described below.

Conservation Easements

A conservation easement is a binding agreement recorded on the deed of the property that protects the targeted resources on all or a portion of the subject property in perpetuity. Each conservation easement is tailored specifically to meet conservation and landowner needs.

Conservation easements are usually held by a non-profit land trust organization or public agency with a conservation purpose, and can be donated or sold by the landowner. Easements can be placed on public land, parks, open space, and on private ranches and farms with willing landowners.

In select instances where important resources or combinations of resources are threatened by land uses that are allowed by right under zoning, general plan, real property law, etc., the use of conservation easements can be a very valuable tool. For example, under San Luis Obispo County's agricultural zoning, a large ranch property comprised of numerous legal parcels located outside the coastal zone in the upper watershed could be eligible for a cluster subdivision with up to a 50 percent density bonus. Such development could lead to erosion and drainage changes due to new roads and correspondent increases in impervious surfaces that can have adverse impacts on aquatic species such as steelhead, fragment wildlife habitat with fencing and human encroachment, and increase demands on use of scarce water supplies for residential and landscaping purposes. On the other hand, selling a conservation easement could provide that same landowner with substantial financial compensation. For many landowners the challenge of keeping a ranch property in the family through the generations can be formidable given that agriculture remains an ever-challenging proposition as increased land values lead to substantial estate tax exposure. A conservation easement, combined with forward-thinking estate planning and business planning, can provide the relief needed for a family to protect their ranch, retain local cultural heritage, and keep the ranch in the family. Conservation easements have become increasingly attractive to private landowners and land and natural resource protection agencies and nonprofit groups alike because they allow a landowner to continue to own and use his or her property with some restrictions to protect targeted natural resources and receive financial compensation for selling such protections.

Land Purchase (Fee Simple)

Land with high priority conservation values can be purchased outright from a willing seller by public agencies, non-profit land trusts, or other organizations to achieve conservation objectives. For example, when very high priority properties are threatened by a sale, the use of a fee simple acquisition may be appropriate. While this classic method of land conservation provides maximum resource protection and land use options, it is typically more expensive compared to easement purchases, especially when land management and stewardship costs are factored in. Another important consideration is the broader impact such a transaction may have on the long term viability of agriculture in the area. For this reason, these types of projects should only be undertaken when a property's agricultural uses are no longer viable or when compatible uses can be achieved. That said, purchasing land when and where appropriate and feasible provides maximum opportunities for public benefit.

5.2. RESTORATION STRATEGIES

Restoration projects, (synonymous with repair, rehabilitation, and enhancement projects) are designed and implemented with the goal of improving the health of ecosystems that have been disturbed and/or damaged by any type of land use. Watershed restoration projects vary from passive native plant installation to engineered fish passage improvement projects. These projects can be implemented on private lands with or without a land acquisition element, depending on the funding source and project goals. Non-profits, State agencies, the Natural Resource

Conservation Service (NRCS) and Resource Conservation Districts (RCDs) can fund and implement restoration activities on private lands. In order to minimize duplication of information specific restoration techniques are included as management practices below in Section 5.3. of this report.

5.3. LONG TERM MANAGEMENT STRATEGIES

Management Measures and Practices (MMPs), also known as Best Management Practices (BMPs), are techniques, treatments, and tools for improving and protecting watershed health and ecological function. All conservation and watershed management plans identify practices that can assist land managers with improving water quality, protecting sensitive species, and restoring habitat. A wealth of information exists related to MMP definitions, descriptions, alternatives, and design specifications.

The Federal Clean Water Act (1977) states that a Best Management Practice is "a practice or combination of practices that is determined by a state to be the most effective means of preventing or reducing the amount of pollution generated by nonpoint sources to a level compatible with water quality goals". The terminology "best" is highly debatable so "management measures" and "management practices" have since replaced the "Best Management Practices" term and is thus used throughout this document.

A management measure can be defined as a "goal for management of nonpoint source pollution for a state, basin, watershed or ranch" and describes long-term goals and how they link to beneficial water uses (George & Jolley, 1995). Management practices are either individual applications or they are used in combination to address the management measure goals. Management practices have been developed and defined by regulatory agencies such as State and Regional Water Quality Control Boards and the U.S. Environmental Protection Agency (EPA), restoration organizations, ranchers, professionals, and are described in NRCS Field Office Technical Guides (Technical Guides).

For the Santa Rosa Creek Watershed it is important to select practices appropriate for the resources that have been identified for protection and improvement. Recommendations must also be applicable to current and future land uses in the watershed. Recommended MMPs for the Santa Rosa Creek Watershed are organized by land use, then by MMP type. Each practice is described briefly. Where applicable, each practice includes the corresponding number used by the NRCS in the National Handbook of Conservation Practices for reference. Additional information about NRCS Conservation practices can found at the NRCS website (http://www.nrcs.usda.gov/Technical/efotg/).

5.4. WILDLIFE HABITAT AND RIPARIAN RESTORATION MMPS

Measures and practices that can improve watershed health are not always specific to one land use. The following practices can be implemented across a wide variety of properties, in many different situations, and on most types of projects. Projects can be implemented to directly improve wildlife habitat, maintain or restore migration corridors and critical habitat for sensitive species, and build resiliency of the local ecosystem. The following practices can be implemented on all types of projects or properties. Reference to the NRCS Technical Guides practice number is in parenthesis following practice title. Detailed descriptions and specifications are available through the NRCS, Caltrans, and other groups who have developed MMP/BMP manuals and restoration plans.

Stream Restoration and Streambank Protection (580)

Restore modified or damaged streams using environmentally-sensitive techniques to protect stream banks and infrastructure, reduce or repair erosion, establish riparian vegetation, and improve habitat for sensitive species. The techniques below (Table 14) can be used in combination or independently as warranted. It is strongly encouraged that agencies are consulted prior to any of the following practices being implemented, especially if part of a project that has the potential to negatively impact a stream, river, lake, or wetland. Typical drawings and descriptions for a selection of these techniques are offered in Appendix P.

Table 14. Management measures and practices used to protect stream banks and infrastructure, establish riparian vegetation, and improve habitat for sensitive species.

Biotechnical Engineering	River Training Structures
Brush Box	Bendway Weirs
Brushpacking	Cross Vanes
Coconut Fiber (Coir) Roll	Longitudinal Stone Toe Protection
Coconut Fiber (Coir) Mats	Rock Vanes
Compost Berm	Rock Vanes with J-Hooks
Compost Blanket	Spur Dikes
Erosion Control Blankets	Stone Weirs
Geoberm Revetment	Structural Streambank Stabilization
Large Woody Debris Structures	Cobble or Gravel Armor
Live Brushlayering	Geocellular Confinement System
Live Brush Mattress	Live Cribwall
Live Fascine	Slope Flattening
Live Gully Fill Repair	Stepped or Terraced Slope
Live Pole Drain	Stream Diversion
Live Siltation	Surface Roughening
Live Staking	Trench Fill Revetment
Straw Anchoring	Vegetated Articulated Concrete Blocks
Straw Rolls/Wattles	Vegetated Gabions
Trench Drain	Vegetated Gabions Mattress
Turf Reinforcement Mats	Vegetated Riprap
Veg. Mech. Stabilized Earth	Stone-Fill trenches
Willow Posts and Poles	
Stream Corridor Habitat Improvement	
Boulder Clusters	
Meander Restoration	
Newbury Rock Riffles	
Rootwad Revetment	
Vegetated Floodways	

A significant amount of information and studies has been published related to how these techniques should be implemented, where the techniques are applicable, and how effective the techniques are under varying conditions. Technique specifications, details, and typical drawings can be obtained from a variety of sources including *Environmentally-Sensitive Streambank Stabilization* (ESenSS, authored by Salix Applied Earthcare), the National Cooperative Highway Research Program, and the California Department of Fish and Game *California Salmonid Stream Habitat Restoration Manual*.

Wetland Creation, Enhancement and Restoration (658, 659, and 657)

Create, enhance, or restore functional wetland habitat by creating hydric soil, introducing or reintroducing conditions where prolonged inundation occurs, planting appropriate native wetland species, and removing invasive weed species.

Wildlife Wetland Habitat Management (644)

Retain, develop, or manage wetland habitat for the benefit of wetland dependent or associated flora and fauna.

Wildlife Upland Habitat Management (645)

Create, maintain, or enhance food supply, cover, and connectivity of habitat for upland wildlife.

Grade Stabilization (410)

Stabilize the grade and control erosion in channels using a structure to prevent the formation and advancement of gullies, enhance environmental quality, and reduce pollution hazards.

Fish Passage (396)

Modify or remove man-made structures that impede migration of steelhead or other aquatic organisms.

Mulching (484)

Apply residual plant material, chipped woody material, or manufactured products to reduce erosion, suppress weeds, provide an ideal seed bed for germination, and to mange soil moisture and temperature for the purposes of supporting the establishment of native, beneficial vegetation.

Tree and Shrub Establishment (612)

Establish native trees and shrubs by planting seeds or woody cuttings to improve wildlife habitat, reduce erosion, improve water quality, and improve biological diversity.

Agricultural MMPs

Most of the Santa Rosa Creek Watershed is composed of large ranches and farming properties. The following practices are organized based on land use.

Ranches and Grazing

Ranching is the primary land use in the upper watershed and Perry Creek Sub-watershed so improvements in cattle grazing practices have a high potential for benefiting rangeland and riparian ecosystems. Exclusion fencing, riparian pastures, and rotational grazing can be implemented to reduce overgrazing impacts to perennial springs and streams in the upper watershed, and to protect highly erodible soils in the Perry Creek Sub-watershed.

Prior to identifying, designing, and implementing MMPs, landowners should develop a Ranch Plan with assistance from local NRCS representatives, Resource Conservation Districts or nonprofit organizations with expertise in planning and resource protection. The Ranch Plan can take several formats, such as those presented through NRCS Conservation Planning, UC Cooperative Extension (UCCE) Ranch Planning Short Courses, Holistic Resource Management, or any other organized planning process implemented by the landowner, agency, or private consultant.

The goal of maintaining or improving the quality of water should be included in ranch management plans for livestock operations. Ranch water quality goals need to be linked to water quality problems identified by the Regional Water Quality Control Board for the local basin or sub-basin. A Ranch Plan should contain the follows chapters or components:

- 1. Describe the environmental setting.
- 2. Describe livestock and grazing operation.
- 3. Describe goals of ranch water quality.
- 4. Describe problems with water quality on the ranch.
- 5. Describe management measures and practices.
- 6. Describe techniques for monitoring and evaluation.

California Rangelands Research and Information Center provides a list of management practices for California rangelands. The following practices are listed in the California Rangeland Water Quality Management Plan for California's privately owned rangelands, with reference to the NRCS Technical Guides practice number in parenthesis, and appear to be the most applicable to conditions within the Santa Rosa Creek Watershed. These management practices were derived directly from Fact Sheet No. 9, Rangeland Watershed Program (George & Jolley, 1995) and have been edited to describe only practices that impact rates of erosion, water quality and quantity, and steelhead habitat.

Non-Structural Range Improvements

Prescribed grazing, vegetation management, erosion reduction, and wildlife habitat improvement should be planned, implemented, and maintained to minimize water quality impacts.

Prescribed Grazing (528a)

Prescribed grazing occurs with controlling grazing season, intensity, frequency, and distribution. It is defined as the controlled harvest of vegetation with grazing or browsing animals, managed with the intent to achieve a specified objective, such as:

• Maintain or improve soil condition while improving accelerated soil erosion.

- Maintain or improve water quantity and quality.
- Maintain or improve food and shelter for species of concern.
- Maintain or improve desired plant communities.

Use Exclusion (472)

Exclude people, vehicles, or animals from an area to protect, maintain, or improve the quantity and quality of plant, animal, soil, air, water, and/or aesthetics resources, as well as human health and safety.

Brush Management (314)

Remove or thin undesired species to maintain an ecological balance, improve forage production, provide soil protection, and reduce fire risk.

Prescribed Burning (334)

Use controlled burning in specified areas of the range to promote establishment of perennial native grasses, improve range production, reduce undesirable plant species, control plant disease, and decrease the risk of catastrophic fire.

Firebreak (394)

Reduce the spread of fire or control a prescribed burn using a bare ground or a vegetated strip of land. This practice shall be designed and implemented with erosions and sediment control techniques to minimize impacts to sensitive habitats.

Critical Area Planting (342)

Plant vegetation on highly erodible or critically eroding areas to reduce soil erosion and sediment delivery to surface waters. May temporarily impair surface water quality prior to the establishment of vegetation, such as during grading, seedbed preparation, and mulching activities.

Range Seeding (550)

Seed native grazing land to establish adapted plants. Does not include pasture and hayland planting. May increase erosion and sediment yield during the establishment of plants.

Pasture and Hay Planting (512)

Establish native or introduced vegetation to improve livestock health, improve forage production, reduce erosion, and improve water quality.

Rangeland Mechanical Treatments (548)

Mechanically renovate, contour furrow, pit, or chisel native rangeland to improve plant cover and water quality by aerating the soil, increase available moisture and infiltration, reduce erosion, and protect low lying land or structures from siltation.

Structural Range Improvements

Structural range improvements should be linked in the Ranch Plan to proper grazing use and other ranch water quality goals.

Access Roads (560)

A travel-way constructed to provide a fixed route for vehicular travel for resource activities involving the management of timber, livestock, agriculture, wildlife habitat, and other conservation enterprises while protecting the soil, water, air, fish, wildlife, and other adjacent natural resources.

Fencing (380)

Enclose or divide land with suitable, permanent structure that acts as a barrier to livestock, big game, or people. Fencing may protect riparian areas which act as sediment traps and filters along channels and impoundments.

Pipelines (516)

Convey water for livestock or recreation using installed pipeline. By providing water sources other than lakes or streams, pipelines may decrease sediment, nutrient, organic, and bacteria pollution from livestock.

Ponds (378)

Construct using a dam or embankment or by excavating a dugout or pit. Often used with pipelines, troughs and tanks. Ponds may trap sediment and nutrients and prevent them from entering into the basin. Ponds may also provide alternate water sources away from streams.

Sediment Basins (350)

Construct to collect and store sediment or debris, removing the material from the water being passed downstream. Stockwater ponds often act as sediment basins.

Spring Development (574)

Improve springs and seeps by providing storage facilities and/or excavating, cleaning, or capping. Erosion may occur from disturbed sites immediately after construction, but should be short-lived.

Stock Trails or Walkways (575)

Establish lanes or travel ways that facilitate animal movement, while protecting ecologically sensitive, erosive and/or potentially erosive sites.

Troughs and Tanks (453)

Provide stock water away from streams by installing tanks or troughs to facilitate improved distribution of livestock. This reduces disturbance, compaction, and subsequent erosion in areas close to stream channels.

Landslide Treatments (453)

Treatments used to prevent or stabilize landslides to stop excessive erosion and sedimentation.

Well (642)

Develop new water sources to provide stockwater in stable areas located away from sensitive areas, such as streams. Livestock distribution will improve with new water sources.

Stream Crossing

Fords, culverts, or bridges that provide access across a stream through a stabilized area for livestock watering or farm equipment. This practice reduces erosion, sedimentation and contamination from other pollutants.

Livestock Management Practices

Disease control, feeding, and salting of livestock should be done in a way that protects water quality and sensitive habitat. Livestock tend to congregate at salt blocks and feeding areas so these activities should occur in areas away from streams to reduce impacts. Parasite control and other medications should be administered at the minimum amount needed to be effective. Loading chutes and other corrals where livestock will be concentrated should be located as far from sensitive habitats as possible.

Facility Siting/Design Criteria

Protect water quality by considering site design of facility. Plan the location and/or design of feeding, watering, working, holding, chemical storage, and shipping facilities at the property proximity to water resources.

Irrigated Row Crops and Orchards

A small percentage of land use in the upper watershed of Santa Rosa Creek includes vegetable and fruit production. Details and specifications for conservation practices suitable to row crops, hay fields, and orchards can be found on the NRCS website

(http://www.nrcs.usda.gov/Technical/efotg/). Those most suitable for the Santa Rosa Creek Watershed are listed and described below.

Non-Structural Practices

Non-structural practices are those that reduce erosion and sedimentation and improve soil and water quality by implementing techniques in day to day management of farm operations.

Erosion and Sediment Control Plan

Develop plan for the entire farm that seeks to reduce erosion by protecting the soil surface wherever possible, and seeks to reduce sediment transport by retaining flow prior to it leaving the farm and/or flowing into sensitive waterways.

Nutrient Management Plan

Develop plan for the entire farm that seeks to minimize nutrient loads in runoff that could be harmful to sensitive habitats.

Conservation Coverage (327)

Establish permanent vegetation to reduce erosion, improve water quality, provide wildlife habitat, enhance soil quality, and trap pests.

Residue Management (345)

Manage the amount, orientation, and distribution of crop residue on the soil surface while minimizing soil-disturbing activities, for the purpose of reducing soil erosion and wind erosion, improving soil condition, and increasing soil moisture.

Conservation Tillage (329)

Grow crops with the minimum amount of tillage necessary to manage pests and reduce compaction. Reduction of tillage depth and the conservation of plant residue protect the soil surface from erosion; improve soil health, quality, and structure; and increases infiltration.

Nutrient Management (590)

Improve crop production in a manner that protects sensitive waterways, improves soil condition, and properly utilizes manure and organic matter, using the application of soil amendments.

Pesticide Management (595)

Prevent, avoid, monitor and suppress weeds, insects, diseases, animals and other organisms while minimizing negative impacts of pest control on soil, water, air, plant, and animal resources and/or humans.

Riparian Buffer or Filter Strip (391 or 393)

Filter sediment and contaminants from runoff, provide cover for wildlife and beneficial predators, increase shade to reduce surface water temperature, and intercept pesticide drift and airborne particulates by having an area of preserved or restored trees, shrubs, and grasses situated upslope from a waterbody and between the waterbody and actively farmed fields.

Crop Rotation (328)

Reduce soil erosion, maintain or improve organic matter content, stabilize the balance of nutrients in the soil, and control weeds, diseases, and pests by growing a variety of crops on the same field in a recurring sequence as appropriate to achieve management objectives.

Cover Crops (340)

Establish seasonal crops that provide soil protection for the purposes of improving soil quality through nitrogen fixation, redistribution of nutrients, and increased organic matter; reducing

erosion and subsequent sediment transport; reducing compaction; suppressing weeds; and managing soil moisture.

Structural Practices

Structural practices for crops include constructing or otherwise implementing projects that reduce pollution into nearby waterways.

Contour Buffer Strips (332)

Establish narrow bands of permanent vegetation on hillslopes that are farmed on the contour, to reduce sheet and rill erosion, reduce sediment and other water-borne contaminants transport, and increase infiltration.

Grassed Waterway (412)

Construct channel with established vegetation suitable for carrying surface water in a nonerosive manner to a stable outlet.

Herbaceous Wind Barriers (603)

Establish vegetation in rows or narrow strips in the field across the prevailing wind direction to reduce wind erosion, protect crops from dust, and to provide food and cover for wildlife.

Mulching (484)

Apply shredded or chipped plant fibers to the soil surface to conserve soil moisture, moderate soil temperature, provide erosion control, suppress weed growth, facilitate the establishment of vegetation, improve soil condition and reduce airborne particulates.

<u>Revetments</u>

Place material on the banks of ditches, channels, and streams to prevent surface erosion and scour. This practice reduces the potential for mast wasting, protects structures, and improves water quality.

<u>Riprap</u>

Construct "blanket" of appropriately-sized rock to protect hillslopes, irrigation ditches, channels, and streambanks from erosion. In sensitive habitats plantings should be integrated into rip rap to mitigate for potentially negative effects on wildlife.

Sediment Basins

Construct basin to intercept runoff with the purpose of capturing sediment, debris and other pollutants originating from farmland, construction sites, or other disturbed sites.

<u>Terraces</u>

Construct benches or berms into a hillside to provide a level or slightly concave surface for supporting plant growth, and intercepting surface runoff. This practice shortens slope length to reduce erosion and provides increased infiltration of irrigation water and rainfall.

Waste Treatment Lagoons

Construct ponds using an embankment or digging a pit with the purpose of intercepting waste discharge/runoff from facilities such as confined animal operations with the intent of biologically treating waste, such as manure and wastewater, thus reducing pollution in sensitive waterways.

Irrigation System

Implement an irrigation system in which all necessary equipment and facilities are installed for efficiently and uniformly applying irrigation to maintain soil moisture at the necessary level to grow crops without causing excessive water loss, erosion, or water quality impairment.

Irrigation Water Conveyance

Design water conveyance structures or systems to prevent waterlogging of soil, maintain water quality, and reduce water loss.

Urban MMPs

Municipalities are typically responsible for managing land such as parks and open space, maintaining urban infrastructure, operating facilities, and overseeing utilities that have the potential to impact sensitive habitats. In the Santa Rosa Creek Watershed the Cambria Community Services District manages or oversees the majority of operations and facilities that a City would. Other agencies also oversee infrastructure such as roads, bridges, and highways, including the County of San Luis Obispo and Caltrans.

The following practices (Table 15) should be considered for implementation in current or future activities to reduce impacts on receiving water bodies. Describing these practices in detail is outside the scope of this plan, but additional information can be found through the California Stormwater Quality Association (CASQA), the Regional Water Quality Control Board, and the San Luis Obispo County Stormwater Quality Management Plan.

Table 15. Management measures and practices used to reduce impacts to water bodies in urban
areas. Source: CASQA Stormwater Best Management Practice (BMP) Handbooks – Municipal
Handbook 2004.

Source Control BMPs	Source Control BMPs
SC-10 Non-Stormwater Discharges	SC-43 Parking/Storage Area Maintenance
SC-11 Spill Prevention, Control & Cleanup	SC-50 Over Water Activities
SC-20 Vehicle and Equipment Fueling	SC-60 Housekeeping Practices
SC-21 Vehicle and Equipment Cleaning	SC-61 Safer Alternative Products
SC-22 Vehicle and Equipment Repair	SC-70 Road and Street Maintenance
SC-30 Outdoor Loading/Unloading	SC-71 Plaza and Sidewalk Cleaning
SC-31 Outdoor Container Storage	SC-72 Fountain & Pool Maintenance
SC-32 Outdoor Equipment Maintenance	SC-73 Landscape Maintenance
SC-33 Outdoor Storage of Raw Materials	SC-74 Drainage System Maintenance
SC-34 Waste Handling & Disposal	SC-75 Waste Handling and Disposal
SC-41 Building & Grounds Maintenance	SC-76 Water & Sewer Utility Maint.
Treatment Control BMPs	Treatment Control BMPs
TC-10 Infiltration Trench	TC-30 Vegetated Swale
TC-11 Infiltration Basin	TC-31 Vegetated Buffer Strip
TC-12 Retention/Irrigation	TC-32 Bioretention
TC-20 Wet Pond	TC-40 Media Filter
TC-22 Extended Detention Basin	TC-50 Water Quality Inlet

Construction MMPs

Construction MMPs are critical to the protection of Santa Rosa Creek Watershed. Describing these practices in detail is outside the scope of this plan, however a sample of important practices related directly to the protection of Santa Rosa Creek and its tributaries are listed below. The National Pollutant Discharge Elimination System (NPDES) sets requirements for construction projects that include 1 or more acres of soil disturbance that have the potential to generate polluted stormwater. Project sponsors have a legal requirement to protect waters of the State and they must implement appropriate practices, some of which are listed below. Other agencies have jurisdiction over projects that have the potential to impact sensitive resources and are listed in Section 7. The following practices (Table 16) also benefit species of concern by protecting sensitive habitats.

Table 16. Management measures and practices used to protect sensitive habitats duringconstruction projects. Source: Caltrans Storm Water Quality Handbooks, Construction Site BestManagement Practices Manual, March 1, 2003.

Temporary Soil Stabilization	Non-Storm Water Management
SS-1 Scheduling	NS-1 Water Conservation Practices
SS-2 Preservation of Existing Vegetation	NS-2 Dewatering Operations
SS-3 Hydraulic Mulch	NS-3 Paving and Grinding Operations
SS-4 Hydroseeding	NS-4 Temporary Stream Crossing
SS-5 Soil Binders	NS-5 Clear Water Diversion
SS-6 Straw Mulch	NS-6 Illicit Connection/Illegal Discharge
SS-7 Geotextiles, Plastic Covers & Erosion Control Blankets	NS-7 Potable Water/Irrigation
SS-8 Wood Mulching	NS-8 Vehicle and Equipment Cleaning
SS-9 Earth Dikes/Drainage Swales & Lined Ditches	NS-9 Vehicle and Equipment Fueling
SS-10 Outlet Protection/Velocity Dissipation Devices	NS-10 Vehicle and Equipment Maintenance
SS-11 Slope Drains	NS-11 Pile Driving Operations
SS-12 Streambank Stabilization	NS-12 Concrete Curing
Temporary Sediment Control	NS-13 Material and Equipment Use Over Water
SC-1 Silt Fence	NS-14 Concrete Finishing
SC-2 Sediment/Desilting Basin	NS-15 Structure Demolition/Removal Over/Adjacent to Water
SC-3 Sediment Trap	Waste Management and Materials Pollution Control
SC-4 Check Dam	WM-1 Material Delivery and Storage
SC-5 Fiber Rolls	WM-2 Material Use
SC-6 Gravel Bag Berm	WM-3 Stockpile Management
SC-7 Street Sweeping and Vacuuming	WM-4 Spill Prevention and Control
SC-8 Sandbag Barrier	WM-5 Solid Waste Management
SC-9 Straw Bale Barrier	WM-6 Hazardous Waste Management
SC-10 Storm Drain Inlet Protection	WM-7 Contaminated Soil Management
Wind Erosion Control	WM-8 Concrete Waste Management
WE-1 Wind Erosion Control	WM-9 Sanitary/Septic Waste Management
Tracking Control	WM-10 Liquid Waste Management
TC-1 Stabilized Construction Entrance/Exit	
TC-2 Stabilized Construction Roadway	
TC-3 Entrance/Outlet Tire Wash	

5.5. RECOMMENDED PRIORITIES AND RANKING SYSTEM

For the purposes of identifying priority properties for acquisition and restoration under this planning document, criteria were identified and a point system was developed. It is suggested the following method be considered when developing future conservation projects in the watershed:

For each of the eight criteria listed below assign a score for the given property. The total points will show how one property compares to another and will also provide a stand-alone ranking according to the criteria. A final tally of 20 points or greater indicates a high priority project area. A total of 15 to 19 points indicates good conservation value and a worthwhile project. A total of 10 to 14 points identifies low priority properties with some important resources. A total of less than 10 points indicates very low priority.

Steelhead Habitat

Properties that contain steelhead spawning and rearing habitat are high priorities for conservation in the Santa Rosa Creek Watershed. Properties that offer summer habitat when most of the tributaries are dry are very important. Properties that offer winter habitat and have the potential to provide habitat if barriers are altered or removed should also be a priority for conservation. Award five (5) points for properties containing summer habitat (when stream flows are lowest); award three (3) points for properties containing winter habitat (when stream flows are highest allowing the greatest potential for migration/passage); and, award one (1) point for properties that could potentially contain steelhead habitat (through removal of migration barriers, or through increased stream flows).

Presence of Listed Threatened or Endangered Species

Properties where threatened or endangered species are known to exist are priorities for conservation. Resources such as the California Natural Diversity Data Base (CNDDB) can be used to determine definitive presence, however, properties should be studied closely (site specific surveys, etc.) during project development to gather more information specific to that property. Award one (1) point per species thought to be present.

Persistent Baseflow

Protecting persistent baseflow in the creek or perennial springs draining to the creek is critical to maintaining summer flow; therefore properties that contain these features are high priorities for conservation. Award five (5) points to properties contributing persistent baseflow.

Stream Corridors

Properties that contain segments of stream corridors are a high priority for conservation as streams and riparian areas offer habitat to sensitive species, provide connectivity between other important habitats, and provide buffers that filter out pollutants such as nutrients and sediment. Properties were ranked based on the presence and number of distinct riparian stream corridors that begin or pass through that property. Award five (5) points to properties containing three or more distinct stream corridors; Award three (3) points for two stream corridors; and, award one (1) for one corridor. Aerial photography, USGS maps (blue line stream designations), and GIS data obtained from the County of San Luis Obispo were are all sources used to identify stream corridors.

Erosion Potential

Properties with high erosion potential can be considered the most fragile and most likely to contribute fine sediment to the system, thus having the highest potential to degrade steelhead habitat; therefore, such properties should be protected, and possibly restored. The RUSLE2 model described in detail in Chapter 4 of this plan should be used to assign points. Award five (5) points to properties where RUSLE2 predicted soil loss is between 4.1 and 5 tons per acre per year; four (4) points for 3.1-4 tons per acre per year; three (3) points for 2.1-3 tons per acre per year; two (2) points for 1.1-2 tons per acre per year; and, one (1) point for 0-1 ton per acre per year.

Monterey Pines

Properties in the lower watershed that support healthy stands of Monterey Pines are a conservation priority and should be awarded five (5) points for presence. Monterey Pine forest can be derived from aerial photography and GIS analysis included in this Conservation Plan.

Development Potential

Properties that are more easily developed based on zoning laws and general plans should be prioritized for the purposes of conservation. Ranches or farms with high priority resource values that contain numerous parcels and/or are not under the protection of the Williamson Act or Coastal Zone restrictions should have the highest priority. This score is based on a combination of several factors that are deemed indicators of development potential. Award three (3) points to properties comprised of 10 or more parcels; two (2) points for 6-9 parcels; one (1) point for 2-5 parcels. Award two (2) points to properties that lie entirely outside of the Coastal Zone, and one (1) point to properties that are partially within and partially outside of the Coastal Zone. Deduct two (2) points from properties that are entirely in the Williamson Act, and deduct one (1) point for those properties that are partially in Williamson Act and partially not. Assessor parcel data, Coastal Zone overlay information, and Williamson Act enrollment information can be obtained from the County of San Luis Obispo.

Connectivity with Existing Public and Private Conservation Land

Properties that contribute to a larger mosaic of public and private conservation lands, including Bureau of Land Management (BLM), US Forest Service, and existing conservation easements are a priority for conservation. Award five (5) points to properties with a connectivity component.

Other Potential Criteria

Other important features that could be considered include oak woodland diversity, scenic viewsheds/corridors, wildlife migration corridors, cultural archaeological features, soils, etc. These were not considered closely in this plan due to the limited availability of data. It is important to note that public agency funders such as the State Coastal Conservancy also consider the availability of public recreational access when evaluating potential acquisition proposals.

5.6. CONCLUSION

Land acquisition, active restoration, and on-the-ground management practices provide key tools necessary to protect the Santa Rosa Creek Watershed. Where willing landowners exist, comprehensive conservation and restoration of land and sensitive areas are a top priority for protecting steelhead, sensitive habitat, soils, perennial base flow, and Monterey pines. It is recommended that the information presented in this Conservation Plan and the associated appendices be utilized to identify priority projects for conservation and restoration. It is also recommended that, where possible, the practices identified above be implemented on lands under conservation protection and on properties where landowners are willing to undertake practices that help reduce soil loss, improve water quality, improve yields and production, and maintain watershed health and function. Projects that include land acquisition/conservation easements, restoration activities, and on-going management practices can be viewed as complete conservation, where protection, repair, and long term stewardship are all combined to provide sustainable conservation of sensitive habitats and important natural resources.

6. EXISTING DATA

Existing informative resources for the Santa Rosa Creek Watershed have been located and summarized into a reference table. Reports, articles, and websites that have information relating to the watershed were included in this table located in Appendix Q. There were 234 existing reports and other informative resources that were located for the Santa Rosa Creek Watershed. Resources are sorted by subject, including: agriculture, assessment, biology, forestry, geology, history, hydrology, land use, plan, regulation, restoration, soils, transportation, water quality, water rights, water treatment, water use, and wetlands.

GIS data including information applicable to Santa Rosa Creek Watershed background, fisheries, soils, erosion, and land use were acquired through different sources. Other GIS data were created by the consultant for this Conservation Plan. Any edits to existing data acquired through other sources were noted in a summary table. There were 85 GIS layers significant to the Santa Rosa Creek Watershed Conservation Plan. The GIS layers content and source information is described in Appendix G of this Conservation Plan.

7. STATUTORY FRAMEWORK

Working at a watershed level requires the collaboration of federal, state, and local agencies. Numerous political agencies and districts operate within the Santa Rosa Creek Watershed boundaries, and are described briefly below.

7.1. POLITICAL DISTRICTS

Congressional District

Congressional District 23

Boundary: Coastal California from the Monterey County line to Oxnard.

Representative: Congresswoman Lois Capps

Committees: Committee on Energy and Commerce, and Natural Resources Committee

Contact information:

Washington, D.C.

1110 Longworth House Office Building

Washington D.C. 20515

Phone: (202) 225-3601

San Luis Obispo

1411 Marsh Street, Suite 205

San Luis Obispo, CA 43401

Phone: (805) 546-8348

State Senate District

Senate District 15 Boundary: Coastal California stretching from Santa Cruz to Santa Maria

Representative: currently vacant

Assembly District

State Assembly District 33

Boundaries: Includes all of San Luis Obispo County and western Santa Barbara County from Santa Maria to Lompoc.

Representative: Assemblyman Sam Blakeslee

Committees: Budget, Rules, and Utilities and Commerce

Contact information: <u>Capitol Office</u> State Capitol, Room 4117 Sacramento, CA 95814 Phone: (916) 319-2033 <u>San Luis Obispo District Office</u> 1104 Palm Street San Luis Obispo, CA 93401 Phone: (805) 549-3400

7.2. FEDERAL REGULATORY AGENCIES

U.S. Army Corps of Engineers (USACE)

The Santa Rosa Creek Watershed is within the South Pacific Division of the Los Angeles District of the US Army Corps of Engineers (USACE). The Army Corps provides engineering services in water resources, environment, infrastructure, homeland security, and warfighting. Through their Civil Works program, they provide flood protection, coastal protection, navigable waters and ports, water supply, as well as recreational opportunities. They are also responsible for programs such as: Ecosystem Restoration, Environmental Stewardship, EPA Superfund, Abandoned Mine Lands, and Regulatory to list a few. USACE regulates discharge of dredge or fill material in coastal and inland waters and wetlands, construction and dredging in navigable waters, and the transport and disposal of dredged materials into ocean waters. USACE wetlandrelated regulatory mechanisms include:

- Clean Water Act, Section 404 (b)(1) Guideline
- Marine Protection, Research and Sanctuaries Act
- Endangered Species Act
- National Historic Preservation Act
- Coastal Zone Management Act
- National Environmental Policy Act
- Fish and Wildlife Coordination Act

Los Angeles District Regulatory Office: Ventura Field Office

2151 Alessandro Drive, Suite 110

Ventura, CA 93001

Phone: (805) 585-2140

U.S. Fish and Wildlife Service (USFWS)

Santa Rosa Creek Watershed is located in the Pacific Region (Region 1) of the USFWS. The USFWS conserves, protects, and enhances fish, wildlife, plants, and their habitats for the continuing benefit of the public. The USFWS consults with the USACE to assure permitted projects protect fish and wildlife, and assess potential impacts to restrict potentially harmful activities. They are also in charge of enforcing federal laws that protect wildlife, such as the Endangered Species Act.

Local Office: Ventura

Ventura Fish and Wildlife Office

2493 Portola Road, Suite B

Ventura, CA 93003

Phone: (805) 644-1766

National Oceanic and Atmospheric Administration (NOAA) Fisheries Service

Santa Rosa Creek Watershed is located within the Southwest Region of the NOAA Fisheries Service. NOAA Fisheries Service is a division of the Department of Commerce that promotes sustainable fisheries, recovery of protected species, and the health of coastal marine habitats in the United States. NOAA's National Marine Fisheries Service works with communities on fishery management issues and to prevent lost economic potential due to overfishing, declining species and degraded habitats. Like the USFWS, NOAA Fisheries Service also works with other federal agencies to see that projects permitted comply with various federal regulations regarding fisheries and protected species.

Local Office: Long Beach National Marine Fisheries Service 501 West Ocean Blvd. Long Beach, CA 90802-4213

Phone: (562) 980-4000

Monterey Bay National Marine Sanctuary (MBNMS)

The MBNMS is a federally protected marine area offshore of central California, stretching from Marin to Cambria. The MBNMS is one of 13 National Marine Sanctuaries and one marine national monument, administered by the National Oceanic and Atmospheric Administration. The MBNMS was created for natural resource protection, education, research, and public use of the sanctuary.

MBNMS San Simeon Office and Coastal Discovery Center:

750 Hearst Castle Road

San Simeon, CA 93452

Phone: (805) 927-2145

U.S. Environmental Protection Agency (USEPA)

Santa Rosa Creek Watershed is located in the Pacific Southwest, Region 9, of the USEPA. EPA is primarily responsible for protecting human health and safeguarding the natural environment in the United States. They regulate environmental hazards, such as air and water pollution, solid waste disposal, radiation and pesticides. The EPA also coordinates and supports research and pollution mitigation activities.

Headquarters Office:

US EPA Region 9

75 Hawthorne Street

San Francisco, CA 94105

Phone: (866) EPA WEST

7.3. STATE REGULATORY AGENCIES

California Department of Fish and Game (CDFG)

The Santa Rosa Creek Watershed lies within the CDFG's Region 4, Central Region, serving Fresno, Kern, Kings, Madera, Mariposa, Merced, Monterey, San Benito, San Luis Obispo, Stanislaus, Tulare and Tuolumne counties. The local regional office is in Yountville, Ca, but local CDFG employees have satellite offices in San Luis Obispo.

The CDFG conserves, protects, and manages the state's fish, wildlife, and native plant resources. Projects that impact a river, stream, or lake must be regulated by CDFG. If the Department determines the project may alter fish and wildlife resources, then a Lake or Streambed Alteration Agreement is required. The principal enforcement mechanism for CDFG is the California Fish and Game Code, Section 1600.

Central Region Headquarters Office:

1234 E. Shaw Avenue

Fresno, CA 93710

Phone: (559) 243-4005 ext. 151

Regional Water Quality Control Board (Regional Boards)

The State Water Resources Control Board has nine Regional Boards designed to develop and enforce water quality objectives. The Santa Rosa Creek Watershed lies within the Central Coast Region (3) of the Regional Board. Regional Board develop "basin plans" for their hydrologic area, monitor water quality, govern requirements, issue waste discharge permits, and identify and take enforcement action against violators.

Their principle regulatory mechanism comes from the federal Clean Water Act (CWA), which is driven in California by the Porter-Cologne Water Quality Control ct of 1970. As part of their responsibilities, the RWQCB maintains the State's 303(d) list of impaired water bodies, which require the Regional Board to prepare studies and remediation plans to bring water bodies water quality to the state's standards. In addition, the RWQCB works with the Army Corps of Engineers to issue compliance documents for Section 401 of the CWA.

Regional Office: Central Coast Region (3) 895 Aerovista Place, Suite 101 San Luis Obispo, CA 93401 Phone: (805) 549-3147

California Coastal Commission

The Santa Rosa Creek Watershed is within the Central Coast District Office of the California Coastal Commission, which includes Santa Cruz, Monterey, and San Luis Obispo Counties. The Coastal Commission regulates land and water use within the coastal zone. The Coastal Commission also permits activities such as building construction, land divisions, and other acts that change public access or the intensity of land use. The Coastal Commission regulates under the Coastal Act, which includes specific policies that address shoreline public access and recreation, visitor accommodations, protection of terrestrial and marine habitat, visual resources, alteration of landform, agricultural lands, commercial fisheries, industrial uses, water quality, development of offshore oil and gas, transportation, power plants, ports, public works, and development design.

District Office:

725 Front Street, Suite 300

Santa Cruz, CA 9060-4508

Phone: (831) 427-4877

7.4. NON-REGULATORY AGENCIES

Natural Resources Conservation Service (NRCS)

The NRCS assists landowners with conservation planning that benefits soil, water, air, plants, and animals, resulting in healthy ecosystems and productive lands. NRCS works locally, positioned in USDA Service Centers in nearly every county in the nation.

Local Service Center: Templeton Service Center 65 South Main St., Ste. 106 Templeton, CA 93465-8703 Phone: (805) 434-0396

Resources Conservation District (RCD)

There are several Resource Conservation Districts in California. They are locally governed agencies established under the county's Local Agency Formation Committee (LAFCO). The RCD provides soil and water conservation information and assistance to private landowners, such as farmers and ranchers. They are also a growing component of conservation efforts,

participating in watershed outreach and planning organizations, as well as implementing projects on private and public lands.

Upper Salinas-Las Tablas Resources Conservation District

65 South Main St., Ste. 107

Templeton, CA 93465

Phone: (805) 434-0396 ext. 5

San Luis Obispo County Farm Bureau

The San Luis Obispo Farm Bureau preserves farm land and increases agricultural awareness throughout the county. North Coast Farm Center is the district representing Cambria farmers.

651 Tank Farm Road San Luis Obispo, CA 93401

(805) 543-3654

Land Conservancy of San Luis Obispo County

The Land Conservancy works to permanently protect and enhance lands that have valuable scenic, agricultural, habitat and cultural resources for both people and wildlife. Their goal is to help prevent poorly planned development, protect drinking water sources, restore wildlife habitat, and promote family farmlands and ranches.

Physical Address:
547 Marsh St.
San Luis Obispo, CA 93401
Mailing Address:
P.O. Box 12206
San Luis Obispo, CA 93406
(805) 544-9096

Greenspace The Cambria Land Trust

Greenspace is dedicated to the preservation and enhancement of the North Coast of San Luis Obispo County's natural environment. Greenspace activities include creating pocket parks, preserving cultural resources, open space protection, managing protected lands, stream restoration, increasing public awareness, and environmental/wildlife advocacy.

Physical Address:

4251 Bridge St., Suite B

Cambria, CA 93428

Mailing Address: P.O. Box 1505 Cambria, CA 93428 (805) 927-2866

Central Coast Salmon Enhancement (CCSE)

The CCSE is dedicated to the enhancement and restoration of the Central Coast salmon fishery and local creeks. CCSE is also devoted to educating the community on the ecology and economy of these resources.

229 Stanley Ave.

Arroyo Grande, CA 933420

(805) 473-8221

7.5. LOCAL GOVERNMENT

County of San Luis Obispo Planning and Building

The County of San Luis Obispo Planning and Building Department provides public resources for county-wide planning and development. The Planning and Building Department provides land use and development permits, building permits, code enforcement, zoning and maps, long-range community planning and other services.

Office:

Department of Planning and Building

County Government Center

San Luis Obispo, CA 93408

Phone: (805) 781-5600

Cambria Community Services District

The Cambria Community Services District provides water, wastewater, fire protection, trash collection and other services to its customers.

Location: 1316 Tamson Drive Cambria, CA 93428

Mailing: P.O. Box 65 Cambria, CA 93428

Phone: 805-927-6223 Fax: 805-927-5584

8. REFERENCES

- Adams, Carole (1986). *Guide to Historic Cambria*. 1986. Cambria, California: Vulture Vista Publications.
- Alabaster, J.S. (1962). The effect of heated effluents on fish. Int. J. Air Water Poll. 7:541-563. (Cited by Kubicek and Price 1976).
- Alley, D.W. (1993b). Passage requirements for Steelhead in Santa Rosa Creek, San Luis Obispo County, California, 1993. Prepared by D.W. ALLEY & Associates for Cambria CSD.
- Alley, D.W. (2006a). Trends in Juvenile Steelhead Production in 1994-2005 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.
- Alley, D.W. (2006b). Monitoring Results for Lower San Simeon and Santa Rosa Creeks, 2004-2005: Lagoon Water Quality, Fishery Resources and Inflow Near Cambria, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.
- Alley, D.W. (2007a). Trends in Juvenile Steelhead Production in 1994-2006 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.
- Alley, D.W. & Associates (2008). Santa Rosa Creek Fishery Summary, Habitat Conditions, Watershed Management Guidelines, and Enhancement Goals. Prepared for the Land Conservancy of San Luis Obispo.
- Alley, D.W. (2008a). 2007 Juvenile Steelhead Distribution and Population Estimate for the San Luis Obispo Creek Watershed, San Luis Obispo County, California.
- Alley, D.W. (2008b). 2007 Juvenile Steelhead Densities in the San Lorenzo, Soquel, Aptos, and Corralitos Watersheds, Santa Cruz County, California. Prepared by D.W. ALLEY & Associates for the Santa Cruz County Environmental Health Department.
- Alley, D.W. (2008c). Soquel Creek Lagoon Monitoring Report, 2007. Prepared by D.W. ALLEY& Associates for the City of Capitola.
- Bailey, R. (1973). An Estimate of Standing Crop of Steelhead Trout, Santa Rosa Creek, San Luis Obispo County, California. Natural Resources Management Department, California Polytechnic State University, San Luis Obispo. 23pp.
- Bond, Morgan H. (2006). The importance of estuarine rearing to central California steelhead (*Oncorhynchus mykiss*) growth and marine survival. Master's Thesis. University of California, Santa Cruz.
- Brady, N. & Weil, R. (2004). *Elements of the Nature and Properties of Soils, Second Edition*. Upper Saddle River, New Jersey: Pearson Education, Inc..
- California Department of Fish and Game. BIOS Public Viewer v 4.18. California Fish Passage Assessment Database (May, 2009). Retrieved October 3, 2009. Website: http://imaps.dfg.ca.gov/viewers/biospublic/app.asp?zoomtobookmark=1562.

- California Department of Fish and Game. California Fish Passage Assessment Database Project (2006). Retrieved September 30, 2009, Web site: http://ccows.csumb.edu/scdp/data.htm.
- California Invasive Plant Council, California Invasive Plant Inventory Database. Retrieved March 1, 2008, Web site: http://www.cal-ipc.org/ip/inventory/index.php.
- California Natural Diversity Data Base, California Department of Fish and Game rarefind output for Cambria and Cypress Mountain 7.5 minute quadrangles. Retrieved March 1, 2008, Web site: http://www.dfg.ca.gov/biogeodata/cnddb/plants_and_animals.asp.
- California Native Plant Society, California Native Plant Society online inventory of rare and endangered plants. Species output for Cambria and Cypress Mountain 7.5 minute quadrangles. Retrieved March 1, 2008, Web site: http://cnps.web.aplus.net/cgibin/inv/inventory.cgi.
- Cambria Community Services District. Cambria Community Services District Code. Retrieved August 23, 2009. http://municipalcodes.lexisnexis.com/codes/cambria/
- Cambria Community Services District. (2008). Water Master Plan, Program Environmental Impact Report. Retrieved August 23, 2009. http://www.cambriacsd.org/cm/water_wastewater/Water%20Master%20Plan.html
- Cambria Community Services District. (2010). Water Production by Source. Retrieved August 19, 2010. http://www.cambriacsd.org/cm/water_wastewater/well-levels.html
- Cambria Forest Committee. (2002). Cambria Forest Management Plan.
- Charlon, N., Barbier, B., Bonnet, L. (1970). Resistance de la truite arc-en-ciel (*Salmo gairdneri* Richardson) a des variations brusques de temperature. Ann. Hydrobiol. 1:73-89. (Cited by Kubicek and Price 1976).
- Chipping, David (1987). *The Geology of San Luis Obispo County*. San Luis Obispo, California: California Polytechnic State University.
- Coffman, Taylor (1995). *The Cambria Forest: Reflections of its Native Pines and Eventful Past.* Cambria, California: Coastal Heritage Press.
- County of San Luis Obispo. (2003). Adelaida Inland Area Plan.
- County of San Luis Obispo. (2006). Cambria and San Simeon Acres Community Plans of the North Coast Area Plan.
- County of San Luis Obispo. (2007). North Coast Area Plan.
- County of San Luis Obispo. (2009a). San Luis Obispo County Vegetation Mapping Report, Photo Interpretive and Mapping Guidelines.
- County of San Luis Obispo. (2009b). Fiscalini Ranch Preserve EIR.
- Davis, L. (1995). Age Determination of Steelhead Trout (Oncorhynchus mykiss) in Microhabitats of a Small Central California Coastal Stream, Using Otolith Microstructural Analysis. Master's Thesis. San Jose State University.
- Dixon, J. & Schulze, D. (Ed.). (2002). *Soil Mineralogy with Environmental Applications*. Soil Society of America Publications, Number 7. Soil Society of America, Inc..

- EERI. (2004). Preliminary Observations on the December 22, 2003, San Simeon Earthquake.
- Flosi, Gary, et al. (1998). *California Salmonid Stream Habitat Restoration Manual, Volume II*. State of California The Resource Agency California Department of Fish and Game Native Anadromous Fish and Watershed Branch.
- Forester, George (2004). Draft User Reference Guide, Revised Universal Soil Loss Equation, Version 2, RUSLE2.
- George, M. & Jolley, L. (1995). Fact Sheet No. 9: Rangeland Watershed Program, UC Cooperative Extension and USDA Natural Resources Conservation Service. California Rangelands Research and Information Center, Agronomy and Range Science, UC Davis, CA.
- Geospatial Data Gateway. Retrieved February 1, 2008, Web site: http://datagateway.nrcs.usda.gov/.
- Gibson, Robert (2003). Inventory and Assessment of Historic Properties for the Santa Rosa Creek Trail Project, Cambria Community Services District, Cambria, San Luis Obispo County, CA.
- Hall, C.A. (1974). Geologic Map of the Cambria Region, San Luis Obispo County, California, USGS Miscellaneous Field Studies Map MF-599.
- Hall, C.A. and others (1979). Geologic Map of the San Luis Obispo-San Simeon Region, California, USGS Miscellaneous Investigations Series, Map I-1097.
- Hall, Clarence (2007). *Introduction to the Geology of Southern California and its Native Plants*. Berkley and Los Angeles, California: University of California Press.
- Hall, J.D., Lantz, R.L. (1969). Effects of logging on the habitat of coho salmon and cutthroat trout in coastal streams. Pages 355-375. In: Institute of Fisheries, Univ. of British Columbia, Vancouver, British Columbia, Canada. (Cited in Bratovich and Kelley 1988).
- Hamilton, Geneva (1999). Where the Highway Ends: A History of Cambria, San Simeon and the Ranchos. San Luis Obispo, California: Central Coast Press.
- Hayes, S.A. et al (2008). Steelhead growth in a small central California watershed; upstream and estuarine patterns. Trans. Amer. Fish Soc. 137:114-128.
- Hickman, Ed (1993). *The Jepson Manual: Higher Plants of California*. Berkley, California: University of California Press.
- Holland, V.L. & Keil, D.J. (1995). *California Vegetation*. Dubuque: Kendall/Hunt Publishing Company.
- Kruckeberg, Arthur (1984). California Serpentines: Flora, Vegetation, Geology, Soils, and Management Problems. University of California Publications in Botany, Volume 78. Berkley and Los Angeles, California: University of California Press.
- McAfee, W.R. (1966). Rainbow trout. In: Inland Fisheries Management. A. Calhoun (ed.). California Department of Fish and Game. 546 pp. (Cited by Kubicek and Price 1976).

- Murphy, M.L. and Hall, J.D. (1981). Varied effects of clear-cut logging on predators and their habitat in small streams of the Cascade Mountains, OR. Canadian Journal of Fisheries and Aquatic Sciences 38:137-145. (Cited in Reid and Hilton 1998).
- Naiman, R.J. and Sedell, J.R. (1979). Relationships between metabolic parameters and stream order in Oregon. Canadian Journal of Fisheries and Aquatic Sciences 37:834-847. (Cited in Reid and Hilton 1998).
- Nelson, Jennifer. (1994). Summary of Steelhead Population and Habitat Sampling in Santa Rosa Creek, San Luis Obispo County, 1993.
- Office of Historic Preservation. Retrieved March 1, 2008, Website: http://ohp.parks.ca.gov/listed_resources/.
- Palou, Francisco (Ed.). (1984). *Captain Portola in San Luis Obispo County in 1769*. Morro Bay, California: Tabula Rasa Press.
- Parker and Associates Archeological Research. 12,000 years of cultural change along the central coast. Retrieved February 20, 2008, Web site: http://www.tcsn.net/sloarcheology.
- Reid, L.M. and Hilton, S. (1998). Buffering the buffer. USDA Forest Service Gen. Tech. Rep. PSW-GTR-168.
- Rigley, Colin. "Mercury rising." New Times 23 (2009): Cover Story. Print.
- Ritter, D., Kochel, C., & Miller, J. (2002). *Process Geomorphology, Fourth Edition*. New York: McGaw Hill.
- SLO Datafinder. Retrieved February 1, 2008, Web site: http://lib.calpoly.edu:8080/gis/.
- San Luis Obispo County Department of Agriculture, Weights and Measures. (2006). 2006 Annual Report.
- Sawyer, J. & Keeler-Wolf, T. (1995). *A Manual of California Vegetation*. United States of America: California Native Plant Society.
- Serafini, David (2000). Embankment Failure Investigation of California Highway 46 at Post Mile 4.15. Senior Project Presented to the Faculty of California State Polytechnic State University, San Luis Obispo.
- Shapovalov, L. and Taft, A. (1954). The Life Histories of Steelhead, Rainbow Trout and Silver Salmon. California Department of Fish and Game. Fish Bulletin No. 98. 375 pp.
- Smith, J.J. (1982b). Fish Habitat Assessments for Santa Cruz County Streams. Prepared for Santa Cruz County Planning Department.
- Smith, J.J. (1984). Liddell Creek and San Vicente/Mill Creek Watershed Studies. Report prepared for Lonestar Industries by Harvey and Stanley Associates. Project #67-02.
- Smith, J.J. (1990). The Effects of Sanbar Formation and Inflows on Aquatic Habitat and Fish Utilization in Pescadero, San Gregorio, Waddell and Pomponio Creek Estuary/Lagoon Systems, 1985-1989.

- Smith, J.J. (2000). Appendix A. Habitat consequences of large wood input in 1998 on Scott, Waddell and Gazos Creeks. In: Site Stability and habitat assessment following high flows in water year 2000, and habitat restoration recommendations for Gazos Creek, San Mateo County. Prepared for the County of San Mateo Department of Public Works by Entrix Inc.
- Smith, J.J. and Li, H.W. (1983). Energetic factors influencing foraging tactics of juvenile steelhead trout (*Salmo gairdneri*) D.L.G. Noakes et al. (4 editors). In: *The Predators and Prey in Fishes*. Dr. W. Junk publishers, The Hague. pages 173-180.
- Soil Science Society of America Glossary of Science Terms. Retrieved August 6, 2008. Web site: https://www.soils.org/sssagloss/index.php.
- State of California, The Resources Agency, Department of Fish and Game, Biogeographic Data Branch, California Natural Diversity Data Base, Special Animals (865 Animals). Retrieved February 21, 2008, Web site: http://www.dfg.ca.gov/biogeodata/cnddb/pdfs/SPAnimals.pdf.
- Swift, et al. (1989). Biology and Distribution of the Tidewater Goby, *Eucyclogobius Newberryi* (Pisces: Gobiidae) of California. Contributions to Science. No. 404. pages 1-19. Natural History Museum of Los Angeles County.
- Theurer, F.D., Lines, I., and Nelson, T. (1985). Interaction between riparian vegetation, water temperature and salmonid habitat in the Tucannon River. Water Resources Bulletin 21(1):53-64. (Cited in Reid and Hilton 1998).
- USDA, Agricultural Research Service, Revised Universal Soil Loss Equation 2-How RUSLE2 Computes Rill and Interrill Erosion, Retrieved May 1, 2008, Web site: http://www.ars.usda.gov/Research/docs.htm?docid=6014&pf=1&cg_id=0.
- USDA, Natural Resources Conservation Service (1999). Cambria Erosion and Sediment Study, Lodge Hill Study Area, Cambria, California.
- USDA, Soil Conservation Service (1984). Soil Survey of San Luis Obispo County, California, Coastal Part.
- USDA, Soil Conservation Service (1977). Soil Survey of San Luis Obispo County, California, Paso Robles Area.
- U.S. Department of Commerce, Economic and Statistics Division, U.S. Census Bureau. (2002). California: 2000, Summary Population and Housing Characteristics, PHC 1-6.
- U.S. Department of Commerce, Economic and Statistics Division, U.S. Census Bureau. (2003). California: 2000, Summary Social, Economic, and Housing Characteristics, PHC 2-6.
- US Geologic Service (1994). 7.5 minute series quadrangles for Cambria and Cypress Mountain.
- Weather Channel Monthly Averages for Cambria, CA. Retrieved on August 20, 2010, Web site: http://www.weather.com/weather/wxclimatology/monthly/graph/USCA0161?role=.
- Wetlands Online Mapper. Retrieved data February 1, 2008, Web site: http://wetlandsfws.er.usgs.gov/wtlnds/launch.html.

- Yates, E. & Van Konyenburg, M. (1998). Hydrogeology, Water Quality, Water Budgets, and Simulated Responses to Hydrologic Changes in Santa Rosa and San Simeon Creek Ground-Water Basins, San Luis Obispo County, California. US Geological Survey Water Resources Investigations Report 98-4061.
- Zimmerman, R.C., Goodlett, J.C., and Comer, G.H. (1967). The influence of vegetation on channel form of small streams. International Association of Hydrological Sciences Publication 75:255-275. (Cited in Reid and Hilton 1998).

9. GLOSSARY

9.1. GEOLOGY TERMINOLOGY¹

<u>alluvium</u> – general term for clay, silt, sand, gravel, or similar unconsolidated detrital material deposited during comparatively recent geologic time by a stream or other body of running water as a sorted or semisorted sediment in the bed of the stream or on its flood plain or delta, or as a cone or fan at the base of a mountain slope.

basalt – a general term for dark-colored igneous rocks.

igneous – said of a rock or mineral that solidified from molten or partly molten material.

interbedded – beds lying between or alternating with others of different character.

<u>mélange</u> – a mappable body of rock characterized by the inclusion of fragments and blocks of all sizes embedded in a fragmented and generally sheared matrix of more tractable material.

<u>metamorphic</u> – any rock derived from pre-existing rocks by mineralological, chemical, and/or structural changes, essentially in the solid state.

metavolcanic – volcanic rock that has been metamorphosed.

<u>sediment</u> – solid fragmental material that originates from weathering of rocks and is transported or deposited by air, water, or ice.

<u>sedimentary</u> – a rock resulting from the consolidation of loose sediment that has accumulated in layers.

<u>stream terrace</u> – one of a series of level surfaces in a stream valley, flanking and more or less parallel to the stram channel, originally occurring at or below, but now above, the level of the stream, and representing the dissected remnants of an abandoned flood plain, stream bed, or valley floor produced during a former stage of erosion or deposition.

<u>subduction zone</u> – A long, narrow belt in which subduction takes place (subduction is the process of one lithospheric plate descending beneath another).

<u>ultramafic</u> – igneous rock composed chiefly of mafic minerals (ferromagnesium, dark-colored minerals).

9.2. SOILS TERMINOLOGY²

<u>Available water capacity</u> - the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in centimeters of water per centimeter of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water.

¹ Bates R. & Jackson J. (Ed) (1980). *Glossary of Geology*. Second Edition. Falls Church, Virginia: American Geological Institute.

² Soil Data Explorer, Soil Properties and Qualities. Retrieved on May 7, 2008. Web site: http://websoilsurvey.nrcs.usda.gov/app/

The most important properties are the content of organic matter, soil texture, bulk density, and soil structure, with corrections for salinity and rock fragments. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. It is not an estimate of the quantity of water actually available to plants at any given time.

<u>Associations</u> - soils composed of more than one dissimilar soil occurring in a repeated pattern, with the amount of each soil varying from one location to another.

<u>Complexes</u> - soils composed of more than one dissimilar soil occurring in a repeated pattern, with the amount of each soil varying from one location to another.

Consociations - have one soil name and are labeled for their dominant soil type.

<u>Erodibility of total soil (Kw)</u> - erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water. "Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

<u>Farmland</u>- identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.

<u>Irrigated Capability Class</u> - shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations that show suitability and limitations of groups of soils for rangeland, for woodland, and for engineering purposes.

In the capability system, soils are generally grouped at three levels -- capability class, subclass, and unit.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have few limitations that restrict their use.

Class 2 soils have moderate limitations that reduce the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that reduce the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that reduce the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

<u>Irrigated Capability Subclass</u> - soil groups within one capability class. They are designated by adding a small letter, "e," "w," "s," or "c," to the class numeral, for example, 2e. The letter "e" shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; "w" shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); "s" shows that the soil is limited mainly because it is shallow, droughty, or stony; and "c," used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by "w," "s," or "c" because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, forestland, wildlife habitat, or recreation.

<u>Shrink-swell</u> - the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change. For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

<u>Undifferentiated groups</u> - soils that are composed of more than one soil as well however the soils are not consistently associated geographically and may not always occur together in the same location. Soils found within the same "undifferentiated group" are mapped together because they have common features and have similar land uses and land management. These soils are distinguished by the use of the word "and" between the two component soil names in the soil map unit.

9.3. GIS TERMINOLOGY³

<u>3D Analyst</u> – an ArcView extension that enables surface modeling.

³GIS Dictionary. Retrieved on May 7, 2008. Web site:

http://support.esri.com/index.cfm?fa=knowledgebase.gisDictionary.gateway.

<u>ArcCatalog</u> – ArcGIS application that allows you to view, organize, distribute, manage, and document GIS data.

<u>attribute table</u> - A database or tabular file containing information about a set of geographic features, usually arranged so that each row represents a feature and each column represents one feature attribute. In raster datasets, each row of an attribute table corresponds to a certain zone of cells having the same value. In a GIS, attribute tables are often joined or related to spatial data layers, and the attribute values they contain can be used to find, query, and symbolize features or raster cells.

<u>clip</u> - A command that extracts features from one feature class that reside entirely within a boundary defined by features in another feature class.

feature - A representation of a real-world object on a map.

field - A column in a table that stores the values for a single attribute.

<u>layer</u> - The visual representation of a geographic dataset in any digital map environment. Conceptually, a layer is a slice or stratum of the geographic reality in a particular area, and is more or less equivalent to a legend item on a paper map. On a road map, for example, roads, national parks, political boundaries, and rivers might be considered different layers.

<u>line</u> - On a map, a shape defined by a connected series of unique x,y coordinate pairs. A line may be straight or curved.

point - A geometric element defined by a pair of x,y coordinates.

<u>polygon</u> - On a map, a closed shape defined by a connected sequence of x,y coordinate pairs, where the first and last coordinate pair are the same and all other pairs are unique.

shapefile - A vector data storage format for storing the location, shape, and attributes of geographic features. A shapefile is stored in a set of related files and contains one feature class.

APPENDIX A

SPECIAL STATUS VEGETATIVE SPECIES LOCATED IN THE SANTA ROSA CREEK WATERSHED

List produced from California Department of Fish and Game's California Natural Diversity Data Base and California Native Plant Society Inventory of Rare and Endangered Plants SPECIAL STATUS VEGETATION SPECIES LOCATED IN THE SANTA ROSA CREEK WATERSHED

			I		1			
SCIENTIFIC NAME	COMMON NAME	FAMILY	LIFE FORM	CNPS LIST	SRANK GRANK		STATE STAT FED STAT	FED STAT
Arctostaphylos cruzensis	Arroyo de la Cruz manzanita	Ericaceae	perennial evergreen shrub	List 1B.2	S2.2	G2	None	None
Arctostaphylos luciana	Santa Lucia manzanita	Ericaceae	perennial evergreen shrub	List 1B.2	S2.2	G2	None	None
Arctostaphylos pechoensis	Pecho manzanita	Ericaceae	perennial evergreen shrub	List 1B.2	S2.2	G2	None	None
Arctostaphylos pilosula	Santa Margarita manzanita	Ericaceae	perennial evergreen shrub	List 1B.2	S2.2	G2	None	None
Arctostaphylos wellsii	Wells' manzanita	Ericaceae	perennial evergreen shrub	List 1B.1	S2.1?	G2	None	None
Calystegia subacaulis ssp. episcopalis	Cambria morning-glory	Convolvulaceae	perennial rhizomatous herb	List 1B.2	S1.2	G3T1	None	None
Castilleja densiflora ssp. obispoensis	San Luis Obispo owl's- clover	Scrophulariaceae	annual herb	List 1B.2	S2.2	G5T2	None	None
Cirsium fontinale var. obispoense	San Luis Obispo fountain thistle	Asteraceae	perennial herb	List 1B.2	S1.2	G2T1	Endangered	Endangered
Cirsium occidentale var. compactum	compact cobwebby thistle	Asteraceae	perennial herb	List 1B.2	S2.1	G3G4T2	None	None
Delphinium umbraculorum	umbrella larkspur	Ranunculaceae	perennial herb	List 1B.3	S2S3.3	G2G3	None	None
Eryngium aristulatum var. hooveri	Hoover's button-celery	Apiaceae	perennial herb	List 1B.1	S2.1	G5T2	None	None
Galium californicum ssp. luciense	Cone Peak bedstraw	Rubiaceae	perennial herb	List 1B.3	S2.3	G5T2	None	None
Galium hardhamiae	Hardham's bedstraw	Rubiaceae	perennial herb	List 1B.3	S2.3	G2	None	None
Horkelia cuneata ssp. sericea	Kellogg's horkelia	Rosaceae	perennial herb	List 1B.1	S1.1	G4T1	None	None
Malacothamnus palmeri var. involucratus	Carmel Valley bush- mallow	Malvaceae	perennial deciduous shrub	List 1B.2	S2.2	G3T2Q	None	None
Malacothamnus palmeri var. palmeri	Santa Lucia bush-mallow Malvaceae		perennial deciduous shrub	List 1B.2	S2.2	G3T2Q	None	None
Microseris paludosa	marsh microseris	Asteraceae	perennial herb	List 1B.2	S2.2	G2	None	None
Pinus radiata	Monterey pine	Pinaceae	perennial evergreen tree	List 1B.1	S1.1	GI	None	None
Streptanthus albidus ssp. peramoenus	most beautiful jewel- flower	Brassicaceae	annual to perennial herb	List 1B.2	S2.2	G2T2	None	None
Triteleia ixioides ssp. cookii	Cook's triteleia	Liliaceae	perennial bulbiferous herb	List 1B.3	S2.3	G5T2	one	None
Species list created using California Natural Diversity Data Base (CNDDB) (2009) and California Native Plant Society's (CNPS) Inventory of Rare and Endangered Plants online database (2008).	t Base (CNDDB) (2009) and Cal	lifornia Native Plant Soci	ety's (CNPS) Inventory of Rare	and Endangered	Plants online	e database (200	8).	

.(be	LIFE FORM	perennial herb
nd possibly extirpate	FAMILY	Asteraceae
s uncertain (or uncertain a	COMMON NAME	San Francisco gumplant
The following plant was listed on CNPS Inventory as	SCIENTIFIC NAME	Grindelia hirsutula var. maritima

CNPS LIST SRANK GRANK STATE STAT FED STAT

None

None

G5T2

S2.1

List 1B.2

NS <u>Society</u> , threatened, or endangered in California and elsewhere.	ions and Meaning in California Zalifornia n California	State Rank (SRANK) The state rank (S-rank) is assigned much the same way as the global rank, except state ranks in California often also contain a threat designation attached to the S-rank.	t less than 1,000 individuals OR less than 2,000 acres known	-3,000 individuals OR 2,000-10,000 acres known -10,000 individuals OR 10,000-50,000 acres known	Global Rank (GRANK) The global rank (G-rank) is a reflection of the overall condition of an element throughout its global range.	Species or Community Level GI = Less than 6 viable ekement occurrences (EOs) OR less than 1.000 individuals OR less than 2.000 acres. G2 = 6-20 SO R 1.100-300 individuals OR 2.000-10000 acres. G3 = 2.136 DES OR 3.000-10.000 individuals OR 10.006-50.000 acres. G4 = Apparently secure; this rank is clearly lower than G3 but factors exist to cause some concern; i.e., there is some threat, or somewhat narrow habitat. G5 = Population or stand demonstrably secure to ineradicable due to being commonly found in the world.	
STATUS DESCRIPTIONS California Native Plant Society List 1B- Plants listed rare, threatened, or endanger	New Threat Code Extensions and Meaning 1 - Seriously endangered in California 2 - fairly endangered in California 3 - not very endangered in California	State Rank (SRANK) The state rank (S-rank) is assigned much the same	 S1 = Less than 6 EOs OR less than 1,000 individ. S1.1 = very threatened S1.2 = threatened S1.3 = no current threats known 	 S2 = 6-20 EOs OR 1,000-3,000 individuals OR 2,000-10,000 acres S2.1 = very threatened S2.2 = threatened S2.3 = no current threats known S3 = 21-80 EOs or 3,000-10,000 individuals OR 10,000-50,000 acres S3.1 = very threatened S3.2 = threatened S3.3 = no current threats known 	Global Rank (GRANK) The global rank (G-rank) is a reflection of the ove	Species or Community Level G1 = Less than 6 viable element occurrences (EOs) OR less than 1,000 in G1 = Less than 6 viable element occurrences (EOs) OR less arcs. G2 = 6-20 EOS OR 1,000-5,000 arcs. G3 = 21-80 EOS OR 1,000-5,000 arcs. G3 = Apparently secure; this rank is clearly lower than G3 but factors exi G5 = Population or stand demonstrably secure to ineradicable due to beir	Subspecies Level

Subspecies receive a T-rank attached to the G-rank. With the subspecies, the G-rank reflects the condition of the entire species, whereas the T-rank reflects the gobdal situation of just the subspecies or variety. For example: *Chorizanthe robusta* var. *hartweigi*. This plant is ranked G2TI. The G-rank reflects the whole species range i.e., *Chorizanthe robusta*. The T-rank reflects only to the global condition of var. *hartweigi*.

APPENDIX B

NON-NATIVE INVASIVE PLANT SPECIES LOCATED IN THE CALIFORNIA FLORISTIC PROVINCE, CENTRAL WEST

List produced from California Invasive Plant Council (Cal-IPC) California Invasive Plant Inventory Database

ML WEST	
, CENTR/	MMENTS
VINCE	AND CC
STIC PRC	ALERT HABITATS OF CONCERN AND COMMENTS
IA FLORI	BITATS OF
NLIFORN	VLERT HA
N THE CA	
OCATED I	RA
ANT SPECIES L	DN NAME
SIVE PLA	COMM
NON-NATIVE INVASIVE PLANT SPECIES LOCATED IN THE CALIFORNIA FLORISTIC PROVINCE, CENTRAL WEST	VAME
NO	FICN

SCIENTIFIC NAME	COMMON NAME	RATING	ALERT	ALERT HABITATS OF CONCERN AND COMMENTS CFMP
Acacia dealbata	silver wattle	Moderate	No	Coastal prairie, riparian woodland, riparian forest, North Coast confiferous forest, closed cone confiferous forest.
Acacia melanoxylon	black acacia, blackwood acacia	Limited	No	Coniferous forest, chaparral, woodland, riparian. Impacts are low in most areas.
Acacia paradoxa	kangaroothorn	Eval No List	No	Does not spread in wildlands.
Acroptilon repens	Russian knapweed	Moderate	No	Scrub, grasslands, riparian, pinyon-juniper woodland, forest. Severe impacts in other western states. Spreading in many areas of CA.
Aegilops triuncialis	barb goatgrass	High	No	Grassland, oak woodland; spreading in NW and in Central Valley.
Ageratina adenophora	croftonweed, eupatorium	Moderate	No	Coastal canyons, scrub, slopes. Very invasive in Australia, limited information and distribution in CA.
Agrostis avenacea	Pacific bentgrass	Limited	No	Vernal pools, coastal prairie, meadows, grasslands. Impacts are low in most areas.
Agrostis stolonifera	creeping bentgrass	Limited	No	Wetlands, riparian; grown for domestic forage. Limited distribution and impacts unknown.
Ailanthus altissima	tree-of-heaven	Moderate	No	Riparian areas, grasslands, oak woodland. Impacts highest in riparian areas.
Aira caryophyllea	silver hairgrass	Eval No List	No	Widespread in grasslands, but impacts appear negligible.
Albizia lophantha	plume acacia	Eval No List	No	Present in Golden Gate National Recreation Area. Need more information.
Allium triquetrum	three-cornered leek	Eval No List	No	Impacts unknown.
Ammophila arenaria	European beachgrass	High	No	Coastal dunes
Anthemis cotula	mayweed chamomile, dog fennel	Eval No List	No	Abiotic and wildife impacts unknown
Anthoxanthum odoratum	sweet vernalgrass	Moderate	No	Coastal prairie, coniferous forest. Little information available on limpacts and limited ecological range.
Arctotheca calendula (fertile)	fertile capeweed	Moderate	Alert	Coastal prairie: can produce seed. Important agricultural weed in Australia, but limited distribution in CA.
Arctotheca calendula (sterile)	sterile capeweed	Moderate	No	Coastal prairie; only propagates vegetatively. More competitive than fertile form, but limited distribution.
Arundo donax	giant reed	High	No	Riparian areas, commercially grown for musical instrument reeds, structural material, etc.
Asparagus asparagoides	bridal creeper	Moderate	Alert	Riparian woodland
Atriplex semibaccata	Australian saltbush	Moderate	No	Coastal grasslands, scrub, upper salt marsh. Limited distribution, but can be very invasive regionally.
Bassia hyssopifolia	fivehook bassia	Limited	No	Alkaline habitats. Weed of agriculture or disturbed sites. Impacts minor in wildlands.
Bellardia trixago	bellardia	Limited	No	Grasslands, including serpentine. Impacts and invasiveness appear to be minor.
Bellis perennis	English daisy	Eval No List	No	Present along trails, not known to spread into undisturbed areas
Berberis darwinii	Darwin barberry	Eval No List	No	Impacts unknown
Ducobrus directed history	annual false-brome, false brome, purple	Moderate	No	Wellaw and footbill reacelond - cincartone woodland

Brachypodium sylvaticum perenn Brassica nigra black 1			AUNT	ALEKT HABITATS OF CONCERN AND COMMENTS	CFMP
	perennial false-brome	Moderate	Alert	z Mtns. asive.	
	black mustard	Moderate	No	Widespread. Primarily a weed of disturbed sites, but can be locally a more significant problem in wildlands.	Y
Brassica rapa birdsra	birdsrape mustard, field mustard	Limited	No	Coastal scrub, grasslands meadows, riparian. Primarily in disturbed areas, Impacts appear to be minor or unknown in wildlands.	
Briza maxima big qu	s	Limited	No	Grasslands. Widespread in coast range. Impacts generally minor, but locally can be higher.	Y
Bromus diandrus ripgut		Moderate	No	Dunes, scrub, grassland, woodland, forest. Very widespread, but monotypic stands uncommon.	
ns		Limited	No	Grasslands, sagebrush, serpentine soils, many other habitats. Very widespread, but primarily in converted annual grasslands.	
Bromus japonicus Japane	rome, Japanese chess	Limited	No	Great Basin grassland, valley and foothill grassland, pinon and juniper woodland, lower montane coniferous forest	
Bromus madritensis ssp. rubens red brome		High	No	Scrub, grassland, desert washes, woodlands	
Buddleja davidii	butterflybush	Eval No List	No	Not known to be invasive in CA, although it is a problem in Oregon.	
	-rocket	Limited	No	Coastal dunes. Widespread, but impacts appear to be minor.	
Cardaria chalepensis	lens-podded white-top	Moderate	Alert	Central Valley wetlands. Limited distribution in CA. May not be as invasive as C. draba.	
Cardaria draba hoary cress		Moderate	No	Riparian areas, marshes of central coast. More severe invasive in northern CA.	
oides	histle	Limited	No	Valley and foothill grasslands. Distribution limited in CA, impacts higher locally.	
snj		te	No	grasslands, woodland. Very widespread. Impacts may tionally.	Y
	r thistle		No	Valley and foothill grasslands. Limited distribution, Impacts appear to be minor.	
is	g, iceplant	e	No	Coastal dunes, scrub, prairie. Little information on species, most inferred from C. edulis.	
	ntot-fig, iceplant		No	Coastal habitats, especially dunes	
		Moderate	Alert	nges, may become more severe.	Y
pa		Moderate	No	Ily variable. Distribution relatively	Y
mead	ow knapweed	Moderate	Alert	Grasslands. Spreading rapidly in NW CA, but distribution limited elsewhere. Little known of impacts.	
Centaurea diffusa diffusa	diffuse knapweed	Moderate	No	Severe impacts in other western states. Limited distribution in CA with impacts higher in some locations.	
Centaurea maculosa spottec		High	No	Riparian, grasslands, wet meadows, forests. More widely distributed in other western states.	
		High	No	Grasslands, woodlands, occasionally riparian	Y
Cestrum parqui willow	willow jessamine	Eval No List	No	Impacts unknown	
Chondrilla juncea rush sh	skeletonweed	Moderate	No	Grasslands. Very invasive in other western states, but currently limited in distribution in CA.	

SCIENTIFIC NAME	COMMON NAME	RATING	ALERT	HABITATS OF CONCERN AND COMMENTS	CEMP
Chrysanthemum coronarium	crown daisy	Moderate	No	Coastal prairie, dunes, and scrub. Impacts generally low to moderate, but can vary regionally.	
Cirsium arvense	Canada thistle	Moderate	No	Grasslands, riparian areas, forests. Severe impacts in other western states. Limited distribution in CA.	
Cirsium vulgare	bull thistle	Moderate	No	Riparian areas, marshes, meadows. Widespread, can be very problematic regionally.	
Cistus ladanifer	gum rockrose	Eval No List	No	Negligible known impacts in wildlands	
Conicosia pugioniformis	narrowleaf iceplant	Limited	No	Coastal dunes, scrub, grassland. Limited distribution. Impacts generally minor but can be higher locally.	
Conium maculatum	noison-hemlock	Moderate	No	Riparian woodland, grassland. Widespread in disturbed areas. Abiotic immarts unknown [muarts can varv local]v	٨
Convolvulus arvensis	field bindweed	Eval No List	No		4
	giant dracaena, New Zealand cabbage			Coniferous forest. Two reports of horticultural escape into wildlands.	
Cordyline australis	tree	Limited	No	Appears best suited to moist, cool climates.	
Cortaderia jubata	jubatagrass	High	No	Many coastal and interior habitats	
Cortaderia selloana	pampasgrass	High	No	Coastal dunes, coastal scrub, Monterey pine, riparian, grasslands, wetlands, serpentine soils. Still spreading both coastal and inland.	Y
Cotons and	and a strategy and as	Moderoto	on No	Coniferous forest. Limited distribution. Abiotic impacts largely	
Coloneuster franchetti	orange cotoneaster	Moderale	0N1	unknown. Mean accetel helitets mainly a mehlan from CD Day Ann markh	
Cotoneaster lacteus	Parney's cotoneaster	Moderate	No	iviarity coastar natorials, naturity a productin from SF bay Artea north along coast but also in San Diego County. Limited distribution. Abiotic impacts largely unknown.	
				Mourressent haddings mainly a machine from CE Day A new morth	
Cotoneaster pannosus	silverleaf cotoneaster	Moderate	No	along coast. Limited distribution. Abiotic impacts largely unknown.	
		-		Salt and freshwater marshes. Impacts largely unknown, but appear to	
Cotula coronopifolia	brassbuttons	Limited	No	be minor. Discrime habitate according I initial distribution Immedia	
Cratae gus monogyna	hawthorn	Limited	No	Kiparian habitats, woodland. Limited distribution. Impacts appear to be minor.	
Crocosmia x crocosmiiflora	montbretia	Limited	No	Coastal scrub and prairie, north coast forests. Abiotic impacts unknown. Higher invasiveness in some areas.	
Cupressus macrocarpa	Monterey cypress	Native	No	Native to Monterey area. Invades coastal prairie, desert scrub, riparian areas.	
Cynara cardunculus	artichoke thistle	Moderate	No	Coastal grasslands. Impacts more severe in southern CA where monotypic stands are more common.	
č Cynodon dactylon	bermudagrass	Moderate	No	Riparian serub in southern CA. Common landscape weed, but can be very invasive in desert washes.	
ç Cynosurus echinatus	hedgehog dogtailgrass	Moderate	No	Oak woodland, grassland. Widespread, impacts vary regionally, but typically not in monotypic stands.	
Cytisus scoparius	Scotch broom	High	No	Coastal scrub, oak woodland, horticultural varieties may also be invasive.	Y
Cvtisus striatus	Portuguese broom	Moderate	No	Coastal scrub, grasslands; often confused with C. scoparius. Limited distribution.	
Dactylis glomerata	orchardgrass	Limited	No	Grasslands, broadleaved forest, woodlands; common forage species. Impacts appear to be minor.	

SCIENTIFIC NAME	COMMON NAME	RATING	ALERT	HABITATS OF CONCERN AND COMMENTS	CFMP
Daucus carota	wild carrot, Queen Anne's lace	Eval No List	No	Very widespread, but primarily in disturbed sites, particularly roadsides	
Delairea odorata	Cape-ivy, German-ivy	High	No	Coastal, occasionally other riparian areas, common discard from gardens.	× .
Descurainia sophia	flixweed, tansy mustard	Limited	No	Scrub, grassland, woodland. Impacts appear to be minor, but locally more invasive in NE CA.	
Digitalis purpurea	foxglove	Limited	No	Forest, woodland. Widely escaped ornamental. Impacts largely unknown but appear to be minor.	
Dimorphotheca sinuata	African daisy	Eval No List	No	Impacts to abiotic processes and plant communities unknown	
Dipsacus fullonum	common teasel	Moderate	No	Grasslands, seep, riparian scrub. Impacts regionally variable, forms dense stands on occasion.	
Dipsacus sativus	fuller's teasel	Moderate	No	Grasslands, seep, bogs. Impacts regionally variable, forms dense stands on occasion.	
Dittrichia graveolens	stinkwort	Moderate	Alert	Grasslands, riparian scrub. Spreading rapidly, impacts may become more important in future.	
Echium candicans	pride-of-Madeira	Limited	No	Little information on impacts.	
Ehrharta calycina	purple veldtgrass	High	No	Sandy soils, especially dunes; rapidly spreading on central coast.	
Ehrharta erecta	erect veldtørass	Moderate	No	Scrub, grasslands, woodland, forest. Spreading rapidly, impacts may become more important in future.	
Eichhornia crassipes	water hyacinth	High	Alert	Aquatic systems in Sacramento-San Joaquin Delta	
Elaeaonus an oustifolia	Russian_olive	Moderate	No	Interior riparian. Impacts more severe in other western states. Current distribution limited in CA	
rucasum misusiyona	Australian fireweed Australian	MINORI	011	Current unsurroution million in Car.	
Erechtites glomerata, E. minima	burnweed	Moderate	No	low overall. May vary locally.	
Erigeron karvinskianus	Mexican daisy	Eval No List	No	Impacts unknown, but appears to be expanding. May become more problematic in future	
				Present in wildlands but known impacts are negligible. Often	
Erodium botrys	broadleaf filaree	Eval No List	No	transient. Decembra de finitier de fin	T
Erodium brachycarpum	short-fruited filaree	Eval No List	No	Present in whatanas out known impacts are negugiole. Often transient.	
Frodium cicutarium	redstem filaree	T imited	No	Many habitats. Widespread. Impacts minor in wildlands. High- density nonulations transiont	
Erodium moschatum	whitestem filaree	Eval No List	No	Primarily an agricultural weed, little impact in wildlands.	
Eucalyntus camaldulen sis	red øim	I imited	ON No	Mainly southern CA urban areas. Impacts, invasiveness and distribution all minor	
anony but commences	4 4 4 4			grasslands, scrub. Impacts can be much	
Eucalyptus globulus	Tasmanian blue gum	Moderate	No	higher in coastal areas.	<u>_</u>
Euphorbta lathyrts	caper spurge	Eval No List	No	Abiotic impacts unknown	T
Euphorbia oblongata	oblong spurge	Limited	No	Meadows, woodlands. Limited distribution. Impacts unknown. Locally in dense stands.	
Festuca arundinacea	tall fescue	Moderate	No	Coastal scrub, grasslands; common forage grass. Widespread, abiotic impacts unknown.	
Ficus carica	edible fig	Moderate	No	Riparian woodland. Can spread rapidly. Abiotic impacts unknown. Can be locally very problematic.	
Foeniculum vulgare	fennel	High	No	Grasslands, scrub.	$\left[\right]$

SCIENTIFIC NAME	COMMON NAME	RATING	ALERT	HABITATS OF CONCERN AND COMMENTS	CFMP
Genista monspessulana	French broom	High	No	Coastal scrub, oak woodland, grasslands. Horticultural selections may also be invasive.	Y
Geranium dissectum	cutleaf geranium	Moderate	No	Numerous habitats but impacts appear minor.	
Geranium molle	dovefoot geranium	Eval No List	No	Present in wildlands, but known impacts are negligible	
Geranium retrorsum	New Zealand geranium	Eval No List	No	Present in wildlands, but known impacts are negligible	
Geranium robertianum	herb-robert, Robert geranium	Eval No List	No	Present in wildlands, but known impacts are negligible	
Hedera helix, H. canariensis	English ivy, Algerian ivy	High	No	Coastal forests, riparian areas. Species combined due to genetics questions.	Y
				North coastal scrub. Limited distribution. Impacts unknown, but can	
Hencurysum penotare	ncoricepiant	Limited	0N	torm dense stands. Seruh orasslands rinarian areas Imnacts not well understood hut	
Hirschfeldia incana	shortpod mustard, summer mustard	Moderate	No	acture, grassianus, ripartan arcas, impacts not wen understood, out appear to be greater in southern CA.	
Holcus lanatus	common velvet grass	Moderate	No	Coastal grasslands, wetlands. Impacts can be more severe locally, especially in wetland areas.	
	Woditementation boulder have been woll			Grasslands; H. marinum invades drier habitats, while H. murinum involves weither Widessended by consoluted and form deviced.	
Hordeum marinum, H. murinum	barley	Moderate	No	III vaces wenands. Widespicad, out generally do not form donnadie stands.	
Hypericum perforatum	common St. John's wort, klamathweed	Moderate	No	Many northern CA habitats. Abiotic impacts low. Biological control agents have reduced overall impact.	
Hvpochaeris elabra	smooth catsear	Limited	No	Scrub and woodlands. Widespread. Impacts appear to be minor. Some local variability.	
· · · · · · · · · · · · · · · · · · ·	-			Coastal dunes, scrub, and prairie; woodland, forest. Widespread.	
nypocnaerts raatcata Ilex aanifolium	rough catsear, nairy uanuenon English holly	Moderate	Alert	Interest unknown of appear to or minor. North coast forests Expanding range south from OR.	
anna a fan fan anna				Riparian, wetland areas, esp. southern CA. Limited distribution.	
Iris pseudacorus	yellowflag iris	Limited	No	Abiotic impacts unknown.	
Kochia scoparia	kochia	Moderate	No	Scrub, chaparral, grasslands	
Lactuca serriola	prickly lettuce	Eval No List	No	Primarily an agricultural and roadside weed	
Le pidium latifolium	perennial pepperweed, tall whitetop	High	No	Coastal and inland marshes, riparian areas, wetlands, grasslands; potential to invade montane wetlands.	
Leptospermum laevigatum	Australian tea tree	Eval No List	oN	Very limited distribution.	
Leucanthemum vulgare	ox-eye daisy	Moderate	No	Montane meadows, coastal grasslands, coastal scrub. Expanding range, invasiveness varies locally.	
Linaria genistifolia ssp. dalmatica	Dalmation toadflax	Moderate	No	Grasslands, forest clearings. Limited distribution. More severe impacts in other western states.	
				valley and foothill grassland, Great Basin grassland, riparian woodland, lower montane coniferous forest, upper montane	
Linaria vulgaris	yellow toadflax, butter and eggs	Moderate	No	coniferous forest	
Lobularia maritima	sweet alyssum	Limited	No	Coastal dune, coastal scrub, coastal prairie, riparian.	
I olium multiflorum	Italian rveorass	Moderate	No	Grasslands, oak woodland, pinyon-juniper woodland; widely used for post-fire erosion control Widestread Immark can vary with region V	>
Lotus corniculatus	birdsfoot trefoil	Eval No List	No		
Ludwigia hexapetala	Uruguay water-primrose	High	Alert	Freshwater aquatic systems. Clarification needed on taxonomic identification.	
		0		Freshwater aquatic systems. Clarification needed on taxonomic	
Ludwigia peploides ssp. montevidensis	creeping water-primrose	High	No	identification.	

SCIENTIFIC NAME	COMMON NAME	RATING	ALERT	ALERT HABITATS OF CONCERN AND COMMENTS
Lupinus arboreus	yellow bush lupine	Native	No	
Lythrum hyssopifolium	hyssop loosestrife	Limited	No	Grasslands, wetlands, vernal pools. Widespread. Impacts unknown, but appear to be minor.
Malephora crocea	coppery mesembryanthemum	Eval No List	No	A problem on southern CA islands, but statewide impacts are low
Marrubium vulgare	white horehound	Limited	No	Grasslands scrub, riparian areas. Widespread. Rarely in dense stands. Impacts relatively minor.
Maytenus boaria	mayten	Eval No List	No	Infestation on Angel Island, San Francisco Bay
Medicago polymorpha	California burclover	Limited	No	Grasslands. Widespread weed of agriculture and disturbed areas. Impacts in wildlands minor.
Melilotus officinalis	yellow sweetclover	Eval No List	No	Present in human-disturbed habitats only
Mentha pulegium	pennyroyal	Moderate	No	Vernal pools, wetlands. Poisonous to livestock. Spreading rapidly. Impacts largely unknown.
Mesembryanthemum crystallinum	crystalline iceplant	Moderate	Alert	Coastal bluffs, dunes, scrubs, grasslands. Limited distribution. Locally problematic, especially in southern CA.
Myonorum laetum	myoportum	Moderate	No	Coastal habitats, riparian areas; mostly along the southern coast. Abiotic immacts unknown.
Myosotis latifolia	common forget-me-not	Limited	No	Coniferous forest, riparian. Little information on impacts.
Myriophyllum aquaticum	parrotfeather	High	Alert	Freshwater aquatic systems
Myriophyllum spicatum	Eurasian watermilfoil	High	No	Freshwater aquatic systems
Nothoscordum gracile	false garlic	Eval No List	No	Mainly an urban garden weed.
Olea euronaea	olive	Limited	No	A problem in Australia. Currently a rare escape in CA but is of concern due to the possibility of suread from planted proves.
				Grasslands, oak woodland. Highly invasive. Impacts unknown.
Ononis alopecuroides	foxtail restharrow	Limited	No	Nearly eradicated.
Onopordum acanthium	Scotch thistle	High	No	Wet meadows, sage brush, riparian areas
Oxalis corniculata	creeping woodsorrel	Eval No List	No	Primarily a turf weed in CA
Ovalis nes-canvae	Bermuda buttercup, buttercup oxalis,	Moderate	No	Coastal dunes, scrub, oak woodland. Impacts in coastal areas may
				Coastal prairie, grassland, and dunes. Impacts unknown, but can be
Parentucellia viscosa	yellow glandweed, sticky parentucellia	Limited	No	locally significant. Dresent of low levels in numerons wildland habitate Immorts
Pennisetum clandestinum	kikuyugrass	Limited	No	unknown. Common turf weed.
Pennisetum setaceum	crimson fountaingrass	Moderate	No	Coastal dunes and scrub, chaparral, grasslands. Some horticultural cultivars sterile. Very invasive in Hawaii.
Phalaris aquatica	hardinggrass	Moderate	No	Coastal sites, especially moist soils. Limited distribution. Can be highly invasive locally.
Phoenix canariensis	Canary Island date palm	Limited	No	Desert washes; agricultural crop plant. Limited distribution in southern CA. Impacts can be higher locally.
Phragmites australis	common reed	Native	No	Genetic issues make it unclear which strains are native to CA.
Phytolacca americana	common pokeweed	Limited	No	riparian forest, riparian woodland
Picris echioides	bristly oxtongue	Limited	No	Coastal prairie, scrub, riparian woodland. Widespread locally. Abiotic impacts unknown.
Piptatherum miliaceum	smilograss	Limited	No	Coastal dunes, scrub, riparian, grassland. Expanding range. Impacts largely unknown.
Plantago coronopus	cutleaf plantain	Eval No List	No	Impacts unknown. Common on north coast

SCIENTIFIC NAME	COMMON NAME	RATING	ALERT	ALERT HABITATS OF CONCERN AND COMMENTS [CFM	CFMP
Plantago lanceolata	buckhorn plantain, English plantain	Limited	No	Many habitats. Turf weed primarily. Low density and impact in wildlands.	
Poa pratensis	Kentucky bluegrass	Limited	No	Grasslands scrub, riparian areas. Widespread turf plant. Abiotic impacts unknown.	
Polygonum cuspidatum	Japanese knotweed	Moderate	Alert	Riparian areas, wetlands, forest edges. More severe impacts in NW wetlands. Distribution limited in CA.	
Polygonum sachalinense	Sakhalin knotweed	Moderate	Alert	Riparian areas. More severe impacts in NW wetlands. Distribution limited in CA.	
Polypogon monspeliensis and subspp.	on, annual beardgrass	Limited	No	Margins of ponds and streams, seasonally wet places, edge of coastal dunes. Widespread. Impacts appear to be minor.	
Potamogeton crispus		Moderate	No	Freshwater aquatic systems. Can be very invasive locally.	
Prunus cerasifera		Limited	No	Riparian habitats, chaparral, woodland. Limited distribution. Abiotic impacts unknown.	
Pyracantha angustifolia, P. crenulata, P. coccinea	pyracantha, firethorn	Limited	No	Coastal scrub and prairie, riparian areas. Horticultural escape. Impacts unknown or minor.	
Ranunculus repens		Limited	No	Riparian areas, coniferous forest. Impacts appear to be minor to negligible in most areas.	
Raphanus sativus		Limited	No	Present at low levels in numerous habitats. Widespread in disturbed sites.	
Ricinus communis	castorbean	Limited	No	Coastal scrub and prairie, riparian areas. Widespread in southern CA. Impacts locally variable.	
Robinia pseudoacacia	black locust	Limited	No	Riparian areas, canyons. Severe impacts in southern states. Impacts minor in CA.	
Rubus armeniacus	aya blackberry	High	No	Riparian areas, marshes, oak woodlands	
Rumex acetosella	el	Moderate	No	Many habitats, riparian areas, forest, wetlands. Widespread. Abiotic impacts unknown. Impacts can vary locally.	
Rumex crispus	curly dock	Limited	No	Grasslands, vernal pool, meadows, riparian. Widespread. Impacts appear to be minor.	
Salsola soda	uf Russian thistle	Moderate	No	marine systems, estuaries, vernal pool, marsh and swamp	
Salsola tragus		Limited	No	Desert dunes and scrub, alkali playa. Widespread. Impacts minor in wildlands.	
Salvinia molesta	giant salvinia	High	Alert	Freshwater aquatic systems. Population in San Diego River was eradicated.	
Sapium sebiferum	Chinese tallowtree	Moderate	Alert	Riparian areas. Impacts severe in southeast US. Limited distribution in California, but spreading rapidly regionally.	
Saponaria officinalis	bouncingbet	Limited	No	Riparian scrub and woodland. Impacts unknown or minor, but appear to be locally variable.	
Schinus molle	Peruvian peppertree	Limited	No	Riparian. Limited distribution. Impacts largely unknown in CA.	
Schismus arabicus, Schismus barbatus	mediterraneangrass	Limited	No	Scrub, thorn woodland. Widespread in deserts. Impacts can be more important locally.	
Senecio jacobaea	tansy ragwort	Limited	No	Grasslands, riparian. Impacts generally minor. Can be locally important in NW CA.	
Sesbania punicea	red sesbania, scarlet wisteria	High	Alert	Riparian areas	
Silybum marianum	blessed milkthistle	Limited	No	Grasslands, riparian. Widespread, primarily in disturbed areas Impacts can be higher locally	
Sinapis arvensis	wild mustard, charlock	Limited	No	Grasslands. Primarily in disturbed sites. Impacts minor or unknown in wildlands.	
]

SCIENTIFIC NAME	COMMON NAME	RATING	ALERT	HABITATS OF CONCERN AND COMMENTS	CFMP
Solanum elaeaenifolium	silverleaf nightshade	Eval No List	No	Primarily agricultural weed, but escaping to wildlands in other countries. May prove to be more important in future.	
Sonchus asper	spiny sowthistle		No	Primarily an agricultural weed	L
Spartina alterniflora (and S. alterniflora smooth cordgrass and hybrids, Atlantic	smooth cordgrass and hybrids, Atlantic			San Francisco Bay salt marshes and mudflats. Hybridizes with native	
x foliosa hybrids)	cordgrass	High	Alert	S. foliosa.	
				San Francisco Bay salt marshes. Very severe impact in other	
Spartina anglica	common cordgrass	Moderate	Alert	countries. Limited distribution in CA.	
Spartina densiflora	dense-flowered cordgrass	High	Alert	San Francisco and Humboldt Bay salt marshes	
				San Francisco Bay salt marshes. Very limited distribution. Impacts	
Spartina patens	saltmeadow cord grass	Limited	No	currently minor in CA, but high in other countries.	
Spartium junceum	Spanish broom	High	No	Coastal scrub, grasslands, wetlands, oak woodland, forests	
Taeniatherum caput-medusae	medusahead	High	No	Grasslands, scrub, woodland	
Tamarix parviflora	smallflower tamarisk	High	No	Riparian areas, desert washes, coastal scrub	
Tamarix ramosissima	saltcedar, tamarisk	High	No	Desert washes, riparian areas, seeps and springs	
Taraxacum officinale	common dandelion	Eval No List	No	Primarily a turf weed in CA	
Torilis arvensis	hedgeparsley	Moderate	No	Expanding range. Appear to have only moderate ecological impacts.	
Tragopogon dubius	yellow salsify	Eval No List	No	Generally a minor component of disturbed areas.	
				Grasslands, oak woodland. Widely planted in CA. Impacts relatively	
Trifolium hirtum	rose clover	Moderate	No	minor in most areas.	
Ulex europaeus	gorse	High	No	Scrub, woodland, forest, coastal grassland	
				Alga of estuaries. First recorded in CA in 2000. Impacts unknown,	
Undaria pinnatifida	wakame	Limited	No	but do not appear to be significant	
			:	Primarily an agricultural weed, Widespread but impacts minor in	
Vicia villosa	hairy vetch	Eval No List	No	w1idlands.	
				Riparian, oak woodlands, coastal scrub. Distribution currently	
Vinca major	big periwinkle	Moderate	No	limited but spreading in riparian areas. Impacts can be higher locally. Y	r
Vulpia bromoides	squirreltail fescue	Eval No List	No	Less common than V. myuros	
				Coastal sage scrub, chaparral. Widespread. Rarely forms monotypic	
Vulpia myuros	rattail fescue	Moderate	No	stands, but locally problematic	
				Coastal prairie, wetlands. Impacts high in other countries and local	
Zantedeschia aethiopica	calla lily	Limited	No	impacts may be high in CA.	
Tropaeolum majus	nasturtium			Steep slopes and recent landslides near developed areas.	

RATING DESCRIPTIONS

HIGH - These species have severe ecological impacts on physical processes, plant and animal communities, and vegetation structure. Their reproductive biology and other attributes are conducive to moderate to high rates of dispersal and establishment. Most are widely distributed ecologically.

MODERATE - These species have substantial and apparent—but generally not severe—ecological impacts on physical processes, plant and animal communities, and vegetation structure. Their reproductive biology and other attributes are conducive to moderate to high rates of dispersal, though establishment is generally dependent upon ecological

disturbance. Ecological amplitude and distribution may range from limited to widespread. LIMITED - These species are invasive but their ecological impacts are minor on a statewide level or there was not enough information to justify a higher score. Their reproductive biology and other attributes result in low to moderate rates of invasiveness. Ecological amplitude and distribution are generally limited, but these species may be locally persistent and problematic.

EVAL NO LIST - Not sufficient data to give them ranking, or species presently does not have significant impact. ALERT DESCRIPTION

High potential to invade new ecosystems.

B-8

APPENDIX C

ANIMAL SPECIES LOCATED IN LOWER SANTA ROSA CREEK WATERSHED FISCALINI RANCH PRESERVE

List produced from Fiscalini Ranch Preserve Environmental Impact Report County of San Luis Obispo, 2009

ANIMAL SPECIES FOUND IN THE LOWER SANTA ROSA CREEK WATERSHED

The following is a list of animal species identified at the Fiscalini Ranch Preserve, in the lower watershed. This species list was created by the County of San Luis Obispo, in 2009, in the Fiscalini Ranch Preserve Environmental Impact Report (EIR). Although this is a comprehensive list of animal species found in various habitats throughout the preserve, it is not a complete list of animal species that could be found within the entire watershed. A map showing the location of the Fiscalini Ranch Preserve was created by the County and is located on page C-4 in this Appendix. Animal species are listed below according to habitat.

Annual Grassland Species

- *Microtus* sp. (voles)
- *Peromyscus* spp. (white-footed mice)
- *Peromyscus californicus* (California mouse)
- *Thomomys bottae* (Botta's pocket gopher)
- Spermophilus beecheyi (California ground squirrel)
- *Canis latrans* (coyote)
- *Accipiter striatus* (sharp-shinned hawk)
- *Buteo jamaicensis* (red-tailed hawk)
- *Buteo lineatus* (red-shouldered hawk)
- *Elanus leucurus* (white-tailed kite)
- *Falco sparverius* (American kestrel)
- *Bubo virginianus* (great horned owl)

Coastal Scrub Species

- California mouse
- Botta's pocket gopher
- California ground squirrel
- migratory songbirds
- Sylvilagus bachmanii (brush rabbit)
- *Procyon lotor* (raccoon)
- *Corvus brachyrhynchos* (American crow)
- *Zenaida macroura* (mourning dove)
- *Toxostoma redivivum* (California thrasher)

- *Aphelocoma coerulescens* (scrub jay)
- Sceloporus occidentalis (western fence lizard)
- Anniella pulchra pulchra* (silvery legless lizard)

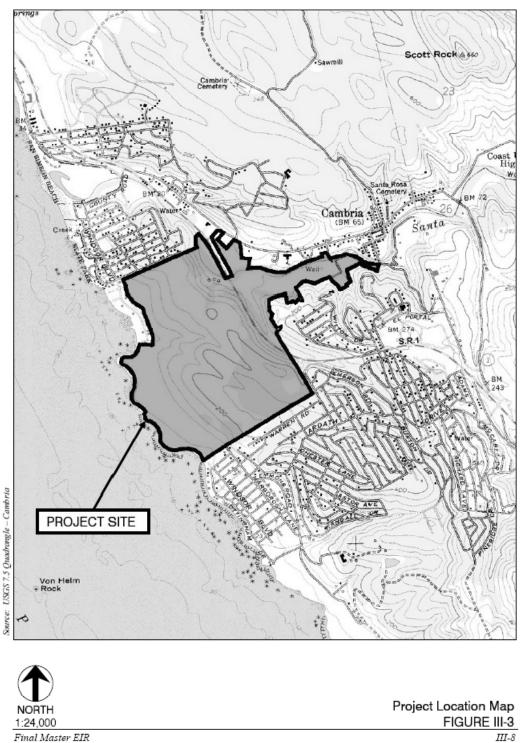
Riparian Scrub Species

- western fence lizard
- *Geothlypis trichas* (common yellowthroat)
- Baeolophus inoratus (plain titmouse)
- *Melospiza melodia* (song sparrow)
- *Regulus calendula* (ruby-crowned kinglet)
- *Hyla regilla* (Pacific chorus frog)
- *Sceloporus occidentalis* (western fence lizard)

Riparian Forest Species

- migratory birds
- *Rana aurora draytonii** (California red-legged frog)
- Oncorhynchus mykiss irideus* (south-central California coast steelhead)
- *Eucyclogobius newberryi** (tidewater goby)
- *Clemmys marmorata pallida** (southwestern pond turtle)

Monterey Pine Forest Species


- raccoon
- California mouse
- Odocoileus hemionus (black tailed deer)
- *Urocyon cinereoargentus* (gray fox)
- *Puma concolor* (mountain lion)
- *Lynx rufus* (bobcat)
- *Didelphis virginianus* (Virginia opossum)
- Sciurus griseus (western gray squirrel)
- *Parus rufescens* (chestnutbacked chickadee)
- *Colaptes auratus* (northern flicker)
- *Picoides nuttallii* (Nuttall's woodpecker)

- *Cyanocitta stelleri* (steller's jay)
- *Bubo virginianus* (great horned owl)
- *Buteo linatus* (red-shouldered hawk)
- Danaus plexippus (Monarch butterfly)

Coast Live Oak Woodland Species

- western gray squirrel
- North American raccoon
- Virginia opossum
- *Callipepla californica* (California quail)
- Odocoileus hemionus (mule deer)
- *Odocoileus hemionus* (black-tailed deer)
- *Aneides lugubris* (arboreal salamander)
- *Gerrhonotus multicarinatus* (southern alligator lizard)
- Lampropeltis getulus (common king snake)
- *Aphelocoma corulescens* (scrub jay)
- Parus inornatus (plain titmouse)
- *Pipilo crissalis* (California towhee)
- *Junco hyemalis* (dark-eyed junco)

*special status animal species

Final Master EIR

Figure C.1. Location of Fiscalini Ranch Preserve, in the lower Santa Rosa Creek Watershed (County of San Luis Obispo, 2009).

APPENDIX D

SPECIAL STATUS ANIMAL SPECIES LOCATED IN THE SANTA ROSA CREEK WATERSHED

List produced from California Department of Fish and Game's California Natural Diversity Data Base

SPECIAL SIF	SPECIAL STATUS ANIMAL SPECIES LOCATED IN SANTA ROSA UREEN WATERSHED	NIA KUSA CKEEK WAI	EKSHED	
SCIENTIFIC NAME	COMMON NAME	FEDERAL STATUS	STATE STATUS CDFG	CDFG
Actinemys marmorata pallida	southwestern pond turtle	None	None	SSC
Ammodramus savannarum	grasshopper sparrow	None	None	SSC
Danaus plexippus	monarch butterfly	None	None	SSC
Eucyclogobius newberryi	tidewater goby	Endangered	None	SSC
Myotis thysanodes	fringed myotis	None	None	
Myotis yumanensis	Yuma myotis	None	None	
Oncorhynchus mykiss irideus	steelhead - south/central California coast ESU Threatened	Threatened	None	SSC
Rana aurora draytonii	California red-legged frog	Threatened	None	SSC
Taricha torosa torosa	Coast Range newt	None	None	SSC
Thamnophis hammondii	two-striped garter snake	None	None	SSC
Rare species identified using California	Rare species identified using California Natural Diversity Data Base (CNDDB) Cambria and Cypress Mountain 7.5 minute quadrangle search (2009).	sress Mountain 7.5 minute quadran	ıgle search (2009).	

The Land Conservancy of San Luis Obispo County

CDFG DESCRIPTION Indicates if the species is a California Department of Fish and Game Species of Special Concern (SSC).

APPENDIX E

GEOLOGIC MAP UNITS LOCATED IN THE SANTA ROSA CREEK WATERSHED

List produced from County of San Luis Obispo Geographic Information Systems (GIS) Geology Data digitized from USGS and California Geologic Survey Maps

GEOLOGIC UNIT	ACRES	TOTAL %
Franciscan Rocks mélange	14322.90	47.10%
Alluvial Deposits	2871.91	9.45%
Unnamed Sedimentary Rocks	2716.73	8.93%
Rincon Shale	2560.16	8.42%
Vaqueros Sandstone	1659.99	5.46%
Stream Terrace Deposits	807.05	2.65%
Lospe Formation conglomerate, sandstone, claystone	618.66	2.03%
Franciscan Rocks graywacke and micrograywacke	611.76	2.01%
Landslide Deposits	527.15	1.73%
(sp)	432.05	1.42%
Monterey Formation siltstone, claystone/siltstone	430.34	1.42%
Franciscan Rocks	382.23	1.26%
Franciscan Rocks metavolcanic rocks (greenstone)	303.45	1.00%
Pismo Formation claystone and siltstone	289.85	0.95%
(Tml)	273.71	0.90%
(Tb)	262.93	0.86%
Cambria Felsite	220.94	0.73%
Pismo Formation Squire Member	205.26	0.68%
Obispo Formation crystal-bearing vitric tuff	149.63	0.49%
Franciscan Rocks melange?	130.04	0.43%
(Trh)	116.48	0.38%
Franciscan Rocks metavolcanic rocks (greenstone)	115.41	0.38%
Serpentinite	110.96	0.36%
Franciscan Melange chert	105.79	0.35%
Monterey Formation diabase and basaltic rocks	63.24	0.21%
Franciscan Melange greywacke	43.06	0.14%
Monterey Formation hard tuff	40.07	0.13%
Cambria Felsite basalt	18.91	0.06%
Pismo Formation pebble/cobble conglomerate	5.82	0.02%
Franciscan Melange blueschist	3.85	0.01%
Unnamed Sedimentary Rocks?	3.31	0.01%
(Qaf)	1.44	<0.01%
Cambria Felsite?	0.94	<0.01%
Franciscan Melange silica-carbonate rocks	0.14	<0.01%
Fanciscan Melange conglomerate	0.11	<0.01%
Franciscan Melange shale	0.09	<0.01%

APPENDIX F

SOIL MAP UNITS LOCATED IN THE SANTA ROSA CREEK WATERSHED

List produced from Geospatial Data Gateway Online USDA Geographic Information Systems (GIS) Soils Data and USDA, NRCS soils data obtained from SLO Datafinder Digitized from USDA and NRCS Soil Surveys

SOIL MA	SOIL MAP UNITS WITHIN SANTA ROSA CREEK WATERSHED	N SANTA ROS	A CREEK WATE	ERSHED		
Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell Farm		Perco Wate Total Acres Area	Percent Watershed Area
Aquolis, saline	1	1 No Data	low	Not prime farmland	21.0	0.1%
Balcom-Calleguas complex, 50 to 75 percent slopes	1	No Data	moderate	Not prime farmland	30.1	0.1%
Beaches	-	low	low	Not prime farmland	25.6	0.1%
Briones-Tierra complex, 15 to 50 percent stopes	-	low	low	Not prime farmland	101	%0 ^{.0}
Cleneba-Millsap loams, 30 to 75 percent slopes	n	3 moderate	low	Not prime farmland	211.0	0.7%
Concepcion Ioam, 2 to 5 percent slopes	0	2 moderate	low	Farmland of statewide importance	34.7	0.1%
Cropley clay, 0 to 2 percent slopes	8	8 low	high	Prime farmland if irrigated	521.7	1.7%

Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell	Farm	Perco Wate Total Acres Area	Percent Watershed Area
Cropley clay, 2 to 9 percent slopes		13 Iow	high	Prime farmland if irrigated	602.4	2.0%
Diablo and Cibo clave 15 to 30 nercent slones	3	28 moderate	, Linit Linit	Not prime famland	1 1566 1	20 20 20
Diablo and Cibo clays, 30 to 50 percent slopes	3	29 moderate	in i	Not prime farmland	2242.2	
Diablo and Clbo clays, 9 to 15 percent slopes	4	14 moderate	- to it	Farmland of statewide importance	2901 2	0%
Diablo clay, 5 to 9 percent slopes	10	10 10w	high	Prime farmland if irrigated	173.9	
Diablo-Lodo complex, 15 to 50 percent slopes	27	27 10w	ihi	Not prime farmland	4050.5	13.3%
Gaviota fine sandy loam, 15 to 50 percent slopes	٥	6 moderate	low	Not prime farmland	209.9	0.7%

Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell	Farm	Perce Wate Total Acres Area	Percent Watershed Area
Gaviota sandy loam, 50 to 75 percent slopes	3	3 moderate	low	Not prime farmland	146.7	0.5%
Gaviota-Rock outcrop complex, 30 to 75 percent slopes	1	No Data	low	Not prime farmland	14.0	0.0%
Gazos-Lodo clay loams, 15 to 30 percent slopes	14	14 low	moderate	Not prime farmland	461.9	1.5%
Gazos-Lodo clay loams, 30 to 50 percent slopes	40	40 low	moderate	Not prime farmland	2574.9	8.5%
Gazos-Lodo clay loams, 50 to 75 percent slopes	o	wol 6	moderate	Not prime farmland	252.4	0.8%
Henneke-Rock outcrop complex, 15 to 75 percent slopes		3 low	moderate	Not prime farmland	567.5	1.9%
Lodo clay loam, 15 to 30 percent slopes	7	7 low	moderate	Not prime farmland	199.1	0.7%

		Total Soil				Darrant
Map Unit	Watershed Occurances	Erodibility (Kw)	Shrink Swell	Farm	Wate Total Acres Area	Watershed Area
Lodo clay loam, 30 to 50 percent slopes	8	8 low	moderate	Not prime farmland	310.2	1.0%
Lodo clay loam, 5 to 15 percent slopes	2	low	moderate	Not prime farmland	67.8	0.2%
Lodo clay loam, 50 to 75 percent slopes	0	low	moderate	Not prime farmland	772.8	2.5%
Lodo-Rock outcrop complex, 30 to 75 percent slopes		18 Iow	moderate	Not prime farmland	1030.3	3.4%
Lodo-Rock outcrop complex, 9 to 30 percent slopes	ო	low	moderate	Not prime farmland	75.1	0.2%
Lompico-McMullin complex, 50 to 75 percent slopes	2	moderate	woj	Not prime farmland	0. 66	0.3%
Lompico-McMullin Ioams, 30 to 75 percent slopes	3	3 low	low	Not prime farmland	615.7	2.0%

Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell Farm		Total Acres	Percent Watershed Area
Lopez very shaly clay loam, 30 to 75 percent slopes	2	2 low	low	Not prime farmland	638.6	2.1%
Lopez-Rock outcrop complex, 75 to 100 percent slopes	-	low	low	Not prime farmland	6.4	0.0%
Los Osos Ioam, 15 to 30 percent slopes	14	14 moderate	moderate	Not prime farmland	1089.4	3.6%
Los Osos Ioam, 30 to 50 percent slopes	,	11 moderate	moderate	Not prime farmland	506.8 	1.7%
Los Osos Ioam, 5 to 9 percent slopes	۵	6 moderate	moderate	Farmland of statewide importance	103.3	0.3%
Los Osos Ioam, 9 to 15 percent slopes	15	15 moderate	moderate	Not prime farmland	386.7	1.3%
Los Osos variant clay loam, 15 to 50 percent slopes	4	4 moderate	moderate	Not prime farmland	45.8	0.2%

Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell	Farm	Perco Wate Total Acres Area	Percent Watershed Area
Los Osos-Diablo complex, 15 to 30 percent slopes	N	22 22	moderate	ime farmland	1710.2	ې ن
Los Osos-Diablo complex, 30 to 50 percent slopes	25	25 moderate	moderate	Not prime farmland	1668.0	5.5%
Los Osos-Diablo complex, 5 to 9 percent slopes	ω	6 moderate	moderate	Farmland of statewide importance	60 00 1	%/0 0.7%
Los Osos-Diablo complex, 9 to 15 percent slopes		moderate	moderate	Not prime farmland	420.1	1.4%
Los Osos-Lodo complex, 30 to 75 percent slopes		11 moderate	moderate	Not prime farmland	764.0	2.5%

Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell	Farm	Total Acres	Percent Watershed Area
Los Osos-Lodo complex, 50 to 75 percent slopes	1	moderate	moderate	Not prime farmland	601.9	2.0%
Marimel sitty clay loam, drained	4	moderate	moderate	Prime farmland if irrigated and drained	769.6	2.5%
McMullin-Rock outcrop complex, 50 to 75 percent slopes	n	3 No Data	low	Not prime farmland	1:2	0.0%
Millsap Ioam, 15 to 50 percent slopes	-	moderate	ow	Not prime farmland	82.0	0.3%
Nacimiento silty clay loam, 30 to 50 percent slopes	3	low	moderate	Not prime farmland	64.8	0.2%
Nacimiento-Calodo complex, 30 to 50 percent slopes	ω	low	moderate	Not prime farmland	438.6 138	- .4%
Nacimiento-Calodo complex, 50 to 75 percent slopes	4	moderate	Mol	Not prime farmland	160.1	
Obispo-Rock outcrop complex, 15 to 75 percent slopes	-	1 Iow	moderate	Not prime farmland	21.2	0.1%

Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell	Farm	Total Acres	Percent Watershed Area
Riverwash	F	low	low	Not prime farmland	60.3	0.2%
Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope		16 No Data	low	Not prime farmland	225.2	0.7%
Salinas sitty clay loam, 0 to 2 percent slopes	6	moderate	moderate	Prime farmland if irrigated	276.5	0.9%
Salinas silty clay loam, 2 to 9 percent slopes	თ	moderate	moderate	Prime farmland if irrigated	642.2	2.1%
San Simeon sandy loam, 15 to 30 percent slopes	ω	moderate	Mo	Not prime farmland	619.5	2.0%
San Simeon sandy loam, 2 to 9 percent slopes		moderate	low	Not prime farmland	131.2	0.4%
San Simeon sandy loam, 30 to 50 percent slopes	7	7 moderate	low	Not prime farmland	679.1	2.2%

Map Unit	Watershed Occurances	Total Soil Erodibility (Kw)	Shrink Swell Farm	Farm	Perco Wate Total Acres Area	Percent Watershed Area
San Simeon sandy loam, 9 to 15 percent slopes		7 moderate	Mo	Not prime farmland	3.9 3.0 3.0	1.2%
Santa Lucia shaly clay loam, 30 to 50 percent slopes	1	Mol	low	Not prime farmland	52.1	
Santa Lucia shaly clay loam, 50 to 75 percent slopes	0	2 low	low	Not prime farmland	197.7	0.7%
Santa Lucia very shaly clay loam, 9 to 15 percent slopes		low No. Doto	low 	Not prime farmland	0 0 0 0	0.0 %000
Water	4	4 No Data	low	Not prime tarmland	/.6	0.0%
Xerorthents, escarpment	-	No Data	ow	Not prime farmland	6.1	0.0%
Zaca clay, 15 to 30 percent slopes	Q	low	high	Not prime farmland	146.3	0.5%
Zaca clay, 30 to 50 percent slopes	-	low	high	Not prime farmland	87.8	0.3%
Zaca clay, 9 to 15 percent slopes		1 Iow	high	Farmland of statewide importance	34.3	0.1%
				Total Acres:	34.3060	

SOIL MAF	_
Map Unit	Description
Aquolls, saline	Nearly level soils located in tidal marshes. Vegetated by salt-tolerant plants, with some anise, waterhemiock and willows in fringes. Soils are very deep and poorty drained with slow or very slow permeability, slow surface runoff, and water removed through waterways or channels. Water level fluctuates with floes. Recreational land use. Soils valuable for wildlife and aesthetics. Capability subclass VIIIw (14), nonirrigated.
Balcom-Callequas complex, 50 to 75 percent slopes	Very deep soils located on mountains. 35% Balcom Ioam; 25% Calleguas shaly Ioam. Very deep soils are moderately deep, well drained with moderate permeability, low to moderate available water capacity, very rapid surface rundf, and very high erosion hazard. Calleguas soils are shallow, well drained with moderate permeability, very low available water capacity, very rapid surface runoff, and very high erosion hazard. Rangeland land use, however Calleguas soils are boorly valued for it. Cabability subclass ville (15). nonimidated.
Beaches	Narrow, sandy beaches along the ocean. Essentially barren, stratified layers of sand or gravel with some cobbles. Dune land and some rock outcrops present. Very rapid permeability, low or very low available water capacity, slow surface runoff, high or very high erosion hazard due to wind and wave action. Land uses include recreation with some farming, rangeland, and urban development. Capability subclass VIIw.
	Moderately steep to steep solis located on foothills, mountains, and dissected terraces. Vegetated by annual grasses, forbs, hardwoods, or brush vegetation. 50% Briones soils; 25% Tierra solis. Briones soils are moderately deep and somewhat excessively drained with rapid permeability, very low or low available water capacity, rapid surface runoff, and high water erosion and soil blowing hazards. Tierra soils are very deep and moderately well drained with very slow permeability, low or moderate soils are very deep and moderately well thigh water erosion hazard, moderate soil blowing hazards. There are very deep and moderately well thigh water erosion hazard, moderate soil blowing hazard, and high shrink-swell potential in subsoil. Land uses include arrangeland, dryfarmed beans, and low water holding for cropland due to high soil blowing and water erosion hazards, and water erosion hazard knoter terosion hazards.
Briones- lierra complex, 15 to 50 percent slopes	Capacity. Moderately surred for rangeands. Capability subclass Vile (15), nonringated. Steep and very steep soils located on foothills and mountains. Vegetated by annual grasses, forbs, brush, and hardwoods along drainages. 50% Cleneba soils; 30% Millap soils. Cleneba soils are shallow and somewhat excessively drained with moderately rapid permeability, very low available water capacity, rapid or very rapid surface runoff, and high or very high water erosion hazard. Millap soils water capacity, rapid or very rapid surface runoff, and high or slow permeability. very low or valiable water capacity, rapid or very rapid surface runoff.
Cieneba-Millsap Ioams, 30 to 75 percent slopes	and high or very high water erosion hazard. Moderately to poorly suited for rangelands. Subject to sheet and gully erosion due to soil texture and slope. Capability subclass VIIe (15), nonirrigated.
Concernion Joam 2 to 5 nervent elones	Gently sloping soils located on marine terraces. Vegetated by annual and perennial grasses, forbs, and some scattered brush. Soils are very deep and moderately well drained with very slow permeability, moderate or high available water capacity, slow surface runoff, slight water erosion hazard, and high shrink-swell potential in subsoil. Land uses include small grains, hay, and rangeland. Well-suited for rangelands. Subject to gully erosion due to dense clay subsoil. Permanent plant cover reduces erosion. Capability units IIIe-3 (14), irrigated and provinciated
Croplev clav. 0 to 2 percent slopes	Nearly level soils located on alluvial fans and plains. Vegetated by annual and perennial grasses. Soils are very deep and moderately well-drained with slow permeability, high available water capacity, slow surface runoff, slight water erosion hazard, and high shrink- swell potential. Land uses include dryland farming, irrigated row crops, pasture, and urban development. Well-suited for agriculture. Compaction hazard due to clay texture. Cabability units IIEs 1(41, incrintated and IIEs 5(14), nortiricated.
cropicy riay, o to 2 percent stopes	Capading dring us of 1+1, in galed and ins of 1+7, normingated.

Map Unit	Description
Cropley clay, 2 to 9 percent slopes	Gently to moderately sloping soils located on alluvial fans and plains. Vegetated by annual and perennial grasses. Soils are very deep and moderately well drained with slow permeability, high available water capacity, slow or medium surface runoff, slight or moderate are erosion hazard, and high strink-swell potential. Land uses include rangelands, small grains, hay crops, and ruban development. Well-suited for rangelands. Capability unit IIe-5 (14), irrigated and IIIe-5 (14), nonirrigated.
Diablo and Cibo clavs. 15 to 30 percent slopes	Moderately steep soils located on foothills and mountains. Annual grasses and forbs; hardwoods in swales. Diablo soils are deep and well-drained with slow permeability, moderate to high available watter capacity, rapid surface runoff, moderate to high water erosion, high shrink-swell potential, and are subject to slippage when wet. Clab soils are moderately deep and well-drained with slow permeability, very low to moderate available water capacity, rapid surface runoff, moderate available water capacity, rapid surface runoff, moderate available state capacity rapid surface runoff, moderate water erosion hazard, high shrink-swell sufface compaction due to clav texture. Capability unit We-5 (15), nonirricated.
Diablo and Cibo clays, 30 to 50 percent slopes	Steep soils located on foothills and mountains. Annual grasses and forbs, hardwoods common in swales. Diablo soils are deep and well-drained with slow permeability, moderate to high available water capacity, rapid surface runoff, moderate to high water erosion hazard, high shrink-swell potential, and are subject to slippage when wet. Cibo soils are moderately deep and well-drained with slow permeability, very low to moderate water capacity, rapid surface runoff, high water erosion hazard, high shrink-swell potential, and are subject to slippage when wet. Well-suited for rangelands. Subject to surface compaction due to clay texture. Capability subclass VIe (15), nonirrigated.
Diablo and Cibo clays, 9 to 15 percent slopes	Strongly sloping solis located on low lying foothills. Vegetated by annual grasses and forbs. Diablo solis are deep and well drained with slow permeability, moderate to very high available water capacity, medium surface runoff, moderate water erosin hazard, high shrink-swell potential, and subject is sippage when wet. Cibo solis are moderately deep and well drained with slow permeability, very low to moderate available water capacity, medium surface runoff, moderate water erosion hazard, high shrink-swell potential, and subject to slippage when wet. Land uses include rangeland and urban development. Well-suited for rangelands. Surface compaction occurs due to clay soil texture. Capability units IIIe-5 (15), irrigated and noninrigated and
Diablo clay, 5 to 9 percent slopes	Gently rolling soils located on low lying foothills. Vegetated by annual grasses and forbs. Soils are deep and well drained with slow permeability, moderate to very high available water apacity, medium surface runoff, slight or moderate water erosion hazard, and high shrink- swell potential. Land uses include rangeland, hay crops, small grains, and urban development. Well suited for agriculture. Capability units Ile-5 (15), irrigated and IIIe-5 (15), nonirrigated.
Diablo-Lodo complex, 15 to 50 percent slopes	Moderately steep to steep soils located on foothills and mountains. Annual grasses and forbes; some brush and hardwoods along drainages. 45% Diablo soils; 35% Lodo soils. Ibablo soils are deep and well-drained with slow permeability, moderate to high available water capacity, rapid surfacer tunoff, moderate to high water erosion hazard, high shrink-swell potential, and are subject to slippage when wet. Lodo soils are very shallow to shallow and somewhat excessively drained with moderate permeability, very low or low available water capacity, rapid surface runoff, and high water erosion hazard. Moderately suited for rangelands. Diablo soils have high water eccesion hazard. Lodo soils have low productivity and are often overgrazed with excessive sheet erosion. Capability subclass Vie [15], nonirrigated.
Gaviota fine sandy loam, 15 to 50 percent slopes	Moderately steep and steep soils located on foothills and mountains. Vegetated by brush, scattered hardwoods, annual grasses and forbs. Soils are shallow and well drained with moderately rapid permeability, very low available water capacity, rapid surface runoff, and high water erosion hazard. Land uses include rangeland and urban development. Poorly suited for rangelands. Subject to sheet and gully erosion due to coarse soil texture, shallow depth, and steep slopes. Capability subclass VIIe (15), nonirrigated.

Map Unit	Description
Gaviota sandy loam, 50 to 75 percent slopes	Very steep soils located on mountains. Vegetated by brush, scattered hardwoods, arnual grasses, and forbs. Soils are shallow and well drained with moderately rapid permeability, very low available water capacity, very rapid surface runoff, and very high water erosion hazard. Poorly suited for rangelands. Subject to sheet and gully enosion due to coarse soil texture, shallow depth, and steep slopes. Capability subclass VIIe (15), nonirrigated.
Gaviota-Rock outcrop complex, 30 to 75 percent slopes	Steep to very steep soils located on mountains. 40% Gaviota sandy loam; 25% rock outcrop. Gaviota siols are shallow, well drained with moderately rapid permeability very low available water capacity, very rapid surface runoff, and very high erosion hazard. Rock outcrops are hard sandstome. Watershed, wildlife and asthetic land uses. Soil has very little potential for establishing vegetation suitable for wildlife. Capability subclass VIIIe (15), nonirrigated.
Gazos-Lodo clav loams, 15 to 30 percent slopes	Moderately steep soils located on foothills and mountains. Vegetated by annual grasses, forbs, or brush with scattered hardwoods. 45% Gazos soils; 40% Lodo soils. Gazos soils are moderately deep and well cirained with moderately slow permeability. Iow or moderate available water capacity, rapid surface runoff, and high water erosion hazard. Lodo soils are shallow and somewhat excessively drained with moderate permeability, very low or low available water capacity, rapid surface runoff, and high water erosion hazard. Moderately suited for rangelands. Subject to sheet and gully erosion and compaction due to clay loam surface layer. Capability unit Ve-1 (15), nonirrigated.
Gazos-Lodo clay loams, 30 to 50 percent slopes	Steep soils located on foothills and mountains. Annual grasses and forbs, or brush with scattered hardwoods. 45% Gazos soils, 40% Lodo soils. Gazos soils are moderately deep and well-drained with moderately slow permeability, low or moderate available water capacity, rapid surface runoff, and high water erosion hazard. Lodo soils are shallow and somewhat excessible drained with moderate permeability, very low or low available water capacity, rapid surface runoff, and high water erosion hazard. Lodo soils are shallow and somewhat excessible drained with moderate permeability, very low or low available water capacity, rapid surface runoff, and high water erosion hazard. Moderately-suited for rangelands. Subject to sheet and guly erosion and soil compaction due to clay loam surface. Capability subclass VIe (15), nonirrigate
Gazos-Lodo clay loams, 50 to 75 percent slopes	Very steep soils located on mountains. Vegetated by annual grasses, forbs, brush, and scattlered hardwoods. 45% Gazos soils, 40%, Lodo soils. Gazos soils are moderately deep and well drained with moderately slow permeability. Jow or moderate available water capacity, very rapid surface nunoff, and very high water erosion hazard. Lodo soils are shallow and somewhat excessively drained with moderate permeability, very low or low available water capacity, very rapid surface nunoff, and very high water erosion hazard. Land uses include rangeleand and watershed. Poorly-suited for rangelands. Subject to sheet and gully erosion and soil compaction due to clay loam surface layer and very steep slopes. Capability subdass VIIe (15), nonirrigated.
Henneke-Rock outcrop complex, 15 to 75 percent slopes	Moderately steep to very steep soils located on foothills and mountains. Vegetated by brush, annual and perennial grasses, with few scattered hardwoods or conifers. 45% Henneke soils; 35% rock outcrop. Henneke soils are shallow and somewhat excessively drained, underlain by hard serpentine rock with moderately slow permeability, very low available water capacity, rapid or very rapid surface runoff, and high or very high water erosion hazard. Rock outcrop is hard serpentine exposed or near surface. Land uses include rangedands, watersheds, and wildlife habitat. Poorly suited for rangelands. Subject to sheet erosion due to clay loam surface layer and steep to very steep slopes. Serpentine limits vegetation growth. Capability subclass VIIe (15), nonirrigated.
Lodo clay loam, 15 to 30 percent slopes	Moderately steep soils located on foothills and mountains. Vegetated by brush, annual grasses and forbs. Soils are shallow and somewhat excessively drained with moderate permeability, very low or low available water capacity, rapid surface runoff, and high water erosion hazard. Moderately suited for rangelands. Subject to sheet and gully erosion and soil compaction due to clay loam surface layer. Capability subclass VIe (15), nonirrigated.

Man Intit	Description
	Steep soils located on foothills and mountains. Vegetated by brush, amrual grasses and forbs. Soils are shallow and somewhat excessively drained with moderate permeability, very low or low available water capacity, reapid surface runoff, and high water erosion hazard. Moderately suited for transmetants. Subject to sheet and rully ension due to fay loam surface
Lodo clay loam, 30 to 50 percent slopes	layer. Capability subclass VIe (15), nonirrigated.
	Moderately and strongly sloping soils located on foothills and mountains. Vegetated by brush, annual grasses, and forbs. Soils are shallow and somewhat excessively drained with
	moderate permeability, very low or low available water capacity, medium surface runoff, and moderate water erosion bazard. Moderately suited for rangelands. I and uses include
	rangeland and urban development. Abject to gully erosion and soil compaction due to clay
Lodo clay loam, 5 to 15 percent slopes	loam surtace layer. Capability unit IVe-1 (15), nonirrigated. Verv steep solis located on foothills and mountains. Vergetated with hrush and some grasses.
	and force round round on common and momentary. Any other and with moderate permeability, there have no been as the shallow and somewhat excessively drained with moderate permeability. Verv low or low avaits the vater croascin, rapid surface runnoff, and verv hich water erossion.
	hazard. Poorly suited for rangelands. Subject to sheet and gully erosion and soil compaction
l odo clav ham -50 to 75 nercent slones	due to day totain surrace rayer and steep stopes. Termanent prant cover should be maintained at all times due to high erosion hazard. Capability subclass VIIe (15), nonirriredations.
	Steep and very steep soils located on foothills and mountains. Vegetated with brush and some annual prasses. 55% Lodo soils: 40% rock outcrop. Lodo soils are shallow and
	somewhat excessively drained with moderate permeability, very low or low available water
	capacity, rapid or very rapid surface runoff, and high or very high water erosion hazard. Rock
	outcrop is hard sandstone, red rock, or shale at or near surface. Poorly suited for
Lodo-Rock outcrop complex, 30 to 75 percent slopes	irangeranos. Lodo sous are subject to sneet erosion and son compaction. Fermanent plant cover should be maintained at all times. Capability subclass VIIe (15), nonirrigated.
	Strongly sloping, moderately steep soils located on foothills and mountains. Vegetated by
	amuaa grasses and brush. 33% bord solls, 40% rock outcrop. Eodo solls are smallow and somewhat excessively drained with moderate nermeability. very low or low available water
	capacity, medium or rapid surface runoff, moderate or high water erosion hazard. Rock
	outcrop is hard sandstone, red rock, or shale at or near soil surface. Moderately suited for
Lodo-Rock outcrop complex, 9 to 30 percent slopes	Irangelands. Subject to sheet erosion and soil compaction due to clay loam surface layer. Capability subclass Vie (15), nonirrigated.
•	Vary strand soile Increted on monitorine - Vandetated by conset live and California loured
	40% Lombico loam: 35% McMullin aravelly loam. Lombico soils are moderately deep. well
	drained with moderate permeability, low to moderate available water capacity, very rapid
	surface runoft, and very high erosion hazard. McMullin solls are shallow, somewhat excessively drained with moderate permeability very low to low available water capacity very
	rapid surface runoff, and very high erosion hazard. Rangeland land use. Erosion control is
Lompico-McMullin complex, 50 to 75 percent slopes	essential on these soils. Capability subclass VIIe (15), nonirrigated.
	Steep and very steep soils located on foothills and mountains. Vegetated by hardwoods with some annal crasses or brush. 45% Lomnico soils. 20% McMullin soils. Lomnico soils are
	moderately deep and well drained with moderate permeability, low or moderate available
	water capacity, rapid or very rapid surface runoff, and high or very high water erosion hazard. McMullin soils are shallow and somewhat excessively drained with moderate permeability,
	very low or low available water capacity, rapid surface runoff, and high water erosion hazard. Watershed and wildlife habitat soils. Poorty suited for rangelands due to compaction, erosion
Lompico-McMullin loams, 30 to 75 percent slopes	hazard, and woody plant vegetation. Capability subclass VIIe (15), nonirigated.

Mode Unit Description Mode Unit Description Rep and carging energy seep sols brand on mouthains. Wagenated by brank, annual grasses, thet, and a statement and they reperture sets on two in contrast of provide variable water capacity, rapid currenges soles to state on mouthains. Soles in an outcome set on mouthains. Soles in an outcome set on mouthain sole of provide variable water capacity, rapid sufficient and the molectima presses. Soles in an outcome set on mouthain sole of provide variable water capacity, rapid sufficient and the molectima presses. Soles in an uncommany sole of a state of the provide variable water capacity, rapid sufficient and the molectima presses. Soles in an uncommany sole of capacity set of a state of the provide variable water capacity, rapid sufficient and set operating and set on mountains. Vagenated by brank, and water and the molectima presses of the provide variable water capacity, rapid sufficient and the sole of the molectima presses. Molectima presses and traps and of an uncommany set of the molectima presses. Molectima presses and traps and transfer of the provide and transfer of		
scent slopes	Map Unit	Description
rcent slopes srcent slopes		Steep and very steep soils located on mountains. Vegetated by brush, annual grasses, forbs,
arcent slopes s s b srcent slopes s s b s c s c s c s c s c s c s c s c s c s c		and scattered hardwoods. Soils are shallow and somewhat excessively drained with
Dercent slopes s s s s s s s s s s s s s s s s s s s		moderate permeability, very low available water capacity, rapid or very rapid surface runoff,
D percent slopes		and high or very high water erosion hazard. Poorly suited for rangelands. Subject to sheet
D D D D D D D D D D D D D D D D D D D	Lopez very shaly clay loam, 30 to 75 percent slopes	erosioni que to very snary ciay roant sunace and steep stopes. Capability subclass vine (13), nonirrigated.
Dercent slopes s s s s s s s s s s s s s s s s s s s		Extremely steep soils located on mountains. Vegetated by brush. 60% Lopez soils; 35%
Dercent slopes second slopes		rock outcrop. Lopez soils are shallow and somewhat excessively drained with moderate nermeability very low available water canacity very ranid surface runoff and very hich water
Dercent slopes		erosion hazard. Rock outcrop is exposed, hard, acid shale. Land use is watershed. Poorly
Dercent slopes sreent slopes		suited for rangelands. Subject to sheet erosion due to very shaly clay loam surface texture
arcent slopes	Lonez-Bock outcrop complex. 75 to 100 percent slones	and extremely steep slopes. Sheet erosion produces shale fragments which hinder venetation prowth Capability subclass VIIe (15) nonirripated
arcent slopes		Moderately steep soils located on foothills and mountain ridgetops. Annual grasses and forbs
s s s s s s s s s s s s s s s s s s s		with a few brush areas and hardwoods along drainages. Moderately deep and well drained with slow permeability low or moderate available water capacity rapid surface runoff high
arcent slopes		water erosion hazard, high shrink-swell potential in the subsoli, and is subject to slippage
s s s s s s s s s s s s s s s s s s s		when wet. Land uses include rangelands and urban development. Well-suited for
s a construction of the second s	Los Osos loam, 15 to 30 percent slopes	irangeranos. Suoject to guity erosion que to craty suoson, moderately steep stopes and loarn surface layer. Capability unit IVe-1 (15), nonirrigated.
s srcent slopes		
s srcent slopes		Steep soils located on footnills and mountain ridgetops. Vegetated by annual grasses and forbs, with brush and some hardwoods along drainages. Soils are moderately deep and well
s srcent slopes		drained with slow permeability, low to moderate available water capacity, rapid surface runoff, hinh water erosion hazard hinh shrink-swell notential in subsoil and subtect to slibnade when
s srcent slopes		wet. Moderately suited for rangelands. Subject to gully erosion due to clay subsoil, loam
arcent slopes	Los Osos Ioam, 30 to 50 percent slopes	surface layer and steep slopes. Capability subclass VIe (15), nonirrigated.
srcent slopes		Gently rolling soils located on foothils and mountain ridgetops. Vegetated by annual grasses and force Sails are moderated deep and well drained with clow normospility. Jow or
arcent slopes		and rous. Some are moved arely deep and wer dramed will solve permeasurely, low of moderate available water capacity, medium surface runoff, moderate water erosion hazard,
arcent slopes		and high shrink-swell potential in subsoil. Land uses include rangeland, small grains, hay
srcent slopes	Los Osos loam, 5 to 9 percent slopes	corps, and under accorptions. Then added to inspectations. Corport to guny encounter accord to the corport of t
arcent slopes		Rolling soils located on foothills and mountain ridgetops. Vegetated by annual grasses and
srcent slopes		roros with some narowoods in gramages. Solis are moderately deep and well gramed with slow permeability, low or moderate available water capacity, medium surface runoff.
srcent slopes		moderate water erosion hazard, high shrink-swell potenital in subsoil, and subject to slippage
srcent slopes		when saturated. Land uses include rangelands and urban development. Well-suited for
	Los Osos Ioam, 9 to 15 percent slopes	rangerands. Capability units lite-3 (15), irrigated and nonirrigated. Moderataly staen and staen soils located on footbills and mountains. Venetated by annual
		drasses. forbs. or brush, with hardwoods along drainages. Soils are very deep and well
		drained with slow permeability, high or very high available water capacity, rapid surface runoff,
		and moderate or right water eroson mazaro. Well suited for rangerands, compaction nazaro due to clay loam surface. Grazing dry soils reduces compaction. Capability subclass Vie
	Los Osos variant clay loam, 15 to 50 percent slopes	(15), nonirrigated.

Man Ilnit	Description
map Unit Los Osos-Diablo complex, 15 to 30 percent slopes	Moderately steep soils located on foothils and mountains. Annual grasses and forbes; some brush and hardwoods along drainages. Grassland soils with coast live oak woodlands. 35% Los Osos soils; 30% Diablo soils. Los Osos soils are moderately deep and well-drained with slow permeability, low or moderate available water capacity, high water erosion hazard, high strink-swell potential, and are subject to slippage when wet. Diablo soils are deep and well- drained with slow permeability, moderate to high available water capacity, rapid surface runoff, moderate to high water erosion, high shrink-swell potential, and are subject to slippage when wet. Land uses include argnelands and urban development. Well-suited for rangelands. Subject to gully erosion due to loam surface layer and clay subsoil. Capability unit IVe-1 (15), nonirrigated.
Los Osos-Diablo complex, 30 to 50 percent slopes	Steep soils located on foothills and mountains. Annual grasses and forbes; some brush and hardwoods along drainages. Grassland soils with Coast live oak woodlands. 40% Los Osos soils; 35% Diablo soils. Los Osos soils are moderately deep and well-drained with slow permeability, low or moderate available water capacity, high water erosion hazard, high shrink- swell potential, and are subject to slippage when wet. Diablo soils are deep and well-drained with slow permeability, moderate to high available water capacity, rapid surface runoff, moderate to high water erosion, high shrink-swell potential, and are subject to slippage when wet. Moderately-suble to slippage when Schlect to gully erosion due to steep slopes, loam soil surface and clay subsoil. Capability subclass VIe (15), nonirrigated.
Los Osos-Diablo complex, 5 to 9 percent slopes	Gently rolling soils located on foothills and mountain ridgetops. Vegetated by annual grasses and forbs. 35% Los Osos soils; 30% Diablo soils. Los Osos soils are moderately deep and well drained with slow permeability, low or moderate available water capacity, medium surface runoff, moderate water erosion hazard, and high shrink-swell potential in subsoil. Diablo soils are deep and well drained with slow permeability, moderate to very high available water capacity, medium surface runoff, slight water erosion hazard, and high shrink-swell potential. Land uses include hay crops, small grains, rangeland, and urban developement. Well-suited for rangelands. Jobject to gully erosion due to clay subsoil and loam surface layer. Capability units Ille-3 (15), irrigated and noninrigated.
Los Osos-Diablo complex, 9 to 15 percent slopes	Rolling soils located on foothills and mountain ridgetops. Vegetated by annual grasses and forbs. 35% Los Osos soils and 30% Diablo soils. Los Osos soils are moderately deep and well drained with slow permeability, low or moderate available water capacity, medium surface runoff, moderate water erosion hazard, high shink-swell potential in subsoil, and subject to slippage when wet. Diablo soils are deep and well-drained with slow permeability, moderate to very high available water capacity, medium surface runoff, moderate water erosion hazard, high strink-swell potential, and subject to slippage when wet. Land uses include hay crops, small grains, rangeland, and urban development. Well-suited for rangelands. Subjact to gully erosion due to clay subsoil and loam surface layer. Capability units Ille-3 (15), irrigated and nonirrigated.
Los Osos-Lodo complex, 30 to 75 percent slopes	Steep and very steep solis located on foothills and mountains. Vegetated by annual grasses and forbs, with brush and hardwoods along drainageways. 50% Los Osos solis, 30% Lodo solis. Los Osos solis are moderately deep and well drained with slow permeability, low or moderate available water capacity, rapid surface runoff, high or very high water erosion hazard, high shrink-swell potential in subsoli, and are subject to slippage when wet. Lodo solis are shallow and somewhat excessively drained with moderate permeability, very low or low available water capacity, rapid or very rapid surface runoff, and high or very high water erosion hazard. Moderately suited for rangelands. Subject to gully erosion due to clay subsoli, loam surface layer, and very steep slopes. Capability subclass VIIe (15), nonirrigated.

Map Unit Description Description Very steep s to am. Los O amolerate av high erro error erro	
	u.
Very deep ar annual graas	Very steep soils located on mountains. 40% Los Osos clay loam; 30% Lodo gravelly clay loam. Los Osos soils are moderately deep, well drained with slow permeability, low to moderate available water capacity, very rapid surface runoff, very high erosion hazard, and high shrink-swell potential. Lodo soils are shallow, somewhat excessively drained with moderate permeability, very tow to low available water capacity, very rapid surface runoff, and very high erosion hazard. Rangeland land uses. Capability subclass VIIe (15), nonirrigated.
Ingri or very hazard. Lan Caapability uni	Very deep and well drained soils found on alluvial fans and in narrow valleys. Vegetated with annual grasses and forbs. Presently cultivated. Soils have moderately slow permeability, high or very high available water capacity, slow surface runoff, and slight water erosion hazard. Land uses include crops and orchards. Capability class I (14), irrigated and capability unit III-1 (14), nonincitated.
, 50 to 75 percent slopes	Very steep soils located on mountains. 45% McMullin gravelly loam; 25% rock outcrop. McMullin soils are shallow; somewhat excessively drained with moderate permeability; very low to low available water capacity; very rapid surface runoff; and very ensoin hazard. Rock outcrops are areas of hard sandstone and shale. McMullin soils are poorty suited for rangelands. Soil hast little potential for vegetation establishment suitable for wildlife. Capability subclass VIIe (15); nonirrigated.
Moderately s grasses and very slow per moderate y Milisap loam, 15 to 50 percent slopes	Moderately steep and steep soils located on foothills and mountains. Vegetated by annual grasses and forbs, with some hardwoods. Soils are moderately deep and well drained with very slow permeability, very low or low available water capacity, rapid surface runoff, and moderate or high water erosion hazard. Land uses include rangelands and watershed. Moderately suited for rangelands. Subject to gully erosion due to clay subsoil, loam surface layer, and steep slopes. Capability subclass VIe (15), nonirrigated.
ercent slopes	Steep soils located on hills. Soils are deep, well drained with moderately slow permeability, low to moderate available water capacity, rapid surface rund, and high erosion hazrd. Otilivated crops and rangeland land uses. Not suited for cultivated crops due to steep slopes and high erosion hazard. Well suited for rangelands. Capability subclass Vie (15), nonirrigated.
Steep solis It Steep solis It some brush. deep and we deep and we deen and de homeste dee homeste dee homeste dee homeste de homeste de homest	Steep soils located on foothills and mountains. Vegetated by annual grasses and forbs, with some brush. 45% Nacimiento soils; 35% Calodo soils. Nacimiento soils are moderately deep and well drained with moderately slow permeability, low or moderate available water capacity, rapid surface runoff, and high water erosion hazard. Calodo soils are shallow and well drained with moderately slow permeability, very low or low available water capacity, rapid surface runoff, and high water erosion hazard. Calodo soils are shallow and well drained with moderately slow permeability, very low or low available water capacity, rapid bmesite development also occurs. Subject to sheet erosion due to sifty clay loam and loam surface layers. Capability subclass V15 (15), nonirrigated.
	Very steep soils located on foothills and mountains. Vegetated by annual grasses and forbs with brush. 45% Nacimiento soils, 25% Calodo soils. Nacimiento soils are moderately deep and well drained with moderately slow permeability, low or moderate available water capacity, very rapid surface runoff, and very high water erosion hazard. Calodo soils are shallow and well drained with moderately slow permeability, very low or low available water capacity, very rapid surface runoff, and very high water erosion hazard. Moderately suide for rangelands. Subject to sheet and guly erosion and soil compaction. Capability suclass VIIe (15), noninigated.
88	Moderately steep to very steep soils and rock outcrop located on mountain ridges and side slopes. Vegetated by annual and perennial grasses and forbs, with some brush. 50% Obispo soils: 30% rock outcrop. Obispo soils are shallow, well drained, and formed from serpentine. Obispo soils have slow permeability, very low or low available water capacity, rapid or very rapid surface runoff, and high or very high water erosion hazard. Rock outcrop is serpentine at or near soil surface. Land uses include rangelands and watershed. Poorfy suited for rangelands. Subject to sheet erosion due to clay surface layer and steep slopes. Capability subclass VIIe (15), nonirrigated.

The Land Conservancy of San Luis Obispo County

Map Unit	Description
Riverwash	Active stream and river channels. Excessively drained, water-deposited sand, loamy sand, and sandy loam with various amounts of gravel and cobbles. Highly stratified soils with great variations. Excessively drained, very rapid permeability, very slow surface runoff, and very low available watter capacity. Land uses include recreation and wildlife habitat. Capability subclass VIIw (14), nonirrigated.
Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope	Steep and very steep complex located on mountains. Sparsely vegetated by annual grasses. 55% rock outcrop; 25% Haploxerolls. Rock outcrop is various types of bedrock. Lithic Haploxerolls are mostly Lodo, Lopez, and Obispo series. Less than 20 inches deep to rock. Poordy suited for most agricultural or urban land uses due to shallow depth to rock, steep Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slopt slope, and high percentage of rock. Capability subclass VIIIs (15), nonirrigated.
Salinas silty clay loam, 0 to 2 percent slopes	Nearly level soils located on alluvial fans and plains. Vegetated by annual grasses and forbs, with scattened hardwoods. Soils are very deep and well drained with moderately slow permeability, high or very high available water capacity, slow surface runoff, and slight water erosion hazard. Land uses include vegetable and hay crops, rangeland, and urban development. Well-suited for agriculture. Capability class I (14), irrigated and capability unit Illc-1 (14), nonirrigated.
Salinas silty clay Ioam, 2 to 9 percent slopes	Gently to moderately sloping soils located on alluvial fans and plains. Vegetated by annual grasses and forbs with some hardwoods. Soils are very deep and well drained with moderately slow permeability, high or very high available water capacity, slow or medium surface runoff, and slight or moderate water erosion nazard. Land uses include hay crops, small grains, urban development, irrigated pasture, or rangeland. Erosion hazard increases with greater slopes. Capability units IIe-1 (14), incigated and IIIe-1 (14), nonirrigated.
San Simeon sandy loam, 15 to 30 percent slopes	Moderately steep soils located on foothills. Vegetated by annual and perennial grasses and forbs, with some brush and conifers. Soils are moderately deep and moderately well drained with very slow permeability, very low or low available water capacity, rapid surface runoff, high water erosion hazard, and high strink-swell potential for subsoil. Poorly suited for rangelands due to clay subsoils restricting plant growth and water movement. Subject to gully erosion due to loamy surface layer and clay subsoil. Capability subclass VIe (15), nonirrigated.
San Simeon sandy loam, 2 to 9 percent slopes	Gently sloping and moderately sloping soils located on foothills and terraces. Vegetated by amnual and perennial grasses and forbs, with areas of brush or confiers, such as Monterey pine. Soils are moderately deep and moderately well drained with very slow permeability, very low or low available water capacity, slow or medium surface runoff, slight or moderate water erosion hazard, and high strink-swell potential of subsol. Land uses include rangeland and dryland farming. Land uses in Cambria area include unband uses includer rangeland poorly-suited for rangelands. Subject to gully erosion due to loamy surface layer and clay subsoil. Capability units IVe-3 (15), irrigated and nonirrigated.
San Simeon sandy loam, 30 to 50 percent slopes	Steep soils located on foothills. Vegetated with annual and perennial grasses and forbs, with areas of brush or confiers. Typically vegetated with Monterey pine and understory shrubs. Soils are moderately deep and moderately well drained with very slow permeability, very low or low available water capacity, rapid surface runoff, high water erosion hazard, and high shrink-swell potential of the subsoil. Poorly suited for rangelands. Subject to gully erosion due to loarny surface layer and clay subsoil. Permanent plant cover should be maintained at all times due to high erosion hazard. Capability subclass VIe (15), nonirrigated.

The Land Conservancy of San Luis Obispo County

Map Unit	Description
San Simeon sandy loam, 9 to 15 percent slopes	Strongly sloping soils located on foothills and terraces. Vegetated by annual and perennial grasses and forbs, with some brush or conflers. Soils are moderately deep and moderately well drained with very slow permeability, very low or low available water capacity, medium surface runoff, moderate water erosion hazard, and high shrink-swell potential in subsoil. Land uses in Cambria area include urban development and recreation, with some rangelands. Poorly-suited for rangelands. Subject to gully erosion due to clay subsoil and loamy surface. Typically covered with Monterey pines. Capability units IVe-3 (15), irrigated and noinrigated.
Santa Lucia shaly clay loam, 30 to 50 percent slopes	Steep soils located on mountains. Vegetated by brush or annual grasses and forbs, with scattered hardwood vegetation. Soils are moderately deep and well drained with moderate permeability, very low or low available water capacity, rapid surface runoff, and moderate or high water erosion harzard. Moderately suited for rangelands. Subject to sheet erosion due to shaly ctay loam surface and steep slopes. Sheet erosion produces more shale fragments on soil surface and hinders further vegetative growth. Capability subclass Vie (15), nonirrigated.
Santa Lucia shaly clay Ioam, 50 to 75 percent slopes	Very steep solis located on mountains. Vegetated by brush, annual grasses, forbs, and areas of hardwood vegetation. Moderately deep and well drained with moderate permeability, very low or low available water capacity, very rapid surfacer runoff, and high or very high water erosion hazard. Land uses include rangeland and recreation. Poorly suited for rangelands. Subject to shele trosion due to staly clay loam surface layer and steep slopes. Capability subclass VIIe (15), nonirrigated.
Santa Lucia very shaly clay loam, 9 to 15 percent slopes Water	Strongly sloping soils located on foothills and mountains. Vegetated by annual grasses, forbs, or brush, with scattered hardwoods. Soils are moderately deep and well drained with moderate permeability, very low or low available water capacity, medium surface runoff, and slight or moderate water erosion hazard. Land uses include small grains, hay crops, and rangelands. Suiled for dryfarming and moderately suited for rangelands. Subject to sheet erosion due to shalf your No-4 (15), irrigated and nonirrigated erosion due to shalf your surface. Capability unit No-4 (15), irrigated and nonirrigated
Xerorthents, escarpment	Moderately steep and steep, relatively smooth, descending stopes located at the end of terraces. Vegetated by anuual grasses and shrubs. Fairly well stabilized soils. Soil material varies. When surface is bare, runoff is rapid and the water erosion hazard is high. Deep gullies sometimes present. Grazelands. Capability subclass VIIe (15), nonirrigated.
Zaca clay, 15 to 30 percent slopes	Moderately steep soils located on foothills and mountains. Vegetated by annual grasses and forbs with some hardwoods along drainages. Soils are deep and well drained with slow permeability, high available water capacity, rapid surface runoff, moderate water erosion hazard, and subject to slippage when wet. Land uses include rangeland, lemons, avocados, and grains. Studied for dryland farming on gentle slopes. Well-suited for rangelands. Subject to surface compaction due to clay texture. Capability unit IVe-5 (15), nonirrigated.
Zaca clay, 30 to 50 percent slopes	Steep soils located on foothills and mountains. Vegetated by annual grasses and forbs, with hardwoods along drainages. Soils are deep and well drained with slow permeability, high available water capacity, rapid surface runoff, high water erosion hazard, and subject to slippage when wer. Wells suitad for rangelands. Subject to surface compaction due to clay texture. Capability subclass VIe (15), nonirrigated.
Zaca clay, 9 to 15 percent slopes	Strongly sloping or rolling soils located on low lying foothills. Vegetated by annual grasses and forbs, with some hardwoods along drainages. Soils are deep and well drained with slow permeability, high available water capacity, medium surface runoff, and moderate water erosion hazard. Land uses include small grains, hay crops, rangelands, lemons, and avocados. Gentle slopes suited for dry farming. Cover crops needed in orchards to reduce erosion. Well-suited for rangelands. Lund use shull partine. Capability units IIIE 5 (15), infrated and noniringated.

The Land Conservancy of San Luis Obispo County

APPENDIX G

GIS DATA DESCRIPTIONS AND SOURCES

FILE NAME	DATA TITLE	DATA FORMAT	
Basin	Basin	shapefile	
CA_Counties	County Boundaries (1:24000)	shapefile	
Combria area bayaing	Hausing Canaus Data Combrid	abanafila	
Cambria_area_housing	Housing Census Data - Cambria	shapefile	
Cambria_area_pop	Population Census Data - Cambria	shapefile	
canopy2_011007	National Land Cover Database Tree Canopy Layer	remote-sensing image	
	Rural land use - Santa Rosa Creek		
categ_rural_lu_SRC	Watershed	shapefile	
Cattle gully	Gully Erosion Associated with Cattle Trails	shapefile	
yony			
Cattle trails	Cattle Trail Erosion	shapefile	
	103-Year High-Resolution		
climate precipitation (FOLDER)	Precipitation Climate Data Set for the Conterminous United States	13 shapefiles within folder	
climate_precipitation (FOLDER)	Seamless Daily Minimum	within loider	
	Temperature for the Conterminous United States; and Seamless Daily		
	Maximum Temperature for the	3 shapefiles within	
climate_temperature (FOLDER)	Conterminous United States	folder	
alu aublia CDO	Common Land Unit - Santa Rosa	ahaa afila	
clu_public_SRC	Creek Watershed	shapefile	
Community	Community	shapefile	
· · · · · · · · · · · · · · · · · · ·			
CommunityAdvisoryCouncils	CAC Boundaries	shapefile	
CONUS_wetland_polygons_SRC	WETDBA.CONUS_wet_poly	shapefile	
County Hardwoods	County Hardwoods - Santa Rosa Creek Watershed	shapefile	
county minor	Extracting Activities - Santa Rosa Creek Watershed	abanafila	
county_mines	Greek watersned	shapefile	
	County Vegetation - Santa Rosa		
County_Vegetation	Creek Watershed	shapefile	
	Land use category - Santa Rosa		
countywide_luc	Creek Watershed	shapefile	
csds	csds	shapefile	
dea apostol zona CDC	Coastal Zone - Santa Rosa Creek	abanafila	
des-coastal_zone_SRC	Watershed	shapefile	

FILE NAME	DESCRIPTION
	Location information of detention basins in the Santa Rosa Creek Watershed, Cambria, California. Basins provide
	information about sites where local deposition of detached soil may be occurring. Data were acquired for the Santa Rosa
Basin	Creek Watershed Conservation Plan, 2008.
CA Counties	California county boundary coverage
	ounorma oounty boundary oovorago
	2000 Census Block Data for Housing - Redistricting Census TIGER/Line 2000 Data. This data contains information on:
Cambria_area_housing	dwelling units, occupancy, vacancy, tenure, and the number of persons in a household.
	2000 Census Blocks for Population Data - Redistricting Census TIGER/Line 2000 Data. This data contains information on
Cambria_area_pop	total population and ethnicity breakdown. Current, consistent, seamless, and accurate National Land cover Database (NLCD) circa 2001 for the United States at
canopy2_011007	medium spatial resolution.
categ_rural_lu_SRC	Rural Land Use Categories for Santa Rosa Creek Watershed.
	Location information of gully erosion sites occurring in association with cattle trails in the Santa Rosa Creek Watershed,
Cattle gully	Cambria, California. Sites are often located in the upper reaches of tributaries and unnamed drainages. Data were acquired for the Santa Rosa Creek Watershed Conservation Plan, developed by the Land Conservancy of San Luis Obispo County.
	Location information of erosion sites, excluding gully erosion, occurring in association with a high density of cattle trails
	resulting in decreased vegetative ground cover in the Santa Rosa Creek Watershed, Cambria, California. Data were
Cattle trails	acquired for the Santa Rosa Creek Watershed Conservation Plan, 2008. Spatially distributed daily precipitation for the Conterminous United States (CONUS). Each file represents 1 day for the period
	1960-2001 and at the 2.5 min (around 4 km) resolution. The data were obtained via interpolation of daily ratios calculated
	from ground-based meteorological station records (Eischeid et al. 2000) and combined with the respective fields of monthly
	topography-enhanced estimates, the PRISM (Parameter-elevation Regressions on Independent Slopes Model) maps (Daly et
climate_precipitation (FOLDER)	al. 1994).
	Spatially distributed daily minimum, maximum, and average temperature for the Conterminous United States (CONUS). Each file represents 1 day for the period 1960-2001 and at the 2.5 min (around 4 km) resolution. The data were obtained via
	interpolation of daily ratios calculated from ground-based meteorological station records (Eischeid et al. 2000) and combined
	with the respective fields of monthly topography-enhanced estimates, the PRISM (Parameter-elevation Regressions on
climate_temperature (FOLDER)	Independent Slopes Model) maps (Daly et al. 1994).
	digitized farm tract and field boundaries and associated attribute data. The USDA Farm Service Agency (FSA) defines farm fields as agricultural land that is delineated by natural and man-made boundaries such as road ways, tree lines, waterways,
	fence lines, etc. Field boundaries are visible features that can be identified and delineated on aerial photography and digital
	imagery. Farm tracts are defined by FSA as sets of contiguous fields under single ownership. Common land units are used to
clu_public_SRC	administer USDA farm commodity support and conservation programs in a GIS environment.
Community	Point locations of the communities of Cambria and Harmony using digitized 7.5 minute topography maps, DRGs.
	Official Community Area Boundaies for properties in the unincorporated area of San Luis Obispo County. The Coordinates for
CommunityAdvisoryCouncils	this dataset are State Plane Coordinate System, Zone 5, NAD 1983 Feet.
	This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the conterminous
CONUS_wetland_polygons_SRC	United States. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979).
	Locations of Hardwoods within Santa Rosa Creek Watershed - Includes species name and their associated density and
County_Hardwoods	acreage.
county_mines	Existing and historic mining and extractive activities in the Santa Rosa Creek Watershed.
	Vegetation Types within the Santa Rosa Creek Watershed for resource management. Also includes species/habitat codes.
	Mapping was done between 1979 and 1981 by US Forest Service ecologists. The California Dept. of Foresty and Fire
County_Vegetation	Protection created the digital coverage by scanning the source maps.
countywide luc	Official land use category designations for properties in the unincorporated area of San Luis Obispo County.
· –	
csds	Community service district boundaries
des-coastal_zone_SRC	Designated Coastal Zone Area for Santa Rosa Creek Watershed after the passage of the Coastal Act of 1976.

	CREATOR	CONTENT DATE	SCALE
	Stacey Smith, Graduate Student, Soil Science, California	CONTENT DATE	SCALE
	Polytechnic State University, for the Santa Rosa Creek		
Basin	Watershed Conservation Plan, 2008.	August 2008	≤1:2,000
	California Department of Forestry and Fire Protection (using	1007	1.01.000
CA_Counties	data from BOR and DOC FMMP)	1997	1:24,000
Cambria_area_housing	San Luis Obispo County - Mapping/Graphics 781-5600	November 2001	Unknown
Cambria_area_pop	San Luis Obispo County - Mapping/Graphics 781-5600	April 2001	Unknown
canopy2_011007	U.S. Geological Survey	2001	Unknown
categ_rural_lu_SRC	San Luis Obispo County - Mapping/Graphics 781-5600	February 2001	Unknown
	Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek		
Cattle gully	Watershed Conservation Plan, 2008.	August 2008	≤1:2,000
	Stacey Smith, Graduate Student, Soil Science, California		1
Cottle traile	Polytechnic State University, for the Santa Rosa Creek	August 0000	<1.2.000
Cattle trails	Watershed Conservation Plan, 2008.	August 2008	≤1:2,000
	Mauro Di Luzio, Blackland Research Center, Texas		
	Agricultural Experiment Station, Texas A&M University		2.5 minute
limate_precipitation (FOLDER)	System, Temple, Texas	October 2007	resolution
	Mauro Di Luzio, Blackland Research Center, Texas		
	Agricultural Experiment Station, Texas A&M University		2.5 minute
climate_temperature (FOLDER)	System, Temple, Texas	October 2007	resolution
clu_public_SRC	USDA-FSA Aerial Photography Field Office Stacey Smith, Graduate Student, Soil Science, California	October 2007	1:7,920
Community	Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	2008	1:24,000
	SLO County Planning & Building Geographic Technology &	2000	
CommunityAdvisoryCouncils	Design	September 2007	Unknown
	U.S. Fish and Wildlife Service, Division of Habitat and		1:24,000 to
CONUS_wetland_polygons_SRC	Resouce Conservation	1977 to present	1:25,000
County_Hardwoods	California Department of Forestry	December 1998	Unknown
	Stacey Smith, Graduate Student, Soil Science, California		
county mines	Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	2008	≤1:2,000
County_Vegetation	California Department of Foresty (CDF)	June 1996	1:250,000
-			
countywide_luc	SLO County Planning & Building Geographic Technology & Design	December 2007	1:24,000
csds	County of San Luis Obispo-Mapping/Graphics	February 2004	Unknown
des-coastal zone SRC	San Luis Obispo County - Mapping/Graphics 781-5600	January 2000	1:24,000

FILE NAME	PROJECTED COORDINATE SYSTEM	GEOGRAPHIC COORDINATE SYSTEM (DATUM)	COORDINATE SYSTEM
Basin	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
CA_Counties	NAD_1927_California_Teale_Albers	GCS_North_American_1927	Albers Conical Equal Area
Cambria_area_housing	Custom	GCS_North_American_1983	Lambert Conformal Conic
Cambria_area_pop	Custom	GCS_North_American_1983	Lambert Conformal Conic
canopy2_011007			Albers Conical Equal Area
categ_rural_lu_SRC	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
Cattle gully	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
Cattle trails	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
climate_precipitation (FOLDER)		World Geodetic Spheroid 1972 (WGS72)	
climate_temperature (FOLDER)		World Geodetic Spheroid 1972 (WGS72)	
clu_public_SRC	NAD_1983_UTM_Zone_10N	GCS_North_American_1983	Universal Transverse Mercator
Community	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
CommunityAdvisoryCouncils	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
CONUS_wetland_polygons_SRC			Albers Conical Equal Area
County_Hardwoods	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
county_mines	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
County_Vegetation	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
countywide_luc	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983 GCS_North_American_1983; State	Lambert Conformal Conic
csds	Custom	Plane, Zone V, Feet	Lambert Conformal Conic
des-coastal_zone_SRC	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic

FILE NAME	HORIZONTAL DATUM	EDITS TO ORIGINAL SHAPEFILE
Basin	North American Datum of 1983	None
CA_Counties	North American Datum of 1927	None
		Cambria housing census data were extracted by intersecting 2000 census data with the
Cambria_area_housing	North American Datum of 1983	Santa Rosa Creek Watershed boundary.
Cambria_area_pop	North American Datum of 1983	Cambria population census data were extracted by intersecting 2000 census data with the Santa Rosa Creek Watershed boundary.
canopy2 011007	North American Datum of 1983	None
categ_rural_lu_SRC	North American Datum of 1983	Data clipped using the Santa Rosa Creek Watershed boundary.
Cattle gully	North American Datum of 1983	None
Cattle gully	North American Datum 01 1903	
Cattle trails	North American Datum of 1983	None
climate precipitation (FOLDER)		None
climate temperature (FOLDER)		None
clu_public_SRC	North American Datum of 1983	Data clipped using the Santa Rosa Creek Watershed boundary.
Community	North American Datum of 1983	None
CommunityAdvisoryCouncils	North American Datum of 1983	None
CONUS wetland polygons SRC	North American Datum of 1983	Data clipped using the Santa Rosa Creek Watershed boundary.
oontoo_wolland_polygono_onto		Bata onpped doing the banta hood of our wateroned boundary.
		County hardwood dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/)
County_Hardwoods	North American Datum of 1983	and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary.
		County mining data were downloaded from SLO Datafinder at http://lib.calpoly.edu/gis/.
		Digitized 7.5 minute quadrangle of the central coast and 2007 six inch ground resolution aerial imagery of the watershed were used to compare existing mining activities
county_mines	North American Datum of 1983	documented in the county data and locate additional extractive activities.
County_Vegetation	North American Datum of 1983	County vegetation dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary.
		and any and any and announced by any and and a rood proof that boundary.
countywide_luc	North American Datum of 1983	Data clipped using the Santa Rosa Creek Watershed boundary.
csds	North American Datum of 1983	None
	No dh Anna da an Dùtair 1999	Dub attended the Dark Dark Dark Web 14 12 11
des-coastal_zone_SRC	North American Datum 1983	Data clipped using Santa Rosa Creek Watershed Boundary

	DATA CTODACE	METADATA
FILE NAME	DATA STORAGE	STANDARD
Basin	Land Conservancy of San Luis Obispo.	ISO
CA Counties	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
Cambria area housing	retained at the Land Conservancy of San Luis Obispo County.	FGDC
oumona_area_nodomig	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
Cambria_area_pop	retained at the Land Conservancy of San Luis Obispo County.	FGDC
	Multi-Resolution Land Characteristics Consortium	1 0.00
canopy2_011007	(http://www.mrlc.gov/)	FGDC
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
categ_rural_lu_SRC	Obispo County.	FGDC
Cattle gully	Land Conservancy of San Luis Obispo.	ISO
Cattle trails	Land Conservancy of San Luis Obispo.	ISO
	Geospatial Data Gateway	
climate_precipitation (FOLDER)	(http://datagateway.nrcs.usda.gov/)	FGDC
	Geospatial Data Gateway	
climate_temperature (FOLDER)	(http://datagateway.nrcs.usda.gov/)	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
clu public SRC	retained at the Land Conservancy of San Luis Obispo County.	
poieo		
Community.	Land Concerns of Conclusion Obiogra	100
Community	Land Conservancy of San Luis Obispo.	ISO
CommunityAdvisoryCouncils	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
	Original data acquired from National Wetlands	
	Inventory, http://www.fws.gov/wetlands/Data/DataDownload.	
	html. Edited shapefile retained at the Land	
CONUS_wetland_polygons_SRC	Conservancy of San Luis Obispo County.	FGDC
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
County_Hardwoods	Obispo County.	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	100
county_mines	Obispo County. Original data acquired from SLO Datafinder	ISO
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
County_Vegetation	Obispo County. Original data acquired from SLO Datafinder	FGDC
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
countywide_luc	Obispo County.	FGDC
csds	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
des-coastal zone SRC	retained at the Land Conservancy of San Luis Obispo County.	FGDC

FILE NAME	DATA TITLE	DATA FORMAT
	Flood Zone - Santa Rosa Creek	
des-flood_SRC	Watershed	shapefile
des-gsafault	des-gsafault	shapefile
ues-ysaiauit	ues-ysalauli	Shapellie
de a contra de l'ale ODO	des-gsalandslide Santa Rosa Creek	
des-gsalandslide_SRC	Watershed	shapefile
	Historical - Santa Rosa Creek	
des-historical_src	Watershed	shapefile
	Blueline Stream Drainage	
	Boundaries - Santa Rosa Creek	
Drainage_2	Watershed	shapefile
	Blueline Stream Drainage Soils -	
Drainage_2_SOILS	Santa Rosa Creek Watershed	shapefile
	RUSLE2 Results by Drainage - Santa	
Drainage_Results	Rosa Creek Watershed	shapefile
Extent	Extent	shapefile
	Family Parcels Combined - Santa	
Family_parcels_2	Rosa Creek Watershed	shapefile
	Family Parcels - Santa Rosa Creek	
Family_subdivided_2	Watershed	shapefile
fault_lines	fault_lines	shapefile
	Digital geologic map database of	
	Santa Rosa Creek Watershed,	
geology_SRC_clip	Cambria, CA	shapefile
	Grazing Parcels - Santa Rosa Creek	
Graze_LUC	Watershed	shapefile
grnd wtr basins	grnd_wtr_basins	shapefile
<u> </u>	(3	
0.11		ala ana Ci
Gully erosion	Gully Erosion	shapefile
	Roads - Green Valley Creek	
GV_roads	Watershed	shapefile
	Soils - Green Valley Creek	
GV_soils_mapunits	Watershed	shapefile
	Streams - Green Valley Creek	
GV_streams	Watershed	shapefile
GVC watershed	Groop Valley Grook Watershad	chapofile
GVC_watershed hydrologic_area	Green Valley Creek Watershed hydrologic_area	shapefile shapefile
hydrologic_subarea	hydrologic_subarea	shapefile
hydrologic_unit	hydrologic_unit	shapefile
image_03b	image_03b	raster digital data
	1	

FILE NAME	DESCRIPTION	
des-flood_SRC	Designated Flood Zones (A or B) within Santa Rosa Creek Watershed according to the Federal Emergency Management Agency (FEMA) - http://www.fema.gov.	
doo goofoult	Designated Geologic Sensitive Area. Location of major faults by type county wide for safety purposes.	
des-gsafault	Designated Geologic Sensitive Area. Location of major faults by type county wide for safety purposes.	
des-gsalandslide_SRC	Designated Geologic Sensitive Area - Landslide Potential within the Santa Rosa Creek Watershed. Polygon locations of areas that have a greater risk for landslide	
des-historical_src	Combining Designation - Historic Sites within Santa Rosa Creek Watershed. The Coordinates for this dataset are State Plane Coordinate System, Zone 5, NAD 1983 Feet.	
Drainage 2	Drainage boundary of each blueline stream within the Santa Rosa Creek Watershed. Data created to gather information to predict potential erosion rates within Santa Rosa Creek Watershed, using GIS and the RUSLE2 program developed by the United States Department of Arrivalture and the Natural Resources Comparation Statics (NEDA NDCS)	
Drainage_2	United States Department of Agriculture and the Natural Resources Conservation Service (USDA NRCS). Soil data for blue line stream drainages within the Santa Rosa Creek Watershed. These data were used to evaluate potential soil loss using RUSLE2 and GIS for the Santa Rosa Creek Watershed Conservation Plan, 2008. This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a Ipanimetric correct base and digitizing, or	
Drainage_2_SOILS	by revising digitized maps using remotely sensed and other information. Predicted annual soil erosion rates (tons per year) by drainage, with the Santa Rosa Creek Watershed. Data created to gather information to predict potential erosion rates within Santa Rosa Creek Watershed, using GIS and the RUSLE2 program developed by the United States Department of Agriculture and the Natural Resources Conservation Service (USDA NRCS).	
Extent	Point locations of the northern, western, southern, and eastern most extent of the Santa Rosa Creek Watershed boundary using digitized 7.5 minute topography maps, DRGs.	
Family_parcels_2	"Family" parcel polygon layer for Santa Rosa Creek Watershed. "Family" parcels are the combined parcel size in which one family owns is over 300 acres. "Family" parcels have the same family last name but may be owned by different members of that family. "Family" parcels with the same last name, adjacent to one another, were combined to show the total family ownership boundary.	
Family_subdivided_2	"Family" parcel polygon layer for Santa Rosa Creek Watershed. "Family" parcels are the combined parcel size in which one family owns is over 300 acres. "Family" parcels have the same family last name but may be owned by different members of that family.	
foult lines	County wide foult lines with foult types	
fault_lines	County-wide fault lines with fault types.	
geology_SRC_clip	Digital compilation of stratigraphic formations using USGS and California Geological Survey maps.	
Graze_LUC	Parcel polygon layer with grazing activities for land use, for Santa Rosa Creek Watershed, San Luis Obispo County. County Wide Ground Water Basins database that displays groundwater basins and sub-basins as defined by the California Department of Water Resources. The Coordinates for this dataset are State Plane Coordinate System, Zone 5, NAD 1983	
grnd_wtr_basins	Feet.	
Gully erosion	Location information of erosion sites occurring due to gullies, including ephemeral gullies, in the Santa Rosa Creek Watershed, Cambria, California. Data were acquired for the Santa Rosa Creek Watershed Conservation Plan, 2008.	
GV_roads	Tiger Line Roads downloaded from the TIGER database - contains names for roads. Roads within the Green Valley Creek Watershed, in Cambria, CA.	
GV_soils_mapunits	Soil Classification for Green Valley Creek Watershed.	
GV_streams	National Hydrology Dataset (NHD) developed by the USGS mapping out water reaches from lakes, rivers, streams, and othe surface water features.	
GVC_watershed hydrologic area	Green Valley Creek Watershed boundary, Cambria, California. Division of Region 3 California Central Coast, by hydrologic area.	
hydrologic_area hydrologic_subarea	Division of Region 3 California Central Coast, by hydrologic area. Division of Region 3 California Central Coast, by hydrologic subareas.	
hydrologic_unit	Division of Region 3 California Central Coast, by hydrologic units.	
image_03b	Aerial photograph of Santa Rosa Creek Watershed. Specs to fly were 8,400' above ground level. Ground resolution six inches.	

FILE NAME	CREATOR	CONTENT DATE	SCALE
des-flood_SRC	San Luis Obispo County - Mapping/Graphics 781-560	March 2000	1:24,000
des-gsafault	San Luis Obispo County-Mapping/Graphics 781-5600	February 1998	1:24,000
des-gsalandslide SRC	San Luis Obispo County - Mapping/Graphics 781-5600.	February 2000	1:24,000
		1 001041 / 2000	
	SLO County Planning & Building Geographic Technology &		
des-historical_src	Design	1980	Unknown
	Stacey Smith, Graduate Student, Soil Science, California		
Drainage 2	Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	May 2008	≤1:2,000
······			,
Drainage_2_SOILS	U.S. Department of Agriculture, Natural Resources Conservation Service	October 2005	Unknown
V · ·			1
	Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek		
Drainage_Results	Watershed Conservation Plan, 2008.	May 2008	1:24,000
	Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek		
Extent	Watershed Conservation Plan, 2008.	2008	1:24,000
Family_parcels_2	Barclay Maps	March 2005	Unknown
Family subdivided 2	Barclay Maps	March 2005	Unknown
			Unknown
fault_lines	San Luis Obispo County-Mapping/Graphics for Furgo	July 2000	OTIKIOWI
geology_SRC_clip	San Luis Obispo County Planning & Building Department.	2007	1:24,000
Graze LUC	Barclay Maps	March 2005	Unknown
	San Luis Obispo County-Mapping/Graphics for State Water		
grnd_wtr_basins	Resources Control Board	March 1999	1:250,000
	Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek		
Gully erosion	Watershed Conservation Plan, 2008.	August 2008	≤1:2,000
	San Luis Obispo County for the Census Bureau -		
GV_roads	Mapping/Graphics 781-5600	May 2001	Unknown
GV soils mapunits	San Luis Obispo County for the NRCS - Mapping/Graphics 781-5600	July 1999	Unknown
	U.S. Geological Survey in cooperation with U.S.		
GV_streams	Environmental Protection Agency	2003	Unknown
	Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek		
GVC_watershed	Watershed Conservation Plan, 2008.	February 2008	1:24,000
hydrologic_area	Central Coast Regional Water Quality Control Board Central Coast Regional Water Quality Control Board	May 2003 May 2003	Unknown Unknown
hydrologic_subarea hydrologic_unit	Central Coast Regional Water Quality Control Board	May 2003	Unknown
· · · ·			1
image_03b	County of San Luis Obieno Manning/Granhies	lupe/ July 2007	1:1,400
mage_000	County of San Luis Obispo-Mapping/Graphics	June/July 2007	1.1,400

	PROJECTED COORDINATE	GEOGRAPHIC COORDINATE	
FILE NAME	SYSTEM	SYSTEM (DATUM)	COORDINATE SYSTEM
	NAD_1983_StatePlane_California_V		
des-flood_SRC	_FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
des-gsafault	NAD_1983_StatePlane_California_V FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
des-gsalandslide_SRC	NAD_1983_StatePlane_California_V FIPS 0405 Feet	GCS North American 1983	Lambert Conformal Conic
des histories), sus	NAD_1983_StatePlane_California_V	COC North American 1000	Lambart Carfornel Cario
des-historical_src	FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
	NAD_1983_StatePlane_California_V		
Drainage_2	_FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
Drainage_2_SOILS	NAD_1983_StatePlane_California_V FIPS 0405	GCS North American 1983	State Plane Coordinate System
			State Fiane Coordinate System
	NAD_1983_StatePlane_California_V		
Drainage_Results	FIPS_0405	GCS_North_American_1983	Lambert Conformal Conic
Extent	NAD_1983_StatePlane_California_V FIPS 0405 Feet	GCS North American 1983	Lambert Conformal Conic
	NAD 1983 StatePlane California V		
Family_parcels_2	FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
Family_subdivided_2	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
fault_lines	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
geology_SRC_clip	NAD_1983_StatePlane_California_V FIPS 0405 Feet	GCS North American 1983	Lambert Conformal Conic
geology_or to_onp			
0	NAD_1983_StatePlane_California_V		
Graze_LUC	FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
grnd_wtr_basins	Custom	GCS_North_American_1983	Lambert Conformal Conic
	NAD_1983_StatePlane_California_V		
Gully erosion	_FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
	NAD_1983_StatePlane_California_V		
GV_roads	FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
GV_soils_mapunits	NAD_1983_StatePlane_California_V FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
GV_streams	teale_albers	GCS_North_American_1927	Albers Conical Equal Area
	NAD 1983 StatePlane California V		
GVC_watershed		GCS_North_American_1983 GCS North American 1927	Lambert Conformal Conic Albers Conical Equal Area
hydrologic_area hydrologic_subarea	teale_albers	GCS_North_American_1927 GCS_North_American_1927	Albers Conical Equal Area
hydrologic_unit	teale_albers	GCS_North_American_1927	Albers Conical Equal Area
image 03b	NAD_1983_StatePlane_California_V FIPS 0405 Feet	GCS North American 1993	Lambert Conformal Conia
image_03b		GCS_North_American_1983	Lambert Conformal Conic

FILE NAME	HORIZONTAL DATUM	EDITS TO ORIGINAL SHAPEFILE
des-flood_SRC	North American Datum 1983	Data clipped using Santa Rosa Creek Watershed Boundary
des-gsafault	North American Datum of 1983	None
daa aaalandalida SPC	North American Datum 1082	Data aligned using Sonta Page Creek Watershed Pounders
des-gsalandslide_SRC	North American Datum 1983	Data clipped using Santa Rosa Creek Watershed Boundary
		Sites selected using Santa Rosa Creek Watershed boundary and exported into new
des-historical_src	North American Datum of 1983	shapefile.
Drainage_2	North American Datum of 1983	None
Brainago_L	North Villendan Batam of 1000	
		Soil dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped
	No the Association Distance of 4000	using shapefile delineating the Santa Rosa Creek Watershed boundary. Clipped soil
Drainage_2_SOILS	North American Datum of 1983	data were then intersected with blue line stream drainage boundaries
Drainage_Results	North American Datum of 1983	None
Extent	North American Datum of 1983	None
		Parcels selected and clipped using the Santa Rosa Creek Watershed boundary. "Family" parcels were selected if the combined total area of a family exceeded 300
		acres. Next, parcels were exported into the "family parcel" layer and lastly, they were
Family_parcels_2	North American Datum of 1983	dissolved to combine adjacent polygons with the same family last name, showiing the entire area of ownership within one polygon.
		Data obtained through Barclay Maps and the County of San Luis Obispo. Parcels were
		selected and clipped using the Santa Rosa Creek Watershed boundary. "Family" parcels were selected if the combined total area of a family exceeded 300 acres. The
Family_subdivided_2	North American Datum of 1983	parcels were then exported into the "family parcel" layer.
fault_lines	North American Datum of 1983	None
geology SRC clip	North American Datum of 1983	Data clipped using the Santa Rosa Creek Watershed boundary.
geology_ShC_clip	North American Datum of 1963	Data clipped using the Santa Rosa Creek Watershed boundary.
		San Luis Obispo County parcels within the Santa Rosa Creek Watershed with grazing
Graze_LUC	North American Datum of 1983	LUC descriptors were selected and exported into new shapefile.
grnd_wtr_basins	North American Datum of 1983	None
Gully erosion	North American Datum of 1983	None
GV_roads	North American Datum of 1983	Data clipped using Green Valley Creek Watershed boundary.
		Original soils shapefiles merged and then clipped using Green Valley Creek Watershed
GV_soils_mapunits	North American Datum of 1983	boundary.
GV_streams	North American Datum of 1927	Data clipped using the Green Valley Creek Watershed boundary.
GVC_watershed	North American Datum of 1983	None
hydrologic_area	North American Datum of 1927	None
hydrologic_subarea hydrologic_unit	North American Datum of 1927 North American Datum of 1927	None
		Aerial image clipped using Santa Rosa Creek Watershed Area of Interest (AOI) in
image_03b	North American Datum of 1983	ERDAS, a remote sensing editing software, at California Polytechnic State University BioResource Agricultural Engineering laboratory.

	DATA STOPACE	METADATA
FILE NAME	DATA STORAGE Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	STANDARD
des-flood_SRC	retained at the Land Conservancy of San Luis Obispo County.	FGDC
des-gsafault	SLO Datafinder (http://lib.calpoly.edu/gis/) Original data acquired from SLO Datafinder	FGDC
	(http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
des-gsalandslide_SRC	Obispo County. Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	FGDC
des-historical_src	retained at the Land Conservancy of San Luis Obispo County.	FGDC
Drainage_2	Land Conservancy of San Luis Obispo.	ISO
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
Drainage_2_SOILS	Obispo County.	FGDC
Drainage_Results	Land Conservancy of San Luis Obispo.	ISO
Extent	Land Conservancy of San Luis Obispo.	ISO
	Parcel data purchased from the County Assessor's Office. Edited shapefile retained at the Land Conservancy of San Luis Obispo	
Family_parcels_2	County. Parcel data purchased from the County Assessor's Office. Edited shapefile retained at	FGDC
Family_subdivided_2	the Land Conservancy of San Luis Obispo County.	FGDC
fault_lines	SLO Datafinder (http://lib.calpoly.edu/gis/) Original data acquired from SLO Datafinder	FGDC
geology_SRC_clip	(http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis Obispo County. Parcel data purchased from the County	FGDC
Graze_LUC	Assessor's Office. Edited shapefile retained at the Land Conservancy of San Luis Obispo County.	FGDC
grnd_wtr_basins	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
Gully erosion	Land Conservancy of San Luis Obispo.	ISO
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
GV_roads	Obispo County. Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	FGDC
GV_soils_mapunits	retained at the Land Conservancy of San Luis Obispo County.	FGDC
GV_streams	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis Obispo County.	FGDC
GVC_watershed	Land Conservancy of San Luis Obispo.	ISO
hydrologic_area	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
hydrologic_subarea	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
hydrologic_unit	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
image_03b	Land Conservancy of San Luis Obispo.	NONE

FILE NAME	DATA TITLE	DATA FORMAT	
image_04d	image_04d	raster digital data	
	National Land Cover Database	remote-sensing	
impervious2_010407	Imperviousness Layer	image	
mines	Erosion Associated with Mines	shapefile	
nlcd_ca_utm11	nlcd_ca_utm11.tif	raster digital data	
North_Coast_Veg	North Coast Vegetation - Santa Rosa Creek Watershed	shapefile	
	24K Digital Raster Graphic (DRG)		
o_sw0204	Mosaics	raster digital data	
	Formation Level Vegetation Mapping Database for San Luis Obispo		
Oak_SRCW	County, California, 2007	shapefile	
Other_drainage	Boundaries of Areas Outside Blueline Stream Drainage Boundaries - Santa Rosa Creek Watershed	shapefile	
Other_drainage_SOILS	Soils Outside Blueline Stream Drainages - Santa Rosa Creek Watershed	shapefile	
Other_erosion	Other Erosion	shapefile	
Other_roads	Unclassified Roads	shapefile	
ownership_boundaries	ownership_boundaries	shapefile	
park_Clip	Parks - Santa Rosa Creek Watershed	shapefile	
planningareas	planningareas	shapefile	
Road_erosion	Road Erosion	shapefile	
roads	Roads - Santa Rosa Creek Watershed	shapefile	
RUSLE2_Bline_Drainages	Predicted Soil Loss for Blueline Stream Drainages within the Santa Rosa Creek Watershed	shapefile	
RUSLE2_GV_OD	Predicted Soil Loss for Areas Outside Blueline Stream Drainage Boundaries - Green Valley Creek Subwatershed	shapefile	

FILE NAME	DESCRIPTION	
	Aerial photograph of Santa Rosa Creek Watershed. Specs to fly were 8,400' above ground level. Ground resolution six	
image_04d	inches. Current, consistent, seamless, and accurate National Land cover Database (NLCD) circa 2001 for the United States at	
impervious2_010407	medium spatial resolution.	
mines	Location information of erosion sites occurring in association to mining or mineral excavation activities in the Santa Rosa Creek Watershed, Cambria, California. Data were acquired for the Santa Rosa Creek Watershed Conservation Plan, 2008.	
nlcd_ca_utm11	The complete, current and consistent public domain information on land use land cover in the United States.	
North_Coast_Veg	North Coast Planning Area Vegetation Types within the Santa Rosa Creek Watershed. Vegetation Types cover only coastal zone area of watershed.	
o sw0204	Mosaicked California 7.5 Minute by 7.5 Minute 1:24,000 and 1:25,000 Digital Raster Graphic (DRG) USGS Quad Images.	
0_\$w0204		
Oak_SRCW Other drainage	Boundaries of oak forest communities within the Santa Rosa Creek Watershed. Delineated boundaries outside blueline stream drainage boundaries within the Santa Rosa Creek Watershed. Data created to gather information to predict potential erosion rates within Santa Rosa Creek Watershed, using GIS and the RUSLE2 program developed by the United States Department of Agriculture and the Natural Resources Conservation Service (USDA NRCS).	
Other_drainage_SOILS Other_erosion	Soil data for areas outside blueline stream boundaries within the Santa Rosa Creek Watershed. These data were used to evaluate potential soil loss using RUSLE2 and GIS for the Santa Rosa Creek Watershed Conservation Plan, 2008. This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a lpanimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. Location information of erosion sites occurring in the Santa Rosa Creek Watershed, Cambria, California. Erosion sites in these data could not be confirmed, but a feature viewed on the aerial imagery was distinct enough to be mapped. These sites include locations such as rocky hillsides in serpentine areas where erosion appears to be creating ephemeral gullies. Other sites, such as possible excavation sites, were also identified and mapped using this layer. Data were acquired for the Santa Rosa Creek Watershed Conservation Plan, 2008.	
Other_roads	Location information of unclassified roads occurring in the Santa Rosa Creek Watershed, Cambria, California. Roads no classified in TIGER road data were digitized using aerial imagery. Road types include ranch, agricultural and private roa mostly located in the upper watershed. Data were acquired for the Santa Rosa Creek Watershed Conservation Plan, 20	
ownership_boundaries	To determine how well species and plant communities are currently protected, CA-GAP enhanced the 1:100,000 scale land ownership map maintained by the California Teale Data Center by adding boundaries of special managed areas not in the original ownership map, incorporating recent acquisitions, and classifying all lands by management status.	
park_Clip	Polyogn locations of parks within the Santa Rosa Creek Watershed.	
planningareas	Official Planning Area boundaries of San Luis Obispo County. Location information of erosion sites occurring in association with concentrated water flow leaving a road surface during rainfall events in the Santa Rosa Creek Watershed, Cambria, California. Data were acquired for the Santa Rosa Creek	
Road_erosion	Watershed Conservation Plan, 2008.	
roads	Tiger Line Roads within the Santa Rosa Creek Watershed, downloaded from the TIGER database - contains names for roads Soil data for blue line stream drainages within the Santa Rosa Creek Watershed. These data were used to evaluate potential soil loss using RUSLE2 and GIS for the Santa Rosa Creek Watershed Conservation Plan, 2008. RUSLE2 predicted annual soil loss values included in this dataset. The digital soil survey dataset is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a lpanimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other	
RUSLE2_Bline_Drainages RUSLE2_GV_OD	Soil data for areas outside blueline stream drainages within the Green Valley Creek Subwatershed. These data were used to evaluate potential soil loss using RUSLE2 and GIS for the Santa Rosa Creek Watershed Conservation Plan, 2008. RUSLE2 predicted annual soil loss values included in this dataset. The digital soil survey dataset is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a lpanimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other	

FILE NAME	CREATOR	CONTENT DATE	SCALE
image_04d	County of San Luis Obispo-Mapping/Graphics	June/July 2007	1:1,400
impervious2_010407	U.S. Geological Survey	2001	Unknown
	Stacey Smith, Graduate Student, Soil Science, California		
mines	Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	May 2008	≤1:2,000
nlcd_ca_utm11	USDA NRCS - National Cartography & Geospatial Center	2001	1:100,000
North Coast Veg	San Luis Obispo County-MappingGraphics for Landscape Architecture GIS Lab, California Polytechnic State University	February 1998	Unknown
INOITI_COASt_Veg	U.S. Geological Survey, Teale Data Center GIS Solutions	re-scans were	OTIKIOWI
	Group, California Department of Transportation, California	done between	1:04 000 and
o_sw0204	State Water Resources Control Board, California Department of Fish and Game	approx 11/1999 and 3/2000	1:24,000 and 1:25,000
Oak_SRCW	County of San Luis Obispo and AIS	unpublished	Variable
	Stacey Smith, Graduate Student, Soil Science, California		
	Polytechnic State University, for the Santa Rosa Creek		
Other_drainage	Watershed Conservation Plan, 2008.	May 2008	Unknown
	U.S. Department of Agriculture, Natural Resources		
Other_drainage_SOILS	Conservation Service	October 2005	Unknown
	Stacey Smith, Graduate Student, Soil Science, California		
Other erosion	Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	May 2008	≤1:2,000
			,,
	Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek		
Other_roads	Watershed Conservation Plan, 2008.	May 2008	≤1:2,000
	U.S. Fish and Wildlife Service and researchers at the		
ownership_boundaries	University of California, Santa Barbara	June 1998	1:100,000
park Clip	San Luis Obispo County - Mapping/Graphics 781-5600	August 2001	Unknown
	SLO County Planning & Building Geographic Technology &		
planningareas	Design Stacey Smith, Graduate Student, Soil Science, California	October 1998	1:24,000
	Polytechnic State University, for the Santa Rosa Creek		
Road_erosion	Watershed Conservation Plan, 2008.	May 2008	≤1:2,000
roads	San Luis Obispo County for the Census Bureau - Mapping/Graphics 781-5600	May 2001	Unknown
		101dy 2001	CHIMIOWIT
	Soils data created by U.S. Department of Agriculture, Natural Resources Conservation Service. RUSLE2 data input into		
	database by Stacey Smith, Graduate Student, Soil Science,		
RUSIE2 Bline Drainages	California Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	October 2005 and May 2008	Unknown
RUSLE2_Bline_Drainages	UIEER WALEISHEU UUISEIVALUUI FIAH, 2000.	ividy 2000	
	Soils data created by U.S. Department of Agriculture, Natural		
	Resources Conservation Service. RUSLE2 data input into database by Stacey Smith, Graduate Student, Soil Science,		
	California Polytechnic State University, for the Santa Rosa	October 2005 and	
RUSLE2_GV_OD	Creek Watershed Conservation Plan, 2008.	May 2008	Unknown

FILE NAME	PROJECTED COORDINATE SYSTEM	GEOGRAPHIC COORDINATE SYSTEM (DATUM)	COORDINATE SYSTEM
image_04d	NAD_1983_StatePlane_California_V FIPS 0405 Feet	GCS_North_American_1983	Lambert Conformal Conic
impervious2 010407			Albers Conical Equal Area
	NAD_1983_StatePlane_California_V		
mines	FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
nlcd_ca_utm11			NAD_1983_UTM_Zone_11N
North_Coast_Veg	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
	IMAGINE GeoTIFF Support Copyright 1991 - 2001 by ERDAS,		
o_sw0204	Inc. Al NAD_1983_StatePlane_California_V	GCS_North_American_1983	Albers Conical Equal Area
Oak_SRCW	FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
Other_drainage	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
Other_drainage_SOILS	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	State Plane Coordinate System
Other_erosion	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
Other_roads	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
ownership_boundaries	Custom	GCS_North_American_1983	Lambert Conformal Conic
park_Clip	NAD_1983_StatePlane_California_V FIPS_0405_Feet NAD_1983_StatePlane_California_V	GCS_North_American_1983	Lambert Conformal Conic
planningareas Road_erosion	_FIPS_0405_Feet NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983 GCS_North_American_1983	Lambert Conformal Conic
roads	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
RUSLE2_Bline_Drainages	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	State Plane Coordinate System
RUSLE2_GV_OD	NAD_1983_StatePlane_California_V _FIPS_0405_Feet	GCS_North_American_1983	State Plane Coordinate System

FILE NAME	HORIZONTAL DATUM	EDITS TO ORIGINAL SHAPEFILE
		Aerial image clipped using Santa Rosa Creek Watershed Area of Interest (AOI) in ERDAS, a remote sensing editing software, at California Polytechnic State University
image_04d	North American Datum of 1983	BioResource Agricultural Engineering laboratory.
impervious2_010407	North American Datum of 1983	None
mines	North American Datum of 1983	None
nlcd_ca_utm11	North American Datum of 1983	Data clipped using the Santa Rosa Creek Watershed boundary.
		North Coast Vegetation dataset downloaded from SLO Datafinder
North_Coast_Veg	North American Datum of 1983	(http://lib.calpoly.edu/gis/) and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary.
o_sw0204		None
Oak_SRCW	GCS_North American_1983	Clipped from County layer and calculated areas.
Other_drainage	North American Datum of 1983	None
-		
		Soil dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary. Clipped soils
Other_drainage_SOILS	North American Datum of 1983	data intersected with "Other_drainages" shapefile.
Other_erosion	North American Datum of 1983	None
Other_roads	North American Datum of 1983	None
ownership boundaries	North American Datum of 1983	Nana
ownership_boundaries	North American Datum of 1965	None
		Parks dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped
park_Clip	North American Datum of 1983	using shapefile delineating the Santa Rosa Creek Watershed boundary.
planningareas	North American Datum of 1983	None
Road_erosion	North American Datum of 1983	None
roads	North American Datum of 1983	Road dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary.
		Soil data downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using the Santa Rosa Creek Watershed boundary for the Santa Rosa Creek Watershed
		Conservation Plan, 2008. The clipped soil data were then intersected with blue line
		stream drainage boundaries to be able to analyze the soil data for each blue line stream individually. RUSLE2 GIS input values and predicted soil loss value data were added
RUSLE2_Bline_Drainages	North American Datum of 1983	to tabular data.
		Soil data downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using the Santa Rosa Creek Watershed boundary. The clipped soil data were then
		intersected with polygon features of areas outside blueline stream drainage
		boundaries. The edited soil polygons were then clipped using the Green Valley Creek Watershed boundary. RUSLE2 GIS input values and predicted soil loss value data
RUSLE2_GV_OD	North American Datum of 1983	were added to tabular data.

	DATA CTORACE	METADATA
FILE NAME	DATA STORAGE	STANDARD
image_04d	Land Conservancy of San Luis Obispo.	NONE
	Multi-Resolution Land Characteristics Consortium	5050
impervious2_010407	(http://www.mrlc.gov/)	FGDC
mines	Land Conservancy of San Luis Obispo.	ISO
	Original data located at Geospatial Data Gateway	
	(http://datagateway.nrcs.usda.gov/). Edited data	
nlcd_ca_utm11	located at Land Conservancy of San Luis Obispo County.	FGDC
	Original data acquired from SLO Datafinder	FGDC
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
North_Coast_Veg	Obispo County.	FGDC
	The California Spatial Information Library (CaSIL) at	
	http://casil.ucdavis.edu/casil/imageryBaseMapsLa	
o_sw0204	ndCover/baseMaps/drg/	FGDC
	Vegetation data acquired from the Land	
0 1 0000	Conservancy of San Luis Obispo County through	5050
Oak_SRCW	the County of San Luis Obispo.	FGDC
1		
Other_drainage	Land Conservancy of San Luis Obispo.	ISO
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
Other drainage SOILS	Obispo County.	FGDC
• • -		
Other erosion	Land Conservancy of San Luis Obispo.	ISO
		100
Other_roads	Land Conservancy of San Luis Obispo.	ISO
ownership_boundaries	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
 	Original data acquired from SLO Datafinder	
1	(http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
park Clip	Obispo County.	FGDC
<u></u>		
planningareas	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
Road erosion	Land Conservancy of San Luis Obiene	190
Road_erosion	Land Conservancy of San Luis Obispo. Original data acquired from SLO Datafinder	ISO
1	(http://lib.calpoly.edu/gis/). Edited shapefile	
1	retained at the Land Conservancy of San Luis	
roads	Obispo County.	FGDC
1		
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
1	retained at the Land Conservancy of San Luis	
RUSLE2_Bline_Drainages	Obispo County.	FGDC
	Original data acquired from QLO Datafindary	
	Original data acquired from SLO Datafinder	
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	

FILE NAME	DATA TITLE	DATA FORMAT
	Soil Map Unit Polygons Not	
	Assessed Using RUSLE2 - Santa	
RUSLE2_NotAssessed	Rosa Creek Watershed	shapefile
	Predicted Soil Loss for Areas Outside	
	Blueline Stream Drainage	
	Boundaries - Upper Santa Rosa Creek Subwatershed	chanofila
RUSLE2_USRC_OD	Creek Subwatersned	shapefile
	Predicted Soil Loss in the Santa	
	Rosa Creek Watershed Using	
soils	RUSLE2	shapefile
src_dem		raster digital data
	Parcels - Santa Rosa Creek	
src_parcels	Watershed	shapefile
	Offerenze Descharte Descharte Descent	ah an afil s
src_stream_reaches	Stream Reaches - Santa Rosa Creek	snapetile
SRCW crops edited	Crops - Santa Rosa Creek Watershed	shapefile
	Watershed	Shapenie
	Lower Santa Rosa Creek Watershed	
SRCW lowerwatershed soils	Soil Data	shapefile
		•
	Soil Survey Data - Santa Rosa Creek	
SRCW_soils_SLODatafinder	Watershed	shapefile
Stream_bank_erosion	Stream Bank Erosion - Santa Rosa Creek Watershed	shapefile
Stream_bank_erosion	Oreek Watershed	Shapenie
streams	streams - Santa Rosa Creek Watershed	shapefile
streams		anapellie
tiger_mjr_roads	tiger_mjr_roads	shapefile
Unknown	Unknown Erosion Status	shapefile
	Rural Parcels - Upper Santa Rosa	
Upper_clip_nonresidential	Creek Watershed	shapefile
	NRCS Soil Data - Soil Data Mart -	
	Upper Santa Rosa Creek	
upper_src_NRCS_SOILS	Subwatershed	shapefile
	Roads - Upper Santa Rosa Creek	
upper_src_roads	Watershed	shapefile
	Soils - Upper Santa Poso Crock	
upper_src_soils_mapunits	Soils - Upper Santa Rosa Creek Watershed	shapefile
upper_src_streams	Streams - Upper Santa Rosa Creek Watershed	shapefile
<u>appor_010_01001110</u>		0

	DESCRIPTION	
FILE NAME	DESCRIPTION	
RUSLE2_NotAssessed	Soil map unit polygons not assessable using RUSLE2 because of size, slope, or soil characteristic constraints. Most polygons of this dataset are located in a stream channel and do not apply to this assessment. These data were used to evaluate potential soil loss using RUSLE2 and GIS for the Santa Rosa Creek Watershed Conservation Plan, 2008. The digita soil survey dataset is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a lpanimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information.	
	Soil data for areas outside blueline stream drainages within the Upper Santa Rosa Creek Subwatershed. These data we used to evaluate potential soil loss using RUSLE2 and GIS for the Santa Rosa Creek Watershed Conservation Plan, 200 RUSLE2 predicted annual soil loss values included in this dataset. The digital soil survey dataset is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared digitizing maps, by compiling information onto a lpanimetric correct base and digitizing, or by revising digitized maps usi	
RUSLE2_USRC_OD	remotely sensed and other information.	
soils	Soil data and RUSLE2 predicted soil loss results for each soil map unit within the Santa Rosa Creek Watershed. Soil map unit polygons were divided using blueline stream drainage polygons and "other" drainages polygons. Data were collected for the Santa Rosa Creek Watershed Conservation Plan, 2008. This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a Ipanimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information.	
src_dem	Digital Elevation Model of the Santa Rosa Creek Watershed.	
src_parcels	Parcel polygon layer for Santa Rosa Creek Watershed.	
src_stream_reaches	Linear delineation of stream reach along Santa Rosa Creek, as defined by Don Alley, Aquatic and Fisheries Biologist, Appendix K, Santa Rosa Creek Watershed Conservation Plan (2008).	
SRCW_crops_edited	Crop Layer - Agriculture Commissioner Office and edited by Stacey Smith, Consultant, for the Santa Rosa Creek Watershed Conservation Plan, 2008. Edits were made to remove uncultivated, non-crop, undeclared, and some field rotational data. Additional crop data was added for observed crop land uses using aerial data provided by the County of San Luis Obispo.	
SRCW_lowerwatershed_soils	Digital soil data for the lower Santa Rosa Creek Watershed. This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a Ipanimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. Soil Survey data for the Santa Rosa Creek Watershed. This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing	
	maps, by compiling information onto a lpanimetric correct base and digitizing, or by revising digitized maps using remotely	
SRCW_soils_SLODatafinder Stream_bank_erosion	sensed and other information. Location information of stream bank erosion sites occurring in the Santa Rosa Creek Watershed, Cambria, California. Data were acquired for the Santa Rosa Creek Watershed Conservation Plan, developed by the Land Conservancy of San Luis Obispo County. These data are incomplete and additional mapping is necessary.	
streams	National Hydrology Dataset (NHD) developed by USGS to map lakes, rivers, stream, and other surface water.	
tiger_mjr_roads	Major roads for San Luis Obispo County, downloaded from TIGER database.	
Unknown	Location information of potential erosion location occurring in the Santa Rosa Creek Watershed, Cambria, California, however status is unknown due to limitations in viewing aerial imagery. In some instances glare or vegetative cover obstructed view of the soil surface. Data were acquired for the Santa Rosa Creek Watershed Conservation Plan, 2008.	
Upper_clip_nonresidential	Parcel polygon layer for the Upper Santa Rosa Creek Watershed, from the Main Street and Santa Rosa Creek crossing, to the headwaters. Parcel data exclude the high density residential area at the western watershed boundary.	
upper_src_NRCS_SOILS	This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a lpanimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information.	
upper_src_roads	Tiger Line Roads downloaded from the TIGER database - contains names for roads within the Upper Santa Rosa Creek Watershed.	
upper_src_soils_mapunits	Soil Classification for the Upper Santa Rosa Creek Watershed, in Cambria, California. This database contains a detailed listing of the soil's name, unit, drainage, percentage slope, erodibility, shrink swell, septic potential, storie, and irrigation potential. This data can be used in agricultural, land use, water, conservation, and etc. analysis.	
upper_src_streams	National Hydrology Dataset (NHD) developed by the USGS mapping out water reaches from lakes, rivers, streams, and other surface water features, within the Upper Santa Rosa Creek Watershed.	

FILE NAME	CREATOR	CONTENT DATE	SCALE
Soils data created by U.S. Department of Agriculture, Natural Resources Conservation Service. RUSLE2 data input into database by Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.		October 2005 and May 2008	Unknown
	Soils data created by U.S. Department of Agriculture, Natural Resources Conservation Service. RUSLE2 data input into database by Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa	October 2005 and	
RUSLE2_USRC_OD	Creek Watershed Conservation Plan, 2008.	May 2008	Unknown
soils src_dem	Soils data created by U.S. Department of Agriculture, Natural Resources Conservation Service. RUSLE2 data input into database by Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008. Data obtained from the County of San Luis Obispo.	October 2005 and May 2008 2008	Unknown
src_parcels	Barclay Maps	March 2005	Unknown
src_stream_reaches	Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008. San Luis Obispo County Agriculture Commissioner_Marlene	August 2009	1:10,000
SRCW_crops_edited	Bartsch_Chris Morris. Edited by Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	2007 and 2008	Unknown
SRCW_lowerwatershed_soils	U.S. Department of Agriculture, Natural Resources Conservation Service	October 2005	Unknown
SRCW_soils_SLODatafinder	U.S. Department of Agriculture, Natural Resources Conservation Service Stacey Smith, Graduate Student, Soil Science, California	October 2005	Unknown
Stream_bank_erosion	Polytechnic State University, for the Santa Rosa Creek Watershed Conservation Plan, 2008.	May 2008	≤1: <u>2</u> ,000
streams	U.S. Geological Survey in cooperation with U.S. Environmental Protection Agency San Luis Obispo County for the Census Bureau -	May 2003	Unknown Unknown
tiger_mjr_roads	Mapping/Graphics 781-5600 Stacey Smith, Graduate Student, Soil Science, California Polytechnic State University, for the Santa Rosa Creek	August 2001	
Unknown	Watershed Conservation Plan, 2008.	May 2008	≤1:2,000
Upper_clip_nonresidential	Barclay Maps	March 2005	Unknown
upper_src_NRCS_SOILS	U.S. Department of Agriculture, Natural Resources Conservation Service	October 2005	1:1,000
upper_src_roads	San Luis Obispo County for the Census Bureau - Mapping/Graphics 781-5600	May 2001	Unknown
upper_src_soils_mapunits	San Luis Obispo County for the NRCS - Mapping/Graphics 781-5600	July 1999	Unknown
upper_src_streams	U.S. Geological Survey in cooperation with U.S. Environmental Protection Agency	May 2003	Unknown

stem
stem
stem
stem
stem
stern
tom
stem
stem
stern
stem
stem
stem
1

FILE NAME	HORIZONTAL DATUM	EDITS TO ORIGINAL SHAPEFILE
RUSLE2 NotAssessed	North American Datum of 1983	Soil data downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using the Santa Rosa Creek Watershed boundary for the Santa Rosa Creek Watershed Conservation Plan, 2008. The clipped soil data were then intersected with blueline stream boundaries ("Drainage_2" shapefile) and areas outside blueline stream drainages ("Other_drainage" shapefile). RUSLE2 GIS input values and predicted soil loss value data were added to tabular data. Soil map units with no predicted soil loss values were selected, analyzed, and exported into this file.
105LL2_N0A3563560	North American Datum of 1903	Soil data downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using the Santa Rosa Creek Watershed boundary. The clipped soil data were then intersected with polygon features of areas outside blueline stream drainage boundaries. The edited soil polygons were then clipped using the Upper Santa Rosa Creek Watershed boundary. RUSLE2 GIS input values and predicted soil loss value
RUSLE2_USRC_OD	North American Datum of 1983	data were added to tabular data.
soils src_dem	North American Datum of 1983	Soil dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary. Dataset was then intersected using "Drainage_2" and "Other_drainage" shapefiles. Fields were added to database and populated with RUSLE2 data. Data clipped using Santa Rosa Creek Watershed boundary.
src_parcels	North American Datum of 1983	Data clipped using Santa Rosa Creek Watershed boundary. Stream data downloaded from SLO Datafinder at http://lib.calpoly.edu/gis/ and clipped using Santa Rosa Creek Watershed boundary for the Santa Rosa Creek Watershed
src_stream_reaches	North American Datum of 1927	Conservation Plan, 2008. Santa Rosa Creek line selected and exported into new shapefile. New creek layer line segments merged into one line and then split according to reach distance along stream in ArcMap.
SRCW_crops_edited	North American Datum of 1983	Dataset edited to remove non-crop polygons and add additional crop polygons based on observed land uses in the watershed from aerial photographs.
SRCW_lowerwatershed_soils	North American Datum of 1983	Soil dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary. Resulting layer was edited again to erase all soil map unit data within the Upper Santa Rosa Creek Watershed boundary, leaving only soil data for the lower watershed.
SRCW_soils_SLODatafinder	North American Datum of 1983	Soil dataset downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/) and clipped using shapefile delineating the Santa Rosa Creek Watershed boundary.
Stream_bank_erosion	North American Datum of 1983	None
streams	North American Datum of 1927	Data clipped using the Santa Rosa Creek Watershed boundary.
tiger_mjr_roads	North American Datum of 1983	None
Unknown	North American Datum of 1983	None Parcel data clipped using Upper Santa Rosa Creek Watershed boundary. High density
Upper_clip_nonresidential	North American Datum of 1983	residential area at the western edge of watershed boundary selected and deleted from dataset.
upper_src_NRCS_SOILS	North American Datum of 1983	Data clipped using the Upper Santa Rosa Creek Watershed boundary.
upper_src_roads	North American Datum of 1983	Data clipped using the Upper Santa Rosa Creek Watershed boundary.
upper_src_soils_mapunits	North American Datum of 1983	Two soil layers merged to include all data representing the entire watershed. Merged layer was then clipped using the Upper Santa Rosa Creek Watershed boundary.
upper_src_streams	North American Datum of 1927	Stream data were downloaded from SLO Datafinder (http://lib.calpoly.edu/gis/), and clipped using an Upper Santa Rosa Creek Watershed boundary shapefile.

		METADATA
FILE NAME	DATA STORAGE	STANDARD
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
RUSLE2_NotAssessed	Obispo County.	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
RUSLE2_USRC_OD	Obispo County.	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
soils	Obispo County.	
src_dem	Land Conservancy of San Luis Obispo.	
	Parcel data purchased from the County	
	Assessor's Office. Edited shapefile retained at the Land Conservancy of San Luis Obispo	
src_parcels	County.	FGDC
src_stream_reaches	Land Conservancy of San Luis Obispo.	FGDC
	Original data apprized from SLO Datafindar	
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
SRCW_crops_edited	Obispo County.	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
SRCW_lowerwatershed_soils	Obispo County. Original data acquired from SLO Datafinder	FGDC
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
SRCW_soils_SLODatafinder	Obispo County.	FGDC
Stream_bank_erosion	Land Conservancy of San Luis Obispo.	ISO
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
streams	Obispo County.	FGDC
tiger_mjr_roads	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
l la lue es se		100
Unknown	Land Conservancy of San Luis Obispo. Parcel data purchased from the County	ISO
	Assessor's Office. Edited shapefile retained at	
	the Land Conservancy of San Luis Obispo	
Upper_clip_nonresidential	County. Original data acquired from SLO Datafinder	FGDC
	(http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
upper_src_NRCS_SOILS	Obispo County.	FGDC
	Original data acquired from SLO Datafinder (http://lib.calpoly.edu/gis/). Edited shapefile	
	retained at the Land Conservancy of San Luis	
upper_src_roads	Obispo County.	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile retained at the Land Conservancy of San Luis	
upper_src_soils_mapunits	Obispo County.	FGDC
	Original data acquired from SLO Datafinder	
	(http://lib.calpoly.edu/gis/). Edited shapefile	
upper src streams	retained at the Land Conservancy of San Luis Obispo County.	FGDC
	1-1-500 0001131	

DATA TITLE	DATA FORMAT
Upper Santa Rosa Creek Watershed	shapefile
url_vrl-poly	shapefile
Upper Santa Rosa Creek Subwatershed	shapefile
Formation Level Vegetation Mapping Database for San Luis Obispo County, California, 2007	shapefile
Santa Rosa Creek Watershed	shapefile
Williamson Act Parcels - Santa Rosa Creek Watershed	shapefile
	Upper Santa Rosa Creek Watershed url_vrl-poly Upper Santa Rosa Creek Subwatershed Formation Level Vegetation Mapping Database for San Luis Obispo County, California, 2007 Santa Rosa Creek Watershed Williamson Act Parcels - Santa Rosa

FILE NAME	DESCRIPTION
upper_watershed	Upper Santa Rosa Creek Watershed boundary, located in Cambria, California, San Luis Obispo County. Entire watershed area, including Green Valley Creek Subwatershed, from the Main Street and Santa Rosa Creek crossing, to the headwaters.
url_vrl-poly	Official Urban Reserve and Village Reserve area boundaries of San Luis Obispo County.
USRC_watershed	Upper Santa Rosa Creek Watershed boundary, from Main Street and Santa Rosa Creek crossing to the headwaters, excluding Green Valley Creek Subwatershed.
Veg_Fmtn_SRCW	Boundaries of vegetation formation units within the Santa Rosa Creek Watershed.
watershed	Santa Rosa Creek Watershed boundary, located in Cambria, California, San Luis Obispo County.
WilliamsonAct_3	Parcel polygon layer representing parcels within the Santa Rosa Creek Watershed under the Williamson Act.

FILE NAME	CREATOR	CONTENT DATE	SCALE
	Stacey Smith, Graduate Student, Soil Science, California		
	Polytechnic State University, for the Santa Rosa Creek		
upper_watershed	Watershed Conservation Plan, 2008.	2008	1:24,000
	SLO County Planning & Building Geographic Technology &		
url_vrl-poly	Design	October 1998	1:24,000
	Stacey Smith, Graduate Student, Soil Science, California		
	Polytechnic State University, for the Santa Rosa Creek		
USRC_watershed	Watershed Conservation Plan, 2008.	February 2008	≤1:2,000
Veg_Fmtn_SRCW	County of San Luis Obispo and AIS	unpublished	Variable
	Stacey Smith, Graduate Student, Soil Science, California		
	Polytechnic State University, for the Santa Rosa Creek		
watershed	Watershed Conservation Plan, 2008.	2008	1:24,000
WilliamsonAct 3	Barclay Maps	March 2005	Unknown

FILE NAME	PROJECTED COORDINATE SYSTEM	GEOGRAPHIC COORDINATE SYSTEM (DATUM)	COORDINATE SYSTEM
	STSTEM	STSTEM (DATOM)	COONDINATE STSTEM
	NAD 1983 StatePlane California V		
upper watershed	FIPS 0405 Feet	GCS North American 1983	Lambert Conformal Conic
	NAD 1983 StatePlane California V		
url_vrl-poly	_FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
	NAD 1992 StateBland California V		
USBC waterehad	NAD_1983_StatePlane_California_V FIPS 0405 Feet		Lambert Conformal Conic
USRC_watershed		GCS_North_American_1983	Lambert Conionnal Conic
	NAD 1983 StatePlane California V		
Veg_Fmtn_SRCW	_FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
and a second second	NAD_1983_StatePlane_California_V		
watershed	FIPS_0405_Feet	GCS_North_American_1983	Lambert Conformal Conic
	NAD 1983 StatePlane California V		
WilliamsonAct 3	FIPS 0405 Feet	GCS North American 1983	Lambert Conformal Conic
williamsonAct_3		GCS_NOTTI_American_1983	

FILE NAME	HORIZONTAL DATUM	EDITS TO ORIGINAL SHAPEFILE
upper_watershed	North American Datum of 1983	None
url_vrl-poly	North American Datum of 1983	None
USRC_watershed	North American Datum of 1983	None
Veg_Fmtn_SRCW	GCS_North American_1983	Clipped from County layer and calculated areas.
watershed	North American Datum of 1983	None
WilliamsonAct_3	North American Datum of 1983	Parcels selected using LUC and exported to create new shapefile.

FILE NAME	DATA STORAGE	METADATA STANDARD
upper_watershed	Land Conservancy of San Luis Obispo.	ISO
url_vrl-poly	SLO Datafinder (http://lib.calpoly.edu/gis/)	FGDC
USRC_watershed	Land Conservancy of San Luis Obispo.	ISO
	Vegetation data acquired from the Land	
Veg_Fmtn_SRCW	Conservancy of San Luis Obispo County through the County of San Luis Obispo.	FGDC
watershed	Land Conservancy of San Luis Obispo.	ISO
	Parcel data purchased from the County	
	Assessor's Office. Edited shapefile retained at the Land Conservancy of San Luis Obispo	
WilliamsonAct_3	County.	FGDC

APPENDIX H

METHODS FOR DETERMINING PREDICTED SOIL LOSS USING RUSLE2 AND GIS

METHODS FOR PREDICTING ANNUAL SOIL LOSS RATES USING RUSLE2 AND GIS

Upland erosion rates were calculated for the Santa Rosa Creek Watershed using ArcGIS 9.2, RUSLE2, Microsoft Office Excel 2003, and digital data. Predicted erosion rates were calculated for the upper watershed, including Perry Creek subwatershed and Santa Rosa Creek subwatershed, upstream from Santa Rosa Creek and Main Street road crossing.

GIS data used in RUSLE2 (Table 1, page H-2) were either acquired from various providers or were created by the Environmental Consultant, Stacey Smith, for this project. Data provided by the County of San Luis Obispo Planning and Building Department are labeled "County". Sources listed as "Consultant" indicate that either existing data were edited or new data were created by the Consultant. SLO Datafinder is an online GIS resource created by Cal Poly State University's Kennedy Library, the City of San Luis Obispo, and San Luis Obispo County. SLO Datafinder is located online at http://lib.calpoly.edu/gis/browse.jsp. Geospatial Data Gateway is an online GIS resource for natural resources data created by the United States Department of Agriculture. Geospatial Data Gateway is located online at http://datagateway.nrcs.usda.gov/. Digital topographic quadrangle data were retrieved using California Spatial Information Library at http://www.atlas.ca.gov/.

The official RUSLE2 computer program was downloaded from the USDA Agricultural Research Service website (http://www.ars.usda.gov/Research/docs.htm?docid=6038)⁴. The RUSLE2 master database includes regional climate, soils, and management zone input data values used by NRCS field office personnel. This database was downloaded at a USDA RUSLE2 official website (http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm)⁵.

STUDY SITE BOUNDARY DELINEATION

The upper Santa Rosa Creek Watershed ("USRC_watershed") and Perry Creek Watershed ("Perry_watershed") layers were created using "watershed", "streams", and "roads" GIS layers with a digital topographic quadrangle. Smaller drainage boundaries were created in GIS using topographic features from the digital quadrangles to delineate blue-line stream drainages within the upper watershed.

Each of the blue-line stream drainages located off the main-stem of Santa Rosa Creek, north-fork of Santa Rosa Creek, Perry Creek, and Green Valley Creek, were mapped. A separate GIS layer labeled "other drainages" was created to capture the areas where drainage boundaries do not come together, for instance at lower elevations where blue-line streams flow into the main stem of a creek and gaps between drainages exist, or to map drainages that do not appear on a 7.5 minute quadrangle as a blue-line stream. This allowed non-blue-line stream drainages to be assessed separately for the erosion study. The "snapping" function in ArcMap allowed each "drainage" and "other drainage" boundary to be created flush with other drainages surrounding

⁴ USDA, Agricultural Research Service. Retrieved March 1, 2008, website: http://www.ars.usda.gov/Research/docs.htm?docid=6038.

⁵ Revised Universal Soil Loss Equation, Version 2 Official NRCS RUSLE2 Program Official NRCS Database. Retrieved March 1, 2008, Website: http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index. htm

it. All drainage boundaries were created at a maximum scale of 1:12,000 at a tolerance of ten pixels to avoid overlaps and data gaps between GIS layers.

Table 1. GIS data used in erosion prediction modeling of the upper Santa Rosa CreekWatershed, using RUSLE2.

Layer Name	Description	Source
Cambria DEM	Interferometric Synthetic Aperature Radar Digital Elevation Model (IFSAR DEM)	County
Cambria_2007_a	2007 Aerial	County
Cambria_2007_b	2007 Aerial	County
watershed	Santa Rosa Creek Watershed boundary	SLO Datafinder
USRC_watershed	Upper Santa Rosa Creek watershed, above Main StSanta Rosa Creek crossing	Consultant
Perry_watershed	Perry Creek subwatershed; including Green Valley Creek	Consultant
streams	Streams in watershed	SLO Datafinder
roads	Roads in watershed	SLO Datafinder
soils	Soils in watershed	SLO Datafinder
County Vegetation	Vegetative communities in watershed	SLO Datafinder
precipitation	Average annual precipitation data	Geospatial Data Gateway
o_sw0204	7.5 Minute Series (MrSID) Digital topographic map of Cambria area	California Spatial Information Library

GIS DATA INPUT INTO RUSLE2

Predicting erosion rates using RUSLE2 requires climate, soil type, slope topography, land management, and supporting practices data. In RUSLE2 a profile was created for each soil map unit within the upper watershed to determine the predicted erosion value for each unit. Additionally, boundary layers were created in GIS to separate drainages and areas between

drainages that flow directly into Santa Rosa, Perry, or Green Valley Creeks. Areas within blueline stream drainages were labeled "drainages" and areas outside blue-line stream drainages were labeled "other drainages".

<u>Climate</u>

Average annual precipitation data for the Santa Rosa Creek Watershed were acquired through the Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/)⁶. The precipitation data were published by the Spatial Climate Analysis Service for the "103 Year High-Resolution Precipitation Climate Data Set for the Conterminous United States", in 2002.

A column, or "field", was created in the "soils" GIS layer database, or "attribute table", to enter precipitation values for each "soil map unit". Precipitation data is needed to study soil erosion using RUSLE2 therefore it is important to link the soil data to rainfall amounts. The average annual precipitation values were used to select soils in the Santa Rosa Creek Watershed. Soil map units that intersect, or touch, an area with a certain precipitation amount, for instance 17 inches per year, were selected using the "Select by Location" command in ArcMap, an application of ArcGIS. Next, the average annual precipitation values were manually entered for each soil map unit in the "soils" GIS database. The process was repeated for each of the four average annual precipitation values in the watershed.

Most of the watershed has an average annual precipitation of 19 inches per year, therefore soil map units were selected and data were entered for those values first. The process was repeated for the maximum rainfall amount of 23 inches per year; then 17 inches per year; and lastly 21 inches per year. More than one average annual precipitation value can exist within one soil map unit. If, during the process of entering data, precipitation data had already been entered for a map unit, then the first value was left in the table and not replaced by subsequent values.

<u>Soil Type</u>

Digital soil data were created from the National Cooperative Soil Survey in 2005, and prepared by soil scientists and the USDA-NRCS. The soils database was edited by the County to include attribute information from the Soil Data Viewer website (http://soildataviewer.nrcs.usda.gov/)⁷. The "soils" GIS data show the distribution of "soil map units" on the landscape and was used with the *Soil Survey of San Luis Obispo County, California, Coastal Part* (1984)⁸ and the *Soil Survey of San Luis Obispo County, California, Paso Robles Area* (1977)⁹, or Soil Surveys, to describe soils located in the watershed.

Soils GIS data, created by NRCS and edited by San Luis Obispo County, were "clipped", or cut out, from the "soils" layer in GIS using the Santa Rosa Creek Watershed boundary. The watershed boundary originated as a "creek watershed" data layer acquired on SLO Datafinder and was edited by the Consultant for greater accuracy using digital 7.5 minute quadrangles.

⁶ Geospatial Data Gateway. Retrieved February 1, 2008, Website: http://datagateway.nrcs.usda.gov/

⁷ Soil Data Viewer. Retrieved March 1, 2008, Website: http://soildataviewer.nrcs.usda.gov.

⁸ USDA, Soil Conservation Service (1984). Soil Survey of San Luis Obispo County, California Coastal Part.

⁹ USDA, Soil Conservation Service (1977). Soil Survey of San Luis Obispo County, California, Paso Robles Area.

The digital soil data were "clipped" again using the "drainage" and "other drainage" boundaries so predicted soil loss values could be determined for each soil within every "drainage" and "other drainage" study site.

Slope Topography

In order to establish slope topography throughout the watershed the Interferometric Synthetic Aperture Radar (IFSAR) Digital Elevation Model (DEM) was used. A DEM is a digital representation of ground surface topography using a grid of regularly spaced elevation data. The IFSAR DEM is a more accurate representation of the ground surface than other DEM data available.

Using the ArcGIS "3D Analyst" extension in ArcMap, slope percent and slope length were calculated. Slope data could not be calculated from the USDA-NRCS "soils" layer alone, so a new GIS shapefile, or layer, was created and labeled "Slope line". This line feature was created to calculate the slope topography of each soil map unit. Contour lines were created using "3D Analyst". In consultation with T. Mastin, professor in the Bioresource Agricultural Engineering Department at Cal Poly State University, it was determined that slope lines should be drawn perpendicular to the contour lines from the highest point of elevation, along the longest length of slope represented in each map unit. This would allow for consistency in replicating the method for every "soil map unit" assessed. For uniform slopes, lines were terminated when they reached the edge of the map unit polygon. For map units with a change in slope, lines were terminated where soil deposition would occur, such as a break in slope or in catchment areas such as drainages. Each line was labeled with the same feature identification label (FID) of the GIS "soil map unit" FID in which it represented. This allowed the 3D line length and slope to be related to the "soils" data using GIS.

Using "3D Analyst", the line was converted from a "2D feature" to a "3D feature" using the DEM data to reference line elevations. New fields were created in the line attribute database for "Length 2D", "Length 3D", "Minimum Z value", "Maximum Z value", and "Slope". Elevation data is associated with "Z" data for each point on a DEM; just as "Y" data describes latitude and "X" data describes longitude. Each field was populated with values by right-clicking on the field and choosing the "Field Calculator". Equation routines were downloaded online (http://www.ian-ko.com/), and loaded into the "Field Calculator" to be used to calculate values for the new fields. "Minimum Z value" and "Maximum Z value" calculations captured the change in elevation occurring along the length of the line, and allowed for an easy average slope calculator" to determine slope for each line. The attribute data for the slope line was then joined to the "soils" attribute data to bring together all the data needed to input fields in RUSLE2.

Land Management

Rangeland production was entered into the soils "attribute table", or spreadsheet. "Normal rangeland production" values are described in Soil Surveys and they describe the amount of vegetative production that occurs on a "soil map unit" in a normal growing year. These values are provided in Soil Surveys and were used in the erosion study to describe "Base Management" in a RUSLE2 profile. "Soil complexes" and "associations" are composed of more than one soil so "normal rangeland production" value for the dominant component soil was used for the RUSLE2 analysis. The "normal rangeland production" value for the component soil with the greater "K-factor", or soil erodibility, was used for soils of "undifferentiated groups".

One soil of an "undifferentiated group" had to be considered differently, however. Generally, only a small amount of vegetation grows on "rock outcrops" soils and "normal rangeland production" values do not exist in the Soil Surveys. Therefore, special considerations must be made in describing "Base Management" for soils containing "rock outcrops". "195, Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slopes" is a soil found in the watershed with "rock outcrop" the dominant component soil. In consultation with B. Hallock, Earth and Soil Science Department at Cal Poly State University, it was determined to use the "Lodo" soil series "normal rangeland production" value to represent the soil listed above. The resulting predicted soil loss value determined by the RUSLE2 calculation was multiplied by the percent rock outcrop within the soil complex area. This value was subtracted from the predicted soil loss value of the total area of "195, Rock outcrop-Lithic Haploxerolls complex, 30-75 percent slopes", preventing the percent area of "rock outcrop" from being added to the total predicted soil loss value calculated for the entire soil.

Supporting Practices

Supporting practices input were left at the default value in the drop-down menu in the RUSLE2 profile. Conservation practices were not identified in the watershed because landowner outreach would need to be conducted to gather land management activity information.

RUNNING RUSLE2 CALCULATIONS

In RUSLE2, there are five steps to complete in order to run a basic calculation for predicting soil erosion rates.

STEP 1: Choose location to set climate

A San Luis Obispo County "R value" based on rainfall was selected in a drop-down menu. Average annual precipitation amounts are distinctly different from the lower to upper watershed boundaries, averaging 17" a year at the coast and 23" a year at the headwaters.

Depending on the location of the soil being analyzed, one of the following values were selected from a drop-down list: "CA_San Luis Obispo County_R 16-18", "CA_San Luis Obispo County_R 18-20", "CA_San Luis Obispo County_R 20-22", and "CA_San Luis Obispo County_R 22-24".

STEP 2: Choose soil type

The "soils" layer was "clipped" using "drainage" and "other drainage" boundaries to assess target areas. Each "soil map unit" within the "soils" layer was analyzed separately using a RUSLE2 profile. The "soil map unit" name was selected in the drop-down menu on the profile screen. For soil "complexes" and "associations", the most prominent soil type in the map unit was selected. For "undifferentiated group" soils, the soil with the highest soil erodibility was selected to conservatively represent erosion potential of that group. And for the "soil map unit" with "rock outcrop" as the dominant component soil, the "Lodo" soil series was selected.

STEP 3: Set slope topography

Slope length and percent were manually entered according to calculated values produced for each line drawn in every "soil map unit" using GIS. A slope length of 1000 feet was not

exceeded because it decreases the accuracy of the calculated value produced in RUSLE 2. In general, the greater the slope length, the less accurate the predicted soil loss value is as stated by USDA-NRCS. Where slope length values exceeded the recommended maximum value, 1000 feet was used instead. This normally occurred in large "soil map units" with a low, uniform slope that extended for a great distance, usually in the low-lying areas of floodplains and terraces. In these circumstances, potential soil loss due to erosion was usually very low.

STEP 4: Describe management

Land use analysis using parcel data and digital agricultural data acquired on SLO Datafinder (http://lib.calpoly.edu/gis/browse.jsp) shows the upper watershed consists of two primary land uses: cattle grazing and crops. The GIS data acquired from the County Assessor's Office and the Agricultural Commissioner's Office was edited using information acquired from 2007 digital aerial photography. Crop locations that are retired were deleted from the layer and additional crop locations were mapped in GIS using 2007 aerial imagery. The result showed that approximately 988 acres, or three percent, of the land use in the upper watershed is used for crops, with an average crop size of 12 acres. The remaining area in the upper watershed is either grazed, rural residential, or "watershed" as described by the Soil Surveys. In reviewing parcel data and aerial photographs in GIS and by conducting site surveys and consulting with San Luis Obispo County Farm Bureau, it was determined that land use in the upper watershed is mostly grazed.

Due to time-limitations, generalizations for land management had to be made. With nearly 600 "soil map units" analyzed separately, it was not possible to describe specific management practices for each unit. In the "Base Management" drop-down menu, the "Strip/barrier management" file was chosen, and "Cool season grass; not harvested" was selected. After the Base Management is selected in the drop-down menu, the chosen field is displayed in the Base Management window on the profile screen. Edits can be made to describe site conditions by clicking on the yellow folder next to the selected Base Management. The Operations and Information tabs are displayed in a new window. In the "Vegetation" field of the Operations tab, the "Permanent cover not harvested" folder was selected and "Brome, California, established cover" was chosen. After the selection was made, it is displayed in a drop-down window beneath the "Vegetation" field. For each soil map unit, the vegetation "Yield (# of harvestable units)" was edited to represent the "normal rangeland production" value for each "soil map unit" according to Table 5 in the Soil Surveys. All other fields were left unchanged in order to preserve the integrity of the management data developed by the Agricultural Resources Service. This selection was made after consulting B. Hallock of Cal Poly and choosing a vegetation type that best represents the growth characteristics of vegetation present in this watershed.

STEP 5: Set supporting practices

Practices such as contouring, strip systems, terrace/diversion, impoundments, and tile drainages, can be defined in this step. Supporting practices in the Santa Rosa Creek Watershed were unknown during this assessment. In Step 5 of the RUSLE2 analysis, "default" supporting practice was selected for "Contouring". Input fields for "strips/barriers", "diversion/terrace" and "sediment basin" were left at "none".

PREDICTED SOIL LOSS VALUE

After the above five steps were completed for a soil map unit, the "Soil loss for cons. plan" value under the "Soil Loss Values" tab located at the bottom of the profile page, was documented in the soils GIS layer database. The predicted values are given in tons of soil for each acre, annually. Acreage of the soil map unit was calculated in GIS and an additional field was added in the spreadsheet where the RUSLE2 predicted erosion rate and the soil map unit acreage were multiplied to calculate the predicted tons of sediment from each soil map unit in one year. Features such as exposed gravel pits, large gullies, and roads were not analyzed for predicted soil loss using RUSLE2. Site visits to these locations are necessary in order to gather the appropriate data to run the model.

APPENDIX I

RUSLE2 RESULTS FOR SOIL MAP UNITS IN THE UPPER SANTA ROSA CREEK WATERSHED

Data produced from "soils" GIS layer

Watershed	Soil Map Unit ID	Soil Ma Drainage ID Symbol	p Unit	Soil Name	Annual Soil Loss Acres (tons/acre/vear)	Total Predicted Annual Soil Loss (tons)	Comment
nta Rosa Creek				Las Osos-Lodo complex. 50 to 75 percent slopes	593.5	-	839.9 North Fork Santa Rosa
Santa Rosa Creek		1	3 154	Lompico-McMullin loams, 30 to 75 percent slopes	250.6	5.6 140	Fork
Santa Rosa Creek				Henneke-Rock outcrop complex, 15 to 75 percent slopes	379.7		North Fork
Santa Rosa Creek			1 150	Lodo clay loam, 50 to 75 percent slopes	321.0		930.9 North Fork Santa Rosa Creek
inta Rosa Creek	41			Los Osos-Lodo complex, 30 to 75 percent slopes	179.0		912.8 North Fork Santa Rosa Creek
Santa Hosa Creek				San Simeon sandy loam, 30 to 50 percent slopes	197.8		830.7
Santa Hosa Creek			7 166	Gaviota sandy loam, 50 to 75 percent slopes	82.7	9.8 F 2	810.0 Headwater
Santa Rosa Creek				Lopez very snary ciay loann, 30 to 75 percent slopes	188.0		738 0 North Fork Santa Rosa Creek
nta Rosa Creek	ο σ			Lorriptco-inciviurit i darits, su tu 73 percent siopes Il ne Oene-Diablo compley 15 to 30 nercent clones	100.3	5.7 FO	
Santa Rosa Creek	1			Los Coust Diatavo Comprezi, 13 to 30 percent stopes	125.0		676.2
Santa Rosa Creek	; ; ;			Los Osos-Lodo complex. 30 to 75 percent slopes	180.1		630.4 Perry Creek Headwaters
Santa Rosa Creek	1			Gazos-Lodo clav loams. 30 to 50 percent slopes	287.0	2.0 57	574.0 North Fork Santa Rosa Creek
Santa Rosa Creek	13		7 165	Los Osos-Diablo complex, 30 to 50 percent slopes	147.9		Perry Creek
Santa Rosa Creek				Gazos-Lodo clay loams, 30 to 50 percent slopes	208.4		20.9 Headwater
nta Rosa Creek				Los Osos-Diablo complex, 30 to 50 percent slopes	154.8		511.0 Headwaters
Santa Rosa Creek				Lopez very shaly clay loam, 30 to 75 percent slopes	92.4		489.9
nta Rosa Creek	17			Lodo-Rock outcrop complex, 30 to 75 percent slopes	136.5		477.8
Santa Rosa Creek	15			Lodo clay loam, 50 to 75 percent slopes	210.2		462.5 Curti Creek Watershed
Santa Rosa Creek	15			Henneke-Rock outcrop complex, 15 to 75 percent slopes	166.0		448.1
Santa Rosa Creek	20			Los Osos-Diablo complex, 15 to 30 percent slopes	142.9		442.9 Fiscalini Creek
nta Rosa Creek	2			Los Osos-Diablo complex, 30 to 50 percent slopes	215.2	2.0 43	430.4
Santa Rosa Creek	2			Lodo-Rock outcrop complex, 30 to 75 percent slopes	137.8		427.0 North Fork Santa Rosa Creek
Santa Rosa Creek	2			Los Osos-Diablo complex, 30 to 50 percent slopes	102.7	4.1 42	21.2
nta Rosa Creek				Lompico-McMullin loams, 30 to 75 percent slopes	85.4		418.6 Headwater
nta Rosa Creek				Los Osos loam, 15 to 30 percent slopes	173.3		415.8 Fiscalini Creek
Santa Rosa Creek				Diablo and Cibo clays, 30 to 50 percent slopes	287.5		402.6
Santa Rosa Creek				Gazos-Lodo clay loams, 30 to 50 percent slopes	283.3		396.7
Santa Rosa Creek	26			Gaviota fine sandy loam, 15 to 50 percent slopes	50.9	2	366.5 Fiscalini Creek
Santa Rosa Creek	26			Lodo clay loam, 30 to 50 percent slopes	98.3		363.5
Santa Rosa Creek				Diablo and Cibo clays, 30 to 50 percent slopes	229.2		343.9
Santa Rosa Creek				Lompico-McMullin complex, 50 to 75 percent slopes	58.1	5.9 34	342.9 Headwater
Ita Rosa Creek				Los Osos-Lodo complex, 30 to 75 percent slopes	93.8		328.2
Santa Rosa Creek				Diablo-Lodo complex, 15 to 50 percent slopes	491.4		324.3 Curti Creek Watershed
Santa Rosa Creek	ත්			Los Osos-Diablo complex, 30 to 50 percent slopes	137.9		317.1
Santa Rosa Creek	36			Los Osos-Diablo complex, 15 to 30 percent slopes	97.1		01.1
Santa Rosa Creek	ж			Los Osos loam, 15 to 30 percent slopes	105.5		295.5 Fiscalini Creek
Santa Rosa Creek	37			Gaviota fine sandy loam, 15 to 50 percent slopes	35.9	8.2 29	294.4
Santa Rosa Creek	ж			Los Osos-Diablo complex, 15 to 30 percent slopes	78.6		290.9
Santa Rosa Creek	Ř			Los Osos loam, 30 to 50 percent slopes	90.9		290.9 Perry Creek
ita Rosa Creek	4(Lopez very shaly clay loam, 30 to 75 percent slopes	85.1		289.4 North Fork Santa Rosa Creek
Santa Rosa Creek	4			Nacimiento-Calodo complex, 30 to 50 percent slopes	133.2		279.7 Headwater
Santa Rosa Creek	42			Santa Lucia shaly clay loam, 50 to 75 percent slopes	115.0	2.4 27	
Santa Rosa Creek	4			Los Osos-Lodo complex, 30 to 75 percent slopes	76.9		269.1 Curti Creek Watershed
ita Rosa Creek	4			Los Osos-Diablo complex, 30 to 50 percent slopes	98.6		266.1
Santa Rosa Creek	4			Los Osos-Lodo complex, 30 to 75 percent slopes	46.4		North Fo
Santa Rosa Creek	46		8 160 	Los Osos loam, 15 to 30 percent slopes	108.1	25 25	259.6 Fiscalini Creek
Sama Hosa Creek	4			Los Osos-Diable complex, 15 to 30 percent slopes	0.00		259.0
Sarita Hosa Creek	4				00.0	0	2.162
Santa Doca Creek	4 7			LUPEZ VELY SITALY CIAY IDATIT, 30 (0 / 3) PETCETIL SIUPES	8.2 D		240.3
Santa Rosa Creek	ο Γ		1152	I ada-Back outeron complex 30 to 75 percent slopes	105.0		0.042 D
Santa Rosa Creek	2			Diahlo and Citho clave 30 to 50 narcent stones	146.2	9	233.9
Santa Rosa Creek	2			Line Osos Inam 15 to 30 nercent sinnes	68.7		233.6
Santa Rosa Creek	ά ιζ		3 154	Lompico-McMullin loams. 30 to 75 percent slopes	51.2		230.3
Santa Rosa Creek	20		202	San Simeon sandy loam 30 to 50 percent slopes	68.6	0 00	226.3 Fiscalini Creek
Santa Rosa Creek	2			Laws mentalization from 00 to 75 menors along			
			2		1 05	57	1966

Watershed	Soil Map Unit ID	Drainade ID	Soil Map Unit Svmbol	Soil Name	Acres	RUSLE2 Predicted Annual Soil Loss (tons/acre/vear)	Total Predicted Annual Soil Loss (tons)	Comment
a Creek	58		182	Nacimiento-Calodo complex: 50 to 75 percent slopes	83.4	2.6		216.8 Headwater
Santa Rosa Creek	59		165	Los Osos-Diablo complex. 30 to 50 percent slopes	45.0	4.8		Headwater
Rosa	60		144	Gazos-Lodo clav loams. 30 to 50 percent slopes	112.7	1.9	214.0	
Santa Rosa Creek	61	-	164	Los Osos-Diablo complex, 15 to 30 percent slopes	76.1	2.8		
Santa Rosa Creek	62	2	119	Cieneba-Millsap loams, 30 to 75 percent slopes	23.9	8.9	212.9	
Santa Rosa Creek	63	9		Lodo-Rock outcrop complex, 30 to 75 percent slopes	51.8	4.0	207.2	207.2 Curti Creek Watershed
Santa Rosa Creek	64	2		Nacimiento-Calodo complex, 30 to 50 percent slopes	66.0	3.1	204.6	
Santa Rosa Creek	65	£		Los Osos-Diablo complex, 30 to 50 percent slopes	54.8	3.6	197.3	Perry Creek Headwaters
Santa Rosa Creek	66		152	Lodo-Rock outcrop complex, 30 to 75 percent slopes	54.9	3.5		
Santa Rosa Creek	67	6	149	Lodo clay loam, 30 to 50 percent slopes	59.5	3.2	190.4	
Santa Rosa Creek	68	-		Cieneba-Millsap loams, 30 to 75 percent slopes	41.2	4.6	189.4	Curti Creek Watershed
Santa Rosa Creek	69	2		Los Osos loam, 15 to 30 percent slopes	68.6	2.7	185.2	Perry Creek
Santa Rosa Creek	20	6	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	91.7	2.0	183.4	
Santa Rosa Creek	71	2		Los Osos-Diablo complex, 30 to 50 percent slopes	48.7	3.7	180.3	Headwater
Santa Rosa Creek	72		132	Diablo and Cibo clays, 30 to 50 percent slopes	105.8	1.7	179.9	
Santa Rosa Creek	73	с О	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	112.0	1.6	-	
Santa Rosa Creek	74		133	Diablo-Lodo complex, 15 to 50 percent slopes	290.2	0.6		
Santa Rosa Creek	75			Lodo clay loam, 50 to 75 percent slopes	59.5	2.9		
Santa Rosa Creek	76		14 132	Diablo and Cibo clays, 30 to 50 percent slopes	100.5	1.7	170.8	
Santa Rosa Creek	77			Gaviota fine sandy loam, 15 to 50 percent slopes	32.9	5.1	167.6	Fiscalini Creek
Santa Rosa Creek	78			Diablo-Lodo complex, 15 to 50 percent slopes	151.2	1.1	166.3	
Santa Rosa Creek	59		11 164	Los Osos-Diablo complex, 15 to 30 percent slopes	92.3	1.8	166.2	Curti Creek Watershed
Santa Rosa Creek	80			Nacimiento-Calodo complex, 30 to 50 percent slopes	78.1	2.1		
Santa Rosa Creek	81		119	Cieneba-Millsap loams, 30 to 75 percent slopes	26.0	6.3		
Santa Rosa Creek	82	27	164	Los Osos-Diablo complex, 15 to 30 percent slopes	74.2	2.2	163.2	
Santa Rosa Creek	83	-		Los Osos loam, 30 to 50 percent slopes	31.3	5.2		
Santa Rosa Creek	84		152	Lodo-Rock outcrop complex, 30 to 75 percent slopes	49.2		162.3	
Santa Rosa Creek	85		133	Diablo-Lodo complex, 15 to 50 percent slopes	252.2	0.6	158.9	
Santa Rosa Creek	86		152	Lodo-Rock outcrop complex, 30 to 75 percent slopes	101.2	1.5	151.8	North Fork Santa Rosa
Santa Rosa Creek	87	2	165	Los Osos-Diablo complex, 30 to 50 percent slopes	61.2		146.9	
Santa Rosa Creek	88	4	181	Nacimiento-Calodo complex, 30 to 50 percent slopes	51.6	2.8	144.4	
Santa Rosa Creek	89	14	152	Lodo-Rock outcrop complex, 30 to 75 percent slopes	51.1	2.8		
Santa Rosa Creek	06	2	162	Lompico-McMullin complex, 50 to 75 percent slopes	40.6	3.5		North Fork Santa Rosa
Santa Rosa Creek	91			Diablo and Cibo clays, 15 to 30 percent slopes	106.7	1.3	138.8	
Santa Rosa Creek	92			Balcom-Calleguas complex, 50 to 75 percent slopes	30.1	4.6	138.2	Headwater
Santa Rosa Creek	93		3 181	Nacimiento-Calodo complex, 30 to 50 percent slopes	44.5	3.1	138.0	
Santa Rosa Creek	94			Diablo-Lodo complex, 15 to 50 percent slopes	191.2	0.7		
Santa Rosa Creek	95			Lopez very shaly clay loam, 30 to 75 percent slopes	45.8	3.0		137.5 Headwater
Santa Rosa Creek	96			Diablo and Cibo clays, 30 to 50 percent slopes	83.9	1.6	134.2	
Santa Rosa Creek	97			Los Osos loam, 30 to 50 percent slopes	49.0	2.7	132.3	Fiscalini Creek
Santa Rosa Creek	98	,-		Cieneba-Millsap loams, 30 to 75 percent slopes	31.7	4.1		Headwaters
Santa Rosa Creek	66		8 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	92.2	1.4		
Santa Rosa Creek	100			Los Osos-Diablo complex, 15 to 30 percent slopes	58.4	2.2		
Santa Hosa Creek	101			Gaviota sandy loam, 50 to 75 percent slopes	35.0	3.6	126.1	
Santa Hosa Creek	201	0	104	Los Usos-Ulablo complex, 15 to 30 percent slopes	29.90	7.1	0.921	
	501	- 1			1.0.0	- c		
Sarita Hosa Creek	104	/	140	Los Osos-Diabio complex, su to su percent sigpes	1050	3.2	124.0	
Santa Doca Creek	901		140	Hazus-Loud clay idalits, 13 to 30 per certi siopes	123.9	0.1	1.221	Dorry Crook Hoodwators
Santa Roca Creek	107		150	Los Osos-Diablo Complex, so to so percent supes I ce Occe ham 9 to 15 narrent elones	10.0	2.4	117.8	Ferry Creek Heauwaters
Santa Rosa Creek	100	9	161	Los Osos loam, 3 to 13 percent slopes	46.9	5.0	117.9	Fiscalini Creek
Santa Boea Crook	001		101	Edd Odda Idanii, o'd i'd yd ydroenii dioped Gazae-1 ada alaw laame - 20 ta 50 narraant elanae	0.04		116.5	
Santa Rosa Creek	110		156	Lonez very shalv clay loam 30 to 75 percent slopes	2002	4.6		North Fork Santa Rosa Creek
Santa Rosa Creek	111	; ;	160	Los Osos loam. 15 to 30 nercent slones	54.9	2.1		
Santa Rosa Creek	112	10	161	Los Osos loam. 30 to 50 percent slopes	47.7	2.4	114.5	
Santa Rosa Creek	113	6	164	Los Osos-Diablo complex, 15 to 30 percent slopes	36.7	3.1	113.8	
Santa Rosa Creek	114		195	Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope	50.4	5.0	113.5	
Santa Rosa Creek	115			Gazos-Lodo clay loams, 50 to 75 percent slopes	56.6	2.0	113.1	Headwaters
Santa Rosa Creek	117	47	47 145	Gazos-Lodo clay loams, 50 to 75 percent slopes	70.2	1.6	112.3	112.3 North Fork Santa Rosa

Watershed	Soil Map Unit ID	Drainage ID	Soil Map Unit Symbol		Acres (Annual Soll Loss (tons/acre/year)	Total Predicted Annual Soil Loss (tons)	Comment
Creek	118	45	150	Lodo clay loam, 50 to 75 percent slopes	23.0	4.8		
Santa Rosa Creek	119	5	160	Los Osos loam, 15 to 30 percent slopes	41.8	2.6		
Santa Rosa Creek	120	27	160	Los Osos loam, 15 to 30 percent slopes	48.9	2.2		
Santa Rosa Creek	121	16	167	Los Osos-Lodo complex, 30 to 75 percent slopes	26.6	4.0		Perry Creek Headwaters
Santa Rosa Creek	122	4		Diablo and Cibo clays, 15 to 30 percent slopes	81.2	1.3		
Santa Hosa Creek	123	m I		Diablo-Lodo complex, 15 to 50 percent slopes	155.5	0.7		Perry Creek
Sama Hosa Creek	124	· ۵	161	Los Osos loam, 30 to 50 percent slopes	33.6	3.1		
Santa Hosa Creek	125		1 132	Diablo and Cibo clays, 30 to 50 percent slopes	94.7	1.1		0
Santa Hosa Creek	126	4		Los Osos-Lodo complex, 30 to /5 percent slopes	23.0	4.5		103.6 Curti Creek Watershed
Santa Hosa Creek	12/	ι Έ	165	Los Osos-Diablo complex, 30 to 50 percent slopes	25.9	4.0	103.4	
anta Hosa Creek	128	2	133	Diablo-Lodo complex, 15 to 50 percent slopes	145.3	0.7		
Santa Hosa Creek	129		165	Los Osos-Diablo complex, 30 to 50 percent slopes	31.0	3.3		Headwaters
Santa Rosa Creek	130	0	132	Diablo and Cibo clays, 30 to 50 percent slopes	71.7	1.4		
anta Rosa Creek	131	-		Lodo clay loam, 50 to 75 percent slopes	25.7	3.9	-	
Santa Rosa Creek	132	15		Lodo clay loam, 30 to 50 percent slopes	45.4	2.2		99.9 Perry Creek
Santa Rosa Creek	133	14	14 167	Los Osos-Lodo complex, 30 to 75 percent slopes	31.7	3.1	1 98.1	Headwaters
Santa Rosa Creek	134	16		Diablo-Lodo complex, 15 to 50 percent slopes	154.5	0.6		8 Perry Creek Headwaters
Santa Rosa Creek	135	15		Lodo clay loam, 50 to 75 percent slopes	26.1	3.7	7	
Santa Rosa Creek	136	14	141	Gaviota sandy loam, 50 to 75 percent slopes	20.9	4.6	96.1	Headwater
anta Rosa Creek	137	27		Diablo and Cibo clays, 15 to 30 percent slopes	96.0	1.0		Perry Creek
Santa Rosa Creek	138	16		Gazos-Lodo clay loams, 15 to 30 percent slopes	45.2	2.1		
Santa Rosa Creek	139	9		Lodo-Rock outcrop complex, 30 to 75 percent slopes	31.4	3.0	94.3	
anta Rosa Creek	140	15		Gaviota fine sandy loam, 15 to 50 percent slopes	31.1	3.0		Piscalini Creek
Santa Rosa Creek	141			Gazos-Lodo clay loams, 30 to 50 percent slopes	48.7	1.9		
Santa Hosa Creek	142	2		San Simeon sandy loam, 15 to 30 percent slopes	34.1	2.7		
Santa Hosa Creek	143	10		Utablo and Cibo clays, 30 to 50 percent slopes	/6.4	Z. L		
Sama Hosa Creek	144	0		Los Osos-Diablo complex, 15 to 30 percent slopes	3/.8	2.4 0		Ferry Creek
Santa Posa Creek	911	+		Lus Usus-Diable cumprex, 13 to 30 percent stupes	49.7	0.1 0		
Santa Rosa Creek	140	5		Loud viay idanin, ou tu 7.0 percenti sidues Il de Oede Idam 15.40 30 harmant elonae	33.0	0.7		Darni Creak
Santa Rosa Creek	149	10		Cieneba-Millsan Iname 30 to 75 nercent slones	13.3	6.6		
Santa Rosa Creek	150	6		Lopez very shaly clay loam, 30 to 75 percent slopes	17.6	5.0		
Santa Rosa Creek	151	8	8 164	Los Osos-Diablo complex, 15 to 30 percent slopes	33.6	2.6	87.4	
Santa Rosa Creek	152	9		Los Osos-Diablo complex, 9 to 15 percent slopes	89.6	1.0		
Santa Rosa Creek	153	1		Lompico-McMullin loams, 30 to 75 percent slopes	15.8	5.5		Headwater
Santa Rosa Creek	154	16	164	Los Osos-Diablo complex, 15 to 30 percent slopes	27.9	3.1		86.5
anta Rosa Creek	155	2	160	Los Osos loam, 15 to 30 percent slopes	53.2	1.6) Fiscalini Creek
Santa Rosa Creek	156	28	133	Diablo-Lodo complex, 15 to 50 percent slopes	157.0	0.5		
Santa Rosa Creek	157	27	133	Diablo-Lodo complex, 15 to 50 percent slopes	119.4	0.7		
anta Hosa Creek	158	2/	133	Ulablo-Lodo complex, 15 to 50 percent slopes	95.1	0.9		
Santa Hosa Creek	159	- 4	195	Hock outcrop-Lithic Haploxerolis complex, 30 to 75 percent slope	15.5	0.0	82.3	S North Fork Santa Hosa Creek
Sarita Hosa Creek	161	0 0	100	Lodo ciay idarri, ou to 70 percent siopes	21.4	0.0		
Santa Rosa Creek	161	2	201	Lus Osus-Diaulu cumptes, su tu su percent slupes	20.2	0.1		
anta Rosa Creek	163	16	164	Los Osos-Diahlo comular 15 to 30 percent slopes	25.2			
Santa Rosa Creek	164	26	119	Cieneba-Millsap loams, 30 to 75 percent slopes	11.3	7.1	79.9	
Santa Rosa Creek	165	28		Los Osos-Diablo complex, 30 to 50 percent slopes	44.3	1.8		7 Fiscalini Creek
anta Rosa Creek	166	29		Diablo and Cibo clays, 15 to 30 percent slopes	65.9	1.2	2 79.1	
Santa Rosa Creek	167	27		Santa Lucia shaly clay loam, 50 to 75 percent slopes	30.3	2.6	5 78.8	
Santa Rosa Creek	168	16		Los Osos-Diablo complex, 30 to 50 percent slopes	24.4	3.2		
Santa Rosa Creek	169	19		Diablo and Cibo clays, 15 to 30 percent slopes	71.0	1.1	1 78.0	
Santa Rosa Creek	170	3	152	Lodo-Rock outcrop complex, 30 to 75 percent slopes	15.4	5.0		
Santa Rosa Creek	172	-		Los Osos-Diablo complex, 30 to 50 percent slopes	14.5	5.3		
Santa Rosa Creek	173	4	164	Los Osos-Diablo complex, 15 to 30 percent slopes	28.4	2.7		Berry Creek
Santa Hosa Creek	174	ю 0	163	Los Osos-Diablo complex, 9 to 15 percent slopes	16.3	4.7		
Santa Hosa Creek	6/L 1/5	N +	160	Corror I ado alari hama 20 to E0 accont alara	50.6	0.L	75 0	Perry Creek
Santa Rosa Creek	177			Diable Lode complex 15 to 50 current clanes	24.4	4. I		
					a / c /		-	75 5 Hoodwotore

Ones 110 0001	Watershed	Soil Map Unit ID	Drainage ID	Soil Map Unit Svmbol	Soil Name	Acres	RUSLE2 Predicted Annual Soil Loss (tons/acre/vear)	Total Predicted Annual Soil Loss (tons)	Comment
18 58 100 100 100 100 100 100 100 18 31 100 100 100 100 100 100 100 18 31 100	Santa Rosa Creek	179		201	San Simeon sandy loam, 15 to 30 percent slopes		1.8		
18 47 183 104 0.01 Solution (0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.000, 0.01 Solution (0.000, 0.01 Solution (0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.01 Solution (0.000, 0.000, 0.01 Solution (0.000, 0.00	Santa Rosa Creek	180		152	Lodo-Rock outcrop complex, 30 to 75 percent slopes	30.8	2.4		
18 7 161 Use for entry for the control corruption. To be control corruption. To be control corruption. To be control corruption. To contretable. To control corruptin. To control corruptin. To control c	Santa Rosa Creek	181		159	Los Osos loam, 9 to 15 percent slopes	60.8	1.2	2 72.9	
(8) 2 (8) Disc, bed controls, (1): 6 Discent display 7 (8) 7 (8) 7 (8) 7 (8) 7 (8) (8) 2 (8) Disc, bed controls, (1): 6 Discent display 2 (8) 2	Santa Rosa Creek	182		164	Los Osos-Diablo complex, 15 to 30 percent slopes	45.5	1.6	5 72.8	
116 116 106 106 101 <td>Santa Rosa Creek</td> <td>183</td> <td></td> <td></td> <td>Diablo-Lodo complex, 15 to 50 percent slopes</td> <td>78.8</td> <td>0.6</td> <td></td> <td></td>	Santa Rosa Creek	183			Diablo-Lodo complex, 15 to 50 percent slopes	78.8	0.6		
19 2 11 Constraint Accord Straint Stores 20 11 20 21 19 25 10 Constraint Accord Straint Stores 20 21 21 21 22 22 23 23 24 23 23 24 24 25 24 24 25 24 24 25 25 24 25 25 24 25 25 25 25 26 <td>Santa Hosa Creek</td> <td>184</td> <td></td> <td>165</td> <td>Los Osos-Diablo complex, 30 to 50 percent slopes</td> <td>34.1</td> <td>2.1</td> <td></td> <td></td>	Santa Hosa Creek	184		165	Los Osos-Diablo complex, 30 to 50 percent slopes	34.1	2.1		
18 251	Sama Hosa Creek	181		131	Diablo and Cibo clays, 15 to 30 percent slopes	20.3			1
198 700/3 200/2 200/2 200/2 200/2 200/2 118 161 100 100 100 100 20 20 20 20 118 2016 100 100 100 100 20	Sama Hosa Creek	181			Laviota-Hock outcrop complex, 30 to /5 percent slopes	14.0	0.0		
198 Color Serrit Action Sector Secto	Sama Hosa Creek	88 -			Loao-Hock outgrop complex, 30 to 75 percent slopes	G.US	4.0		
18 19 19 19 10<	Sarria Hosa Creek	100			Santa Lucia snaly ciay loam, 30 to 30 percent slopes	32.9			
(8) (2) <th(2)< th=""> <th(2)< th=""> <th(2)< th=""></th(2)<></th(2)<></th(2)<>	Sarita Rosa Creek	190			Los Osos-Diabio complex, 10 to 30 percent slopes	23.0			
18 20 10 20<	Santa Hosa Creek	181			Lompico-McMullin Ioams, 30 to /5 percent slopes	0.11	0 0		
18 61 34 40.2 24 60.2 18 13 14	Sama Hosa Creek	261			Los Usos-Diablo complex, 9 to 15 percent slopes	24.9			Perry Creek
18 13 14	Sama Hosa Creek	193			Lodo clay loam, 5 to 15 percent slopes	30.2	7.7		Perry Creek
196 19 42 Control on complex, 30 to 5 percent stoples 64 10 42 10 10 10 197 133 Dathon Ludo controls on stroplex, 30 to 5 percent stoples 64 11 10 <td>Santa Hosa Creek</td> <td>191</td> <td></td> <td></td> <td>Lopez very snaly clay loam, 30 to /5 percent slopes</td> <td>13.4</td> <td>2.4</td> <td></td> <td></td>	Santa Hosa Creek	191			Lopez very snaly clay loam, 30 to /5 percent slopes	13.4	2.4		
19 17 133 Under Lob controls. On Soft prevent slopes 163 10 10 196 17 123 Under Lob controls. On Soft prevent slopes 163 4.0 66.5 198 173 Under Lob controls. On Soft prevent slopes 163 1.1 4.0 66.5 201 116 Los Cose bank. On Soft prevent slopes 3.0 2.1 4.0 66.5 201 116 Los Cose bank. On Soft prevent slopes 3.1 3.1 4.0 66.5 202 116 Los Cose bank. On Soft prevent slopes 3.1 3.1 4.0 66.6 203 16 Los Cose bank. On Soft prevent slopes 3.1 3.1 4.0 66.5 203 16 Los Cose bank. On Soft slopen 4.3 3.1 4.1 66.5 204 13 Dabbe. Lob complex. 30 to 50 prevent slopes 3.1 4.1 4.1 67.5 204 214 Lob Cose bank. 30 to 50 prevent slopes 3.1 4.1 4.1 67.5 203	Santa Rosa Creek	195			Gaviota fine sandy loam, 15 to 50 percent slopes	9.0	7.3		
19/ 11/2 Lutor enclose composit, 30 to 7 percent sobres 16 st 14 st </td <td>Santa Hosa Creek</td> <td>196</td> <td></td> <td></td> <td>Ulablo-Lodo complex, 15 to 50 percent slopes</td> <td>68.1</td> <td>1.0</td> <td></td> <td></td>	Santa Hosa Creek	196			Ulablo-Lodo complex, 15 to 50 percent slopes	68.1	1.0		
18 712 18 112 113 114 115 114 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 115 114 114 115 114 114 114 114 114 114 114 114 114	Santa Hosa Creek	197			Lodo-Hock outcrop complex, 30 to 75 percent slopes	16.3	4.0		
198 2152 Look Control currents corrents, 501 65 percent slopes 337 21 321 <th< td=""><td>Santa Rosa Creek</td><td>198</td><td></td><td></td><td>Diablo and Cibo clays, 30 to 50 percent slopes</td><td>46.3</td><td>1.4</td><td></td><td></td></th<>	Santa Rosa Creek	198			Diablo and Cibo clays, 30 to 50 percent slopes	46.3	1.4		
210 111-bit Los Goste Banh, Olio Bo perenti slopes 30.7 2.1 64.1 200 111-bit Los Goste Banh, Olio Bo perenti slopes 37.7 1.7 2.3 64.3 201 111-bit Los Goste Banh, Olio Bo perenti slopes 2.3 2.3 64.3 202 114-bit Los Goste Banh, S1 50 general slopes 2.3 2.3 6.3 203 116-bit Les Goste Banh, S1 50 general slopes 2.3 2.3 2.3 6.3 204 118-bit Les Goste Banh, S1 50 general slopes 2.3 2.3 6.3 6.3 201 114-bit Los Goste Banh, S1 50 for Forent slopes 1.5 9.6 <t< td=""><td>Santa Rosa Creek</td><td>199</td><td></td><td></td><td>Lodo-Rock outcrop complex, 30 to 75 percent slopes</td><td>38.0</td><td>1.7</td><td></td><td></td></t<>	Santa Rosa Creek	199			Lodo-Rock outcrop complex, 30 to 75 percent slopes	38.0	1.7		
201 10166 Los Gase and Los Case lands camples, 3016 of percent lappes 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 56.1 206 1161 Los Case land, 150 05 percent lappes 27.9 2.0	Santa Rosa Creek	200			Los Osos loam, 30 to 50 percent slopes	30.7	2.1		
202 41.44 Casses Londo complex, 15 to 30 percent slopes 37.7 1.7 1.7 30.6 203 31.60 Les Conso barm, 15 to 30 percent slopes 27.3 30.7 31.7 31.7 31.7 31.6 204 21.67 Les Conso barm, 15 to 30 percent slopes 23.6 23.6 55.6 55.7 52.6 55.6 55.6 55.6 55.6 55.6 55.6 55.7 </td <td>Santa Rosa Creek</td> <td>201</td> <td></td> <td></td> <td>Los Osos-Diablo complex, 30 to 50 percent slopes</td> <td>27.9</td> <td>2.3</td> <td></td> <td></td>	Santa Rosa Creek	201			Los Osos-Diablo complex, 30 to 50 percent slopes	27.9	2.3		
201 3160 Los Goss barn, 316 50 percent isopes 23.13 3.00 3.00 206 1133 Diabe-Loco complex, 15 60 percent isopes 23.0 27 65.0 206 16 180 Los Goss barn, 30 to 50 percent isopes 23.6 24 65.0 207 2167 Los Goss barn, 30 to 50 percent isopes 23.6 24.1 65.0 208 2167 Los Goss barn, 30 to 50 percent isopes 12.4 4.1 65.0 210 516 Los Goss barn, 30 to 50 percent isopes 16.4 3.1 4.1 65.0 211 514 Gost barn, 30 to 50 percent isopes 16.4 3.0 50 66.0 211 514 Los Gost barn, 30 to 50 percent isopes 16.4 3.0 50 66.0 211 114 Los Gost barn, 30 to 50 percent isopes 16.4 3.0 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5	Santa Rosa Creek	202			Gazos-Lodo clay loams, 30 to 50 percent slopes	37.7	1.7		
204 2 (6) Los Costs barm. 15 (n. 30) to 50 percent slopes 29.6 0.2 20.6 65.8 206 16 (5) Los Costs barm. 15 (n. 30) to 50 percent slopes 23.6 2.7 26.7 26.3 206 16 (5) Los Costs barm. 15 (n. 30) to 50 percent slopes 15.4 2.7 2.7 2.6 65.8 210 56 (15) Loss Costs barm. 30 (n. 50 percent slopes 17.9 3.1 4 2.7 2.7 2.6 65.3 210 56 (15) Loss Costs barm. 30 (n. 50 percent slopes 16.4 3.8 4.1 3.8 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.7 5.6 5.7 5.6 5.7 5.6 5.7 5.6 5.7 5.6 5.7 5.6 5.6 5.6 5.6 5.6 5.6 5.7 5.6 5.7 5.7 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.6 5.7	Santa Rosa Creek	203			Los Osos loam, 15 to 30 percent slopes	21.3	3.0		i Fiscalini Creek
205 1 133 Deale Look complex, 15 to 50 percent slopes 93.6 0.6 65.3 207 2 167 Los Gose-Look complex, 30 to 50 percent slopes 23.6 2.7 65.7 207 2 167 Los Gose-Look complex, 30 to 50 percent slopes 17.9 4.9 65.3 208 201 Los Gose-Look complex, 30 to 50 percent slopes 17.9 4.3 3.5 66.1 210 144 Coses-Look complex, 30 to 50 percent slopes 17.4 3.5 66.1 211 141 Coses-Look complex, 30 to 50 percent slopes 24.3 3.0 67.1 212 114 Look Calva cultory complex, 30 to 50 percent slopes 24.3 3.0 67.9 213 1144 Coses-Look complex, 30 to 50 percent slopes 24.3 3.0 67.9 214 1134 Coses look complex, 30 to 50 percent slopes 24.3 3.0 67.9 214 1142 Coses loak complex, 30 to 50 percent slopes 24.3 3.0 67.9 215 1164 13.5	Santa Rosa Creek	204			Los Osos loam, 30 to 50 percent slopes	29.0	2.2		Fiscalini
206 16 Loss Obses Lobor Complex, 30 for 5 percent slopes 22.3 2	Santa Rosa Creek	205			Diablo-Lodo complex, 15 to 50 percent slopes	99.6	0.6		
207 2 (17) Los Osse Lodo complex, 30 (15 G) percent slopes 12.9 4.1 663 208 561 Los Osse Lodo complex, 30 (15 G) percent slopes 17.9 3.5 4.1 663 210 561 Los Osse Lodo complex, 30 (15 G) percent slopes 17.9 3.5 661 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.0 61.7 2.0 2.0	Santa Rosa Creek	206			Los Osos loam, 15 to 30 percent slopes	23.6	2.7		Headwaters
208 59120 San Same and Yalon S 00 benear slopes 154 4.1 6813 210 561 (c) Loco-Reck outcrop complex, 30 to 75 percent slopes 164 3.6 3.6 211 1 (4) Cocos (ab) fam. 30 to 50 percent slopes 16.4 3.6 561 (c) 212 1 (4) Cocos (ab) fam. 30 to 50 percent slopes 2.6 3.0 59 57 215 1 (4) Loco-Reck outcrop complex, 30 to 55 percent slopes 2.6 3.0 5	Santa Rosa Creek	207			Los Osos-Lodo complex, 30 to 75 percent slopes	12.9	4.6		. Headwater
210 561 Lear Oxer enant. 30 to 50 percent slopes 17.9 3.5 662 211 361 Locor Rock outing oranges. 30 to 55 percent slopes 14.4 3.5 661 212 11.49 Locor Rock outing oranges. 30 to 50 percent slopes 17.4 3.10 50 661 3.0 66 3.0 66 3.0 67 3.0 50 661 3.0 66 3.0 66 3.0 66 3.0 66 3.0 66 3.0 66 3.0 66 3.0 66 3.0 66 3.0 66 3.0 67 3.0 66 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67 3.0 67	Green Valley Creek	208			San Simeon sandy loam, 30 to 50 percent slopes	15.4	4.1		
210 56 52 Ludo Fack 201 Solution Concreto complex, 30 to 50 percent stopes 16.4 3.3 5 5 211 1 144 Ludo Fack Nerms, 30 to 50 percent stopes 20.4 1.4 3.0 61.7 212 1 149 Ludo Fack Nerms, 30 to 50 percent stopes 20.4 3.0 50 50.7 213 1 215 Dabto-Fack Nerms, 30 to 50 percent stopes 24.2 2.1 0.3 0 50 214 1 25 Dabto-Fack Nerms, 30 to 50 percent stopes 24.2 2.1 0.3 0 50	Green Valley Creek	209			Los Osos loam, 30 to 50 percent slopes	17.9	3.5		
211 3144 (azos-Lodo clay lears) 30 te 50 percent slopes 41.3 1.4 (azos-Lodo clay lears) 30 te 50 percent slopes 1.7 41.9 1.0 1.4 0.0 50 51 1.0 1.0 1.0 1.0 1.0 1.0 0.0 50 percent slopes 1.7 1.1 2.1 1.0 0.0 50 percent slopes 1.7 1.1 2.0 0.0 50 <	Green Valley Creek	210			Lodo-Rock outcrop complex, 30 to 75 percent slopes	16.4	3.6		
212 1 [49 Lodo cky learn, 30 to 50 percent slopes 77.4 3.0 61.7 214 1 [51 Lodo Rock duturcing complex, 9 to 30 percent slopes 16.1 3.0 60.8 215 1 [141 Lodo Rock duturcing complex, 16 to 30 percent slopes 68.7 2.1 2.1 0.9 60.0 216 18 [141 Lodo Rock duturcing complex, 16 to 30 percent slopes 2.8 2.9 0.9 217 17 204 Sama Lucia stary day dam, 50 to 50 percent slopes 2.8 2.1 2.1 0.9 5.7 7.7 5.9 5.9 5.7 <t< td=""><td>Santa Rosa Creek</td><td>211</td><td></td><td></td><td>Gazos-Lodo clay loams, 30 to 50 percent slopes</td><td>44.3</td><td>1.4</td><td></td><td></td></t<>	Santa Rosa Creek	211			Gazos-Lodo clay loams, 30 to 50 percent slopes	44.3	1.4		
213 2151 Loch Chock untrop complex, 30 to 50 percent islopes 6.8 7 0.9 60.5 214 1122 Diablo and Clino clay, 30 to 50 percent islopes 6.8 7 0.9 60.5 216 161 Loco Soss larm, 30 to 50 percent islopes 2.8 2.1 0.9 60.5 219 181 Loci Soss larm, 30 to 50 percent islopes 2.1 0.9 60.9 219 181 Loci Perok untrop complex, 161 o5 percent islopes 2.1 0.9 59.9 219 219 172 Dualabu-Loci camplex, 151 o5 percent islopes 2.1 0.9 59.9 210 1164 Loci Perok untrop complex, 151 o5 percent islopes 2.1 1.0 1.0 5.7 221 11164 Loci Perok untrop complex, 151 o5 percent islopes 2.1 2.1 2.1 57.1 222 211 Loci Perok untrop complex, 151 o5 percent islopes 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.	Santa Rosa Creek	212			Lodo clay loam, 30 to 50 percent slopes	20.6	3.0		
214 1122 Datio and Cho clays, 30 to 50 percent slopes 66.1 216 16 H4 Gazos-Lodo cky Jams, 30 to 50 percent slopes 24.2 2.5 60.4 217 17 204 24.2 2.5 60.4 217 17 204 2.1 2.1 60.4 217 17 204 2.1 1.3 59.1 218 16 1.6 Los 6 Sos barn, 30 to 50 percent slopes 2.1 1.3 59.1 219 29 133 Dablo-Ludo somplex, 30 to 75 percent slopes 2.0 2.1 1.3 59.1 220 116 Los Cosso-Diablo complex, 30 to 75 percent slopes 2.0 2.1 1.3 59.7 222 2 13 Dablo and Cloo clays, 30 to 50 percent slopes 2.1 1.4 2.3 57.7 222 2 16 Los Cosso-Diablo complex, 30 to 50 percent slopes 2.1 1.4 2.1 5.7 223 28 16 Los Cosso-Diablo complex, 30 to 50 percent slopes 4.2 <td>Santa Rosa Creek</td> <td>213</td> <td></td> <td></td> <td>Lodo-Rock outcrop complex, 9 to 30 percent slopes</td> <td>17.4</td> <td>3.5</td> <td></td> <td></td>	Santa Rosa Creek	213			Lodo-Rock outcrop complex, 9 to 30 percent slopes	17.4	3.5		
216 16 16 Cazos-Lodo clay learn, 30 to 50 percent slopes 24 25 560 57 56 57 57 56 57 57 57 57 <	Santa Rosa Creek	214			Diablo and Cibo clays, 30 to 50 percent slopes	68.7	0.6		
216 18 161 Los Osos barn, 30 to 50 percent slopes 2.1 7.24 2.1 7.24 5.91 217 17 204 Santa Lucia staby clay loam, 50 to 75 percent slopes 61.0 1.0 5.9.7 219 5913 Dabb-Lodo complex, 15 to 50 percent slopes 61.0 1.0 5.9.7 220 50178 Lodo-Rock outcrop complex, 15 to 30 percent slopes 20.0 2.9 5.9 221 166 Los Ossos-Diablo complex, 15 to 30 percent slopes 20.1 1.0 5.97 222 213 Diablo and Clob clays, 15 to 30 percent slopes 36.1 1.6 1.6 222 213 Diablo and Clob clays, 15 to 30 percent slopes 36.1 1.6 1.6 222 214 Los Ossos-Diablo complex, 30 to 50 percent slopes 42.7 1.3 55.5 221 221 Diablo and Clob clays, 15 to 30 percent slopes 42.7 1.3 55.5 223 261 15 Loado-Rock outcrop complex, 30 to 50 percent slopes 42.7 1.3 55.5 224 213 </td <td>Santa Rosa Creek</td> <td>215</td> <td></td> <td></td> <td>Gazos-Lodo clay loams, 30 to 50 percent slopes</td> <td>24.2</td> <td>2.5</td> <td>10</td> <td></td>	Santa Rosa Creek	215			Gazos-Lodo clay loams, 30 to 50 percent slopes	24.2	2.5	10	
217 17/204 Santa Lucia shaly clay barn. 50 to 75 percent slopes 46.1 1.3 59.3 218 5.9 133 Lodor-Rock outrop complex, 15 to 50 percent slopes 20.1 1.0 59.1 220 5.0 178 Lodor-Rock outrop complex, 30 to 55 percent slopes 20.1 2.1 <td>Santa Rosa Creek</td> <td>216</td> <td></td> <td></td> <td>Los Osos loam, 30 to 50 percent slopes</td> <td>28.6</td> <td>2.1</td> <td></td> <td></td>	Santa Rosa Creek	216			Los Osos loam, 30 to 50 percent slopes	28.6	2.1		
218 59133 Diable-Lodo complex, 15 to 50 percent slopes 61.0 1.0 59.7 219 49 152 Ludor-Rock outcrop complex, 30 to 75 percent slopes 2.0 2.1 58.1 221 1164 Lee Osce-Diablo complex, 15 to 30 percent slopes 2.1 2.1 5.1 222 2132 Diablo and Cibo clays, 30 to 50 percent slopes 36.1 1.6 2.9 5.7 224 2711 Diablo and Cibo clays, 30 to 50 percent slopes 36.1 1.6 5.7 225 221 131 Diablo and Cibo clays, 30 to 50 percent slopes 4.7.2 1.3 5.7 225 521 131 Diablo and Cibo clays, 15 to 30 percent slopes 4.2.7 1.3 5.5 225 5914 Gazos-Lodo cay loans, 30 to 50 percent slopes 1.4 2.3 1.3 5.5 226 51 Lodo-Rock outcrop complex, 30 to 50 percent slopes 1.4 7.2 1.3 5.5 227 61 Lodo Rock outcrop complex, 30 to 50 percent slopes 1.4 7.2 1.3 5.5	Santa Rosa Creek	217			Santa Lucia shaly clay loam, 50 to 75 percent slopes	46.1	1.3		Headwater
219 49 [152 Lodo-Rock outcrop complex, 30 to 75 percent slopes 20	Green Valley Creek	218			Diablo-Lodo complex, 15 to 50 percent slopes	61.0	1.0		
220 50178 Nacrimiento silty clay beam, 30 to 50 percent slopes 277 2.1 1.64 Lues Cosso-Diadro complex, 15 to 30 percent slopes 36.1 1.6 2.9 57.9 222 2132 Diabio and Cibio clays, 15 to 30 percent slopes 36.1 1.6 57.7 224 271131 Diabio and Cibio clays, 15 to 30 percent slopes 36.1 1.2 3.8 57.7 225 561131 Diabio and Cibio clays, 15 to 30 percent slopes 47.2 1.12 56.5 56.1 225 561146 Los Oscos-Diabio complex, 30 to 50 percent slopes 30.8 1.8 56.5 56.1 56.1 56.5 56.1 1.2 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.5 56.1 56.1 56.5 56.1 56.5 56.1 56.5 56.1	Santa Rosa Creek	219			Lodo-Rock outcrop complex, 30 to 75 percent slopes	20.9	2.8		
221 1164 Les Osse-Blabr complex, 15 to 30 percent slopes 27.0 27.1 222 2 132 Dialo and Clibo clays, 30 to 50 percent slopes 36.1 1.6 2.9 57.7 223 2 28 166 Les Osse-Dlabro complex, 30 to 50 percent slopes 36.1 1.2 57.7 224 2 7 131 Diablo and Clibo clays, 15 to 30 percent slopes 47.2 1.2 55.5 22 52 1 131 Diablo and Clibo clays, 15 to 30 percent slopes 47.2 1.2 55.5 224 27 1 131 Diablo and Clibo clays, 15 to 30 percent slopes 42.7 1.12 55.5 225 63 144 Claos-Plab complex, 30 to 50 percent slopes 14.2 3.9 55.5 230 46 165 Los Osos-Dlab complex, 30 to 50 percent slopes 14.2 3.9 55.3 231 41 148 Lodo clay is 15 0.50 percent slopes 14.2 3.9 55.4 232 44 148 Lodo clay is 15 0.50 percent slopes 15.6 3.9 56.1 233 47 161 Los Osose Dlabio complex, 30 to 50 percent slopes	Santa Rosa Creek	220			Nacimiento silty clay loam, 30 to 50 percent slopes	27.7	2.1		Headwaters
222 2132 Diable and Cibo clays, 30 to 50 percent slopes 36.1 1.6 57.7 224 27113 Lee Osce-Diablo complex, 30 to 50 percent slopes 47.2 1.3 56.5 224 27113 Diable and Cibo clays, 15 to 30 percent slopes 47.2 1.3 56.5 225 59144 Cazos-Lodo clay loant; 30 to 50 percent slopes 42.7 1.3 56.5 228 59144 Cazos-Lodo clay loant; 30 to 50 percent slopes 1.42 3.9 56.5 229 6152 Lodo-Rock outcrop complex, 30 to 50 percent slopes 1.42 3.9 56.1 230 461 te5 Los Oscs-Diablo complex, 30 to 50 percent slopes 1.42 3.9 56.3 231 441 te8 Lodo clay loant, 15 to 50 percent slopes 1.42 3.5 54.3 232 481 133 Diablo-Lodo complex, 30 to 50 percent slopes 1.12 3.5 54.3 233 47 161 Los Oscs Diablo complex, 30 to 50 percent slopes 1.5 3.5 54.3 233 43 148 Lodo clay loant, 15 to 50 percent slopes	Santa Rosa Creek	221			Los Osos-Diablo complex, 15 to 30 percent slopes	20.0	2.9		
223 28165 Los Osos-Diablo complex, 30 to 50 percent slopes 15.2 3.8 57.1 225 221 131 Diablo and Cibo clays, 15 to 30 percent slopes 47.2 1.3 56.5 226 5914 Gazos-Lodo clay learns, 30 to 50 percent slopes 42.7 1.3 56.5 227 60 152 Ludo hock outcrop complex, 30 to 50 percent slopes 42.7 1.3 56.5 228 59144 Gazos-Lodo clay learns, 30 to 50 percent slopes 30.8 56.5 56.5 221 61 165 Los Ossos-Diablo complex, 30 to 50 percent slopes 19.0 2.3 56.4 230 46 165 Los Ossos-Diablo complex, 30 to 50 percent slopes 15.6 3.5 54.3 231 44 148 Lodo clay learn, 15.0 30 to 50 percent slopes 17.1 54.3 232 43 165 Los Ossos Diablo complex, 30 to 50 percent slopes 15.6 3.5 54.3 233 47 161 Los Ossos Diablo complex, 30 to 50 percent slopes 13.5 4.0 1.1 54.3 233 43 1	Santa Rosa Creek	222			Diablo and Cibo clays, 30 to 50 percent slopes	36.1	1.6		
224 27 131 Diable and Cibo clays, 15 to 30 percent slopes 47.2 1.2 56.5 c 225 5914 Diable and Cibo clays, 15 to 30 percent slopes 30.8 47.2 1.3 55.5 c 226 59144 Gazos-Lodo clay canns, 30 to 50 percent slopes 30.8 1.8 55.5 c 228 61165 Lodo-Rock outcrop complex, 30 to 50 percent slopes 14.2 3.9 55.1 c 228 61165 Los Osso-Diablo complex, 30 to 50 percent slopes 14.2 3.9 55.1 c 231 44148 Lodo clay learn, 50 to 50 percent slopes 49.4 1.1 54.3 c 232 48 133 Diablo-Lodo complex, 30 to 50 percent slopes 67.9 0.8 54.3 c 233 47 161 Los Oses Diadh orad Cibo clays, 30 to 50 percent slopes 67.9 0.8 64.3 c 33 43 161 Los Oses Diadh orad Cibo clays, 30 to 50 percent slopes 67.9 0.8 64.3 c 33	Santa Rosa Creek	223			Los Osos-Diablo complex, 30 to 50 percent slopes	15.2	3.0		
Z25 561 31 Unable and Cuto clays, 10 to 30 bercent slopes 42./ 1.3 55.5 227 561 44 Gazos-Lodo clay learns, 30 to 50 percent slopes 14.2 3.9 55.5 228 611 165 Loso Foso-Lodo clay learns, 30 to 50 percent slopes 14.2 3.9 55.5 230 441 18 Gazos-Lodo clay learns, 30 to 50 percent slopes 19.0 2.9 55.1 231 441 148 Lodo clay learn, 15 to 30 percent slopes 15.6 3.5 54.3 232 461 13 Lus Cosos Diablo complex, 30 to 50 percent slopes 15.6 3.5 54.3 231 441 148 Lodo clay learn, 15 to 30 percent slopes 67.9 0.8 54.3 232 48 132 Diablo-Lodo clay s, 30 to 50 percent slopes 65.7 9.4 1.1 54.3 233 47 161 Los Cosos learn, 30 to 50 percent slopes 67.9 0.8 54.0 233 43 132 Los Cosos learn, 30 to 50 percent slopes	Santa Hosa Creek	224		131	Diablo and Cibo clays, 15 to 30 percent slopes	47.2			
Z26 391 144 Classes-Lood cally loarns, 30 to 50 percent slopes 30.8 1.1.8 35.3 2 228 61 152 Lodo-Rock ultrop complex, 30 to 50 percent slopes 142 3.9 55.3 2 230 46 165 Los Oses-Diablo complex, 30 to 50 percent slopes 142 3.9 55.1 2 231 48 148 Lodo cally loarn, 15 to 30 percent slopes 15.6 3.5 54.3 2 232 48 133 Diablo-Lodo complex, 30 to 50 percent slopes 67.9 6.4 54.3 2 233 47 161 Lodo cally loarn, 15 to 50 percent slopes 67.9 0.8 54.3 2 233 47 161 Lodo cally loarn, 15 to 50 percent slopes 67.9 0.8 54.0 2 233 47 161 Loado cally loarn, 15 to 30 percent slopes 63.1 1.1 55.3 234 45 132 Loado cally loarn, 15 to 30 percent slopes 2.3 2.3 2.1 54.0	Green valiey Creek	GZ.Z			Diablo and Cibo clays, 15 to 30 percent slopes	42.7			
zz/ B01152 Lood - Hock outcrop complex, 30 to 7 percent slopes 14.2 3.4 3.4 3.5 <	Green Valley Creek	226			Gazos-Lodo clay loams, 30 to 50 percent slopes	30.8			Perry Creek Headwaters
230 46 165 Loss Ossos-Induor complex, voir 0 or percent stopes 15.0 2.3 2.4 1.1 5.4.3	Green valley Greek	122			Loao-Hock outcrop complex, 30 to 75 percent slopes	14.2	5.0		
230 41 (16) Lues or servences underses or prevent stopes 1.3 3.3 231 41 (18) Lodo city loss return 5 to 30 percent stopes 1.3 1.3 1.1 54.3 232 48 (133 Diablo-Lodo complex, 15 to 50 percent stopes 67.9 0.8 0.8 54.3 233 47 (161 Los Osos learn, 30 to 50 percent stopes 13.5 4.0 54.3 234 45 (132 Diablo-Lodo complex, 15 to 50 percent stopes 13.5 4.0 53.7 234 43 (148 Los Osos learn, 30 to 50 percent stopes 33.2 1.1 53.7 236 42 (138 Lodo city learn, 15 to 30 percent stopes 2.5.2 2.1 53.1 236 42 (143 Gazos-Lodo city learns, 15 to 30 percent stopes 2.5.2 2.1 55.3 237 29 (144 Gazos-Lodo city learns, 30 to 50 percent stopes 2.3.0 3.0.8 1.7 52.3 238 26 (61 Los Osos learn, 30 to 50 percent stopes 2.3.0 1.7 52.3 237 29 (144 Los Osos learn, 30 to 50 p	Conto Doco Crock	077			Los Osos-Diablo cumprex, ou to ou percent slupes	19.0	2.7		
2.31 441 46 Ludd or AP datin, in the second part solution is to solve percent solpes 47.4 1.1 34.3 54.3 2.33 4.7 161 Los Oscos loarni, 30 to 50 percent slopes 6.7.9 0.8 54.0 2.33 4.7 161 Los Oscos loarni, 30 to 50 percent slopes 6.7.9 0.1 6.7.9 0.1 54.0 2.34 4.5 1.32 Diablo and Cibo and Cibo and Cibo and Slopercent slopes 8.1.6 5.3.7 54.0 2.35 4.2 1.48 Los Osco loarni solpes 3.2.2 1.1 55.3.7 2.36 4.2 1.48 Los Osco loarni solpes 2.3.2 1.1 55.3.1 2.35 4.2 1.48 Los Osco loarni solpes 2.3.2 1.1 55.3.1 2.36 4.2 1.43 Gazos-Lodo cialy loarns, 3.0 to 50 percent slopes 2.3.2 1.7 52.3 2.37 2.9 1.44 Los Osco sloarni 3.0 to 50 percent slopes 2.3 1.7 52.3 2.37 2.161 Los Osco sloarni 3.0 to 50 percent	Carla Door Creek	1007			Lus Usus-Lutaulu cuttipliex, ou tu ou percetti stupes	10.0			
c.32 47 161 Loss Oss loam, 30 to 50 percent stopes 07.9 0.0 94.3 234 47 161 Loss Oss loam, 30 to 50 percent stopes 13.5 4.0 54.0 234 45 132 Diablo and Clob clays, 30 to 50 percent stopes 33.2 1.1 53.1 235 43 148 Lodo clay loam, 15 to 30 percent stopes 33.2 1.6 53.1 235 42 143 Lodo clay loam, 15 to 30 percent stopes 33.2 1.6 53.1 235 42 144 Lodo clay loams, 15 to 30 percent stopes 33.2 1.7 53.3 236 23 144 Lodo clay loams, 15 to 30 percent stopes 30.8 1.7 53.1 237 23 161 Los Oss loam, 30 to 50 percent stopes 30.8 1.7 52.9 238 65 161 Los Oss loam, 30 to 50 percent stopes 1.3 0.7 0.6 54.0 238 65 161 Los Stopes 13.0 0.6 51.8 <t< td=""><td>Carla Door Creek</td><td>107</td><td></td><td>140</td><td>Diable Lade commission at the FO eccent slopes</td><td>40.4</td><td></td><td></td><td></td></t<>	Carla Door Creek	107		140	Diable Lade commission at the FO eccent slopes	40.4			
235 41 101 Lusto basis brain faulty of the optimination of the optination of the optimination of the optimination of the optiminatio	Santa Hosa Creek	202		153	Lutatio-Load cuttiplex, 13 to 30 percent stopes	10/.9	0.0		
234 40 32 40 1.1 33.1 235 43148 Lodo clay learn. 15 to 30 percent slopes 33.2 1.6 53.1 236 42148 Lodo clay learn. 51 to 30 percent slopes 33.2 1.6 53.1 236 42143 Gazos-Lodo clay learns. 15 to 30 percent slopes 2.6 2.1 52.3 237 29144 Gazos-Lodo clay learns. 30 to 50 percent slopes 30.8 1.7 52.3 238 62161 Los Sos tearn. 30 to 50 percent slopes 13.0 4.0 51.8 238 62161 Los Sos tearn. 30 to 50 percent slopes 13.0 4.0 51.8 238 62161 Los Sos tearn. 30 to 50 percent slopes 13.0 4.0 51.8 238 62161 Los Sos tearn. 30 to 50 percent slopes 13.0 6.0 6.1 6.1	Saria Hosa Creek	552		101	Los Usos loarri, 30 to 30 percent stopes Dichla and Ciba claura 20 to 50 account claura	0.01	4. •		
235 43 146 Luctor Row Pattin, 100 so The preferent solpes 33.1 1.1 33.1 </td <td>Sarria Hosa Creek</td> <td>234</td> <td></td> <td>132</td> <td>Utablo and Cloo clays, 30 to 30 percent stopes</td> <td>40.0</td> <td></td> <td></td> <td></td>	Sarria Hosa Creek	234		132	Utablo and Cloo clays, 30 to 30 percent stopes	40.0			
230 42(14) Gazos-coo Gay foams, 10 to 30 percent stopes 23.2 2.1 2.1 237 238 62144 Gazos-Lodo Caly loams, 30 to 50 percent stopes 30.8 1.7 238 62161 Los Osos loam, 30 to 50 percent stopes 13.0 4.0 238 52163 Diarbi-Lodo complex 15 fo 50 percent stopes 13.0 0.6	Sama Hosa Creek	G52		148	Lodo clay loam, 15 to 30 percent slopes	33.2			
23/ 23/14 Unstantiation	Santa Hosa Creek	250			Gazos-Lodo ciay loanis, 13 to 30 percent slopes	a 06		-	
Cold Unit of the state of the	Green Valley Creek	102			Lazus-Luuu viay ivariis, ou iu ou perverit siupes I ne Anne Inam 20 to 50 normant clanae	12.0	/·	22.0	
	Conto Doca Creak	020			LOS USOS IUditti, ou tu ou percetiti siupes Diakla Lada aamalay 16 ta 60 narrant elanae	-0.0 108	t C		

240 241 241 241 244 244 244 244 244 244 244		Annual Soil Loss Acres (tons/acre/vear)	Total Predicted Annual Soil Loss (tons)	Comment
241 23 164 242 23 111 243 21 132 244 20 132 245 19 152 246 13 21 247 17 133 247 17 133 248 14 143 256 41 131 257 36 131 258 30 144 255 31 167 255 36 131 256 37 199 257 36 131 258 31 167 256 31 131 256 31 131 266 45 131 270 261 131 271 268 131 273 266 131 273 261 131 273 271 131		42.6	51.1	Perry Creek
242 22 132 243 21 11 244 19 152 245 19 152 246 19 152 247 17 13 248 20 135 249 21 152 249 21 152 249 41 133 256 42 166 257 31 167 258 33 167 259 31 167 256 31 131 256 31 144 256 31 151 256 31 151 256 31 151 256 31 152 266 45 131 273 266 141 273 261 133 273 266 141 273 266 131	Los Osos-Diablo complex, 15 to 30 percent slopes	18.9	51.0	Perry Creek
243 21 119 244 19 152 245 19 152 246 19 152 247 17 133 248 41 143 255 40 141 255 40 141 255 36 19 255 40 131 255 36 19 255 36 19 255 36 19 255 36 19 256 37 19 257 36 131 256 37 19 257 36 131 258 31 131 264 131 133 270 26 131 270 56 133 273 56 131 273 57 51 273 51 14 273 <td>Diablo and Cibo clays, 30 to 50 percent slopes</td> <td></td> <td>50.5</td> <td></td>	Diablo and Cibo clays, 30 to 50 percent slopes		50.5	
244 20 132 245 19 152 246 13 152 248 41 131 251 41 131 253 24 14 131 254 41 131 152 255 33 166 42 160 255 33 167 36 131 255 33 167 36 131 255 33 167 36 131 255 33 167 36 131 256 36 131 36 31 256 36 131 131 31 266 36 131 31 31 267 31 131 31 31 268 31 131 32 31 31 273 266 36 131 32 31 31 273	Cieneba-Millsap loams, 30 to 75 percent slopes	9.6 5.2		
245 19 152 247 19 152 247 17 133 248 17 133 249 41 143 250 42 165 255 41 131 255 41 131 255 31 152 256 41 131 255 36 131 256 36 131 257 35 131 258 31 167 259 33 167 256 34 144 256 34 144 256 31 151 266 31 131 267 12 166 273 266 131 274 56 131 275 56 131 273 273 141 274 56 131	Diablo and Cibo clays, 30 to 50 percent slopes			
246 1131 247 17 248 1152 249 41 249 41 250 42 251 41 251 41 251 41 255 40 256 41 255 31 256 31 257 31 258 31 259 31 256 31 257 31 258 31 259 31 250 31 251 31 253 31 264 41 265 45 266 45 273 266 261 31 273 266 273 266 261 41 273 266 273 266 273 273	Lodo-Rock outcrop complex, 30 to 75 percent slopes	11.2 4.4		
24/ 1/133 24/ 1/133 250 41/133 255 40/143 255 40/143 255 40/144 255 38/165 255 38/165 256 38/165 257 36/13 257 36/13 258 38/165 257 36/13 258 38/165 259 38/165 256 38/165 257 36/13 258 38/165 259 33/167 259 33/167 250 33/167 251 261 261 31/31 262 31/31 263 31/131 264 41/143 270 59/131 270 59/131 271 58/131 273 58/144 273 59/131 274 59/131 <tr< td=""><td>Diablo and Cibo clays, 15 to 30 percent slopes</td><td></td><td>201</td><td></td></tr<>	Diablo and Cibo clays, 15 to 30 percent slopes		201	
249 431 [13] 250 43 [15] 251 41 [13] 255 40 [14] 255 39 [176 255 39 [176 255 39 [176 255 36 [13] 256 36 [13] 255 36 [13] 256 36 [13] 257 35 [13] 258 31 [16] 259 36 [13] 256 36 [13] 256 31 [13] 258 31 [13] 269 31 [13] 273 266 261 31 [33] 273 266 267 41 [49 273 261 [52 273 261 [52 273 274 274 59 [14] 275 59 [14] 276 51 [14] 277 58 [13] 278 51 [14] 279 51 [14] 281 <td< td=""><td>Diablo-Lodo complex, 15 to 50 percent slopes</td><td></td><td></td><td></td></td<>	Diablo-Lodo complex, 15 to 50 percent slopes			
250 421 160 255 421 160 255 41 131 255 39 170 255 39 170 255 39 167 255 36 119 255 36 119 255 36 119 255 36 119 256 31 167 257 35 131 258 31 167 259 33 167 260 31 131 261 31 131 262 31 131 263 31 131 264 46 163 265 131 266 131 270 56 167 271 56 167 273 56 167 274 56 167 275 51 132 276 51 144 277 58 131 278 51 144 279 51 144 281 131 281 51 144	Hado Port automa annular 20 to 75 accord along		40./	State of Matanahad
251 41 130 255 40 144 255 37 199 256 36 119 255 36 119 256 36 119 257 36 119 257 36 119 258 36 119 259 36 119 259 36 119 261 31 167 263 31 167 264 46 131 265 45 131 266 46 131 267 261 31 273 266 46 273 261 132 273 261 142 273 261 144 273 261 141 273 271 1202 273 273 1213 274 56 131	Loco-hock outgrop complex, ou to /o percent stopes	14.0 0.4 20.2 1 6	3 9/	Curti Oreek Watersrieu
252 401 14' 253 39 170 254 38 165 255 36 131 255 36 131 255 35 131 257 35 131 258 37 199 259 33 165 259 33 161 259 33 161 259 33 161 260 33 161 261 31 131 262 33 161 263 33 161 264 46 163 265 131 120 266 210 142 273 261 142 273 59 144 274 59 144 273 59 144 274 59 144 273 59 131	Lue Geus Idanii, 19 tu du percent slupes Diahla and Ciba clave 15 to 30 parcent clanee		0.04	
253 39 17 254 38 165 255 36 131 256 36 131 255 36 131 256 36 131 257 35 131 258 31 167 258 36 131 259 31 167 258 31 167 261 31 131 262 31 131 263 31 167 264 45 131 265 31 133 266 45 144 275 59 142 273 56 133 273 57 144 273 56 141 273 56 141 274 59 145 273 56 141 274 59 141 <td< td=""><td>Gazne-I odo clav loame 30 to 50 percent slopes</td><td></td><td></td><td></td></td<>	Gazne-I odo clav loame 30 to 50 percent slopes			
254 38 16.5 255 36 119 255 35 131 256 35 131 257 35 131 258 36 114 259 31 167 259 33 167 259 33 167 259 33 167 260 32 161 261 31 131 266 45 131 267 1 2160 268 131 131 270 56 131 271 269 131 273 261 131 274 56 131 275 51 132 274 56 131 275 56 141 273 56 141 274 51 141 271 51 141	Marimel silty clay loam drained	77.0	47.8	
255 37 199 256 31 13 259 36 119 259 36 13 259 36 13 259 33 167 259 34 14 259 33 167 260 32 165 261 31 131 262 4 146 263 131 266 264 46 163 265 4 143 266 4 143 271 268 51 131 269 58 142 273 277 59 144 273 273 56 131 274 273 56 131 275 273 56 144 274 280 51 145 286 281 51 131 226 <t< td=""><td>I os Osos-Diablo complex: 30 to 50 percent slopes</td><td></td><td></td><td></td></t<>	I os Osos-Diablo complex: 30 to 50 percent slopes			
256 36 119 257 35 131 258 31 144 259 33 167 259 33 167 261 31 131 262 33 167 263 33 167 264 46 133 265 46 133 266 2 160 267 41 131 268 46 133 270 59 131 268 41 142 273 56 100 273 59 131 274 59 145 273 51 145 274 51 144 273 51 144 274 51 144 273 51 145 274 51 141 284 51 144 <td< td=""><td>San Simeon sandv loam. 2 to 9 percent slopes</td><td></td><td></td><td></td></td<>	San Simeon sandv loam. 2 to 9 percent slopes			
257 35 131 258 31 144 259 31 167 260 32 167 261 32 167 263 31 131 264 31 131 265 31 131 266 32 166 266 45 131 266 45 131 266 45 131 266 45 131 267 4149 46 268 46 167 273 51 132 273 51 142 275 59 144 275 59 145 275 51 132 276 51 145 277 51 144 278 51 145 279 51 141 281 51 141 <	Cieneba-Millsap loams. 30 to 75 percent slopes	10.6 4.5		
258 34 144 259 31 167 261 31 167 262 33 167 263 31 167 264 31 131 265 31 131 266 45 131 266 45 131 266 45 131 267 2160 202 268 59 131 270 57 133 271 56 133 273 51 142 273 56 133 274 56 144 273 56 144 274 59 144 275 51 144 275 51 144 275 51 144 275 51 144 280 52 141 281 52 152	Diablo and Cibo clays. 15 to 30 percent slopes		47.5	Perrv Creek Headwaters
259 33 167 260 32 165 261 31 13 262 30 131 263 31 131 264 46 165 265 30 131 266 46 163 266 46 163 266 46 163 266 46 163 267 2 10 268 59 131 270 56 131 273 56 133 274 59 142 273 56 133 274 59 144 275 59 144 277 59 144 278 51 144 281 131 142 282 51 131 284 51 144 284 51 144	Gazos-Lodo clav loams. 30 to 50 percent slopes		47.2	
260 32 165 261 31 131 263 31 131 264 31 131 265 46 163 266 46 163 266 45 131 266 45 131 266 45 131 268 45 131 269 59 131 270 59 131 270 57 133 271 58 133 273 59 142 274 59 144 275 59 144 276 59 144 277 59 144 278 51 145 278 51 144 286 51 144 287 51 144 288 51 142 280 51 144 <t< td=""><td>Los Osos-Lodo comolex. 30 to 75 percent slopes</td><td>11.5 4.1</td><td>47.1</td><td>Headwaters</td></t<>	Los Osos-Lodo comolex. 30 to 75 percent slopes	11.5 4.1	47.1	Headwaters
261 31 131 262 31 133 268 46 149 264 46 131 265 45 131 266 45 131 267 12 160 267 12 12 269 59 132 270 57 133 271 133 27 273 56 167 274 59 142 273 56 167 274 59 144 275 56 167 273 56 167 274 59 144 278 51 144 280 52 131 281 131 141 283 52 152 284 52 144 283 52 152 284 54 144 <t< td=""><td>Los Osos-Diablo complex. 30 to 50 percent slopes</td><td></td><td>46.5</td><td></td></t<>	Los Osos-Diablo complex. 30 to 50 percent slopes		46.5	
262 30 133 263 46 163 266 45 151 266 45 131 266 45 131 266 45 131 267 1202 1202 266 45 131 270 57 133 271 56 500 273 58 143 274 59 182 275 58 132 273 56 133 274 59 144 273 59 144 274 59 144 273 59 144 274 59 144 280 51 131 281 131 132 282 51 144 284 51 144 284 51 144 284 51 144	Diablo and Cibo clays. 15 to 30 percent slopes			
263 4 149 264 46 163 266 45 131 266 45 131 266 2 160 267 2 160 268 45 131 269 2 160 266 2 160 270 56 132 271 56 132 273 56 132 274 59 167 275 59 167 273 56 133 274 59 144 275 59 144 276 51 145 277 59 144 286 51 131 281 131 132 282 131 142 284 51 144 284 51 144 284 51 142 2	Diablo-Lodo complex. 15 to 50 percent slopes	70.4 0.7		
264 46 16 265 45 131 266 45 131 267 1 216 268 261 12 269 131 20 267 1 206 269 59 131 270 57 133 271 56 105 273 56 152 275 59 144 275 56 167 275 59 144 275 59 144 278 52 131 279 52 131 278 51 145 280 51 144 281 131 144 281 131 142 283 52 152 52 284 53 144 22 283 53 142 22 284 <td< td=""><td>I odo clav loam 30 to 50 percent slopes</td><td></td><td></td><td></td></td<>	I odo clav loam 30 to 50 percent slopes			
266 45 131 266 2160 268 21150 268 59 131 270 58 142 271 56 58 142 271 56 58 142 271 56 58 142 273 56 133 27 273 56 133 27 274 59 144 27 275 51 145 27 275 51 145 27 273 56 167 28 274 59 144 27 279 51 145 28 280 52 131 28 281 131 28 2144 281 52 152 28 281 52 152 28 282 51 132 28 291 28	Los Osos-Diablo complex. 9 to 15 percent slopes	20.7	2 45.5	
266 2 160 267 1 202 268 58 143 270 57 133 271 56 200 273 56 133 273 56 143 273 56 133 273 56 133 274 56 133 275 56 145 276 51 145 277 59 146 278 51 145 279 51 145 279 51 145 281 19 131 282 51 145 283 51 144 284 51 144 284 51 144 284 51 144 284 51 144 284 51 144 284 51 144 284 51 144 284 51 131 284 51 132 284 51 134 284 51 144 284 51 144 284 51 146 <td>Diablo and Cibo clays. 15 to 30 percent slopes</td> <td>34.8</td> <td></td> <td></td>	Diablo and Cibo clays. 15 to 30 percent slopes	34.8		
267 1 202 268 59 131 269 59 131 270 57 133 271 56 200 272 51 152 273 56 142 273 56 142 273 56 142 273 56 142 273 56 167 274 59 182 275 59 183 275 59 144 276 59 144 277 59 144 278 51 145 280 21 141 281 19 131 283 51 144 284 51 144 284 51 144 284 51 131 285 51 152 286 51 132 287 51 144 288 51 132 281 51 132 282 51 132 283 51 132 284 51 144 282 51 144 /</td <td>Los Osos loam. 15 to 30 percent slopes</td> <td>28.2 1.6</td> <td>45.1</td> <td>Perry Creek</td>	Los Osos loam. 15 to 30 percent slopes	28.2 1.6	45.1	Perry Creek
268 59 131 270 57 142 271 56 133 273 56 133 274 59 144 275 58 142 273 56 133 275 56 133 275 56 133 275 56 144 276 51 144 277 59 144 278 52 131 279 52 131 279 52 134 279 52 134 280 52 131 281 131 131 283 52 152 284 53 144 285 53 152 286 54 144 286 53 152 287 54 142 288 59 144 <	San Simeon sandy loam, 30 to 50 percent slopes	19.6 2.3	45.0	
269 58 142 270 57 133 271 56 133 273 56 133 274 59 182 274 59 182 275 56 133 274 59 182 275 51 182 277 59 144 277 59 144 277 59 144 277 50 144 278 51 131 281 131 132 282 51 131 283 131 132 284 51 144 285 51 131 284 56 132 284 51 144 285 51 132 286 51 132 281 51 144 282 51 141	Diablo and Cibo clavs. 15 to 30 percent slopes			
270 57 133 271 56 200 273 26 200 273 56 162 273 56 135 273 56 132 275 56 145 277 59 144 277 59 144 278 51 145 279 51 145 281 19 131 282 51 145 283 51 145 284 51 131 284 51 144 284 51 144 284 51 144 284 51 144 286 51 132 281 41 144 282 41 145 281 51 132 281 53 132 282 53 134 <t< td=""><td>Gaviota fine sandy loam. 15 to 50 percent slopes</td><td>12.7 3.5</td><td>44.6</td><td>Fiscalini Creek</td></t<>	Gaviota fine sandy loam. 15 to 50 percent slopes	12.7 3.5	44.6	Fiscalini Creek
271 56 200 272 58 152 274 59 183 274 59 182 275 56 167 275 59 144 277 59 144 278 51 145 279 51 145 279 51 144 279 51 144 280 51 145 281 19 131 282 51 152 283 51 154 284 51 144 285 51 152 286 51 154 286 51 152 287 51 142 288 51 142 290 23 142 291 23 146 292 23 146 293 23 146 <t< td=""><td>Diablo-Lodo complex, 15 to 50 percent slopes</td><td></td><td>44.4</td><td></td></t<>	Diablo-Lodo complex, 15 to 50 percent slopes		44.4	
272 28 152 273 56 133 275 59 128 275 51 128 275 51 128 275 51 128 277 59 144 278 51 145 279 51 145 279 51 145 279 51 145 280 51 131 281 131 131 282 131 131 283 52 152 284 51 132 285 52 152 286 51 132 286 51 132 287 51 142 290 43 142 291 43 142 292 291 142 292 291 165 292 291 23 165	San Simeon sandy loam. 9 to 15 percent slopes		43.7	Perry Creek
273 56 133 274 59 182 275 51 162 276 51 167 277 59 182 276 51 167 277 59 144 278 51 146 279 51 141 279 50 141 270 51 145 280 20 141 281 13 131 282 51 141 283 131 132 284 56 144 285 51 152 284 56 132 285 51 144 286 59 132 281 51 142 282 53 14 291 23 168 291 291 23 295 23 164 <t< td=""><td>Lodo-Rock outcrop complex, 30 to 75 percent slopes</td><td></td><td>43.1</td><td>Curti Creek Watershed</td></t<>	Lodo-Rock outcrop complex, 30 to 75 percent slopes		43.1	Curti Creek Watershed
274 59 182 275 1128 277 59 167 277 59 144 277 59 144 279 51 145 279 51 145 281 52 131 282 50 20141 283 51 145 280 20141 131 281 51 131 282 131 131 283 51 144 284 51 144 284 51 144 284 51 144 284 51 144 284 51 144 284 51 132 284 51 132 284 51 142 284 51 142 291 291 291 291 291 291 294	Diablo-Lodo complex, 15 to 50 percent slopes		42.9	
275 1 128 277 59 167 278 56 167 279 59 144 279 59 144 279 59 141 279 51 145 279 51 145 280 51 141 281 19 131 283 51 154 284 51 144 285 52 152 286 51 122 286 51 122 287 51 122 288 59 132 289 51 142 290 41 145 291 291 291 292 291 168 293 146 291 294 146 291 292 291 146 293 164 146	Nacimiento-Calodo complex, 50 to 75 percent slopes			42.6 Headwater
276 56 167 273 59 144 273 52 145 279 51 145 280 51 145 281 52 131 281 51 145 281 51 145 282 51 131 283 52 131 284 51 122 285 52 152 286 51 122 286 51 132 287 52 144 288 51 132 289 51 132 280 41 144 291 42 152 292 43 165 293 166 23 296 23 166 296 23 146	Cropley clay, 2 to 9 percent slopes			
277 59 144 278 51 145 280 51 145 280 51 145 281 51 145 281 20 141 281 20 141 282 19 131 282 20 141 283 17 131 284 56 144 285 52 152 286 51 126 287 62 144 288 59 132 289 59 132 289 59 132 291 41 144 291 41 145 291 291 291 291 292 291 168 291 295 23 168 23 296 23 164 296 296 23 164 23 <	Los Osos-Lodo complex, 30 to 75 percent slopes	14.6 2.9		
278 52 131 280 51 145 281 19 131 281 20 20141 281 19 131 282 19 131 282 18 132 282 18 132 282 18 131 283 17 131 284 56 144 284 51 126 284 51 144 286 51 132 286 51 134 280 44 144 281 43 142 281 51 132 291 43 142 292 291 146 292 291 168 294 168 23 295 23 146 296 23 146	Gazos-Lodo clay loams, 30 to 50 percent slopes			
279 51145 280 51141 281 19131 281 19131 282 18132 283 17131 284 51144 283 51144 284 51144 285 52152 286 511226 288 53144 288 53152 289 53144 288 53132 288 53132 288 53132 289 44144 290 43145 291 43145 292 43146 293 43146 294 168 292 23168 293 23146 296 23146	Diablo and Cibo clays, 15 to 30 percent slopes	21.0	42.0	
280 20 141 281 19 131 283 19 131 283 13 132 283 17 132 284 56 144 285 52 152 4 286 52 152 5 285 52 132 4 288 53 132 5 21 52 132 6 286 51 144 289 56 132 23 291 21 42 142 291 291 42 145 291 291 40 146 292 41 145 291 293 291 291 291 291 294 293 291 291 291 291 296 23 144 291 291 291	Gazos-Lodo clay loams, 50 to 75 percent slopes			
281 19 131 1 282 19 131 1 282 13 13 1 1 131 132 1 1 131 131 1 1 131 131 1 1 131 132 1 285 52 132 1 285 52 132 1 286 53 132 1 289 53 132 1 289 53 132 2 289 53 132 2 290 43 142 2 291 42 145 2 291 40 168 2 293 30 182 2 296 23 146 2 296 23 146	Gaviota sandy loam, 50 to 75 percent slopes			41.5 North Fork Santa Rosa
282 18 132 k 288 131 k 284 56 141 k 286 51 131 k 286 51 132 k 286 51 134 k 286 51 134 k 286 51 134 k 288 53 134 k 289 44 144 k 289 41 144 290 291 42 152 291 291 42 168 292 291 42 168 293 291 168 23 294 293 23 168 23 296 22 146 23 145	Diablo and Cibo clays, 15 to 30 percent slopes	29.6 1.4	41.4	
K 283 17 131 k 284 51 124 k 285 52 124 k 286 51 226 k 286 51 226 k 286 51 226 k 288 51 124 k 289 51 144 k 289 51 144 k 289 51 144 290 41 142 28 291 41 145 28 292 291 40 168 293 293 31 168 294 294 23 168 295 23 145 22 296 22 146 22	Diablo and Cibo clays, 30 to 50 percent slopes		40.9	Headwaters
Image: New Section 144 284 551144 Image: New Section 122 51226 51226 Image: New Section 144 287 62144 Image: New Section 144 62144 62144	Diablo and Cibo clays, 15 to 30 percent slopes			
Int 285 52 152 Int 287 59 51 226 Int 287 62 144 144 Int 288 59 132 132 Int 289 59 132 142 Int 290 43 142 142 Int 291 42 145 145 Int 292 41 145 145 Int 293 40 168 145 Int 293 23 182 23 182 Int 296 23 144 23 23 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	25.3 1.6	40.5	
Int 236 51 226 Int 288 51 244 Int 288 59 144 Int 289 59 144 Int 289 59 142 Int 289 59 142 Int 289 54 144 Int 289 54 142 Int 290 41 142 Int 291 42 152 Int 292 41 148 Int 293 40 168 Int 294 23 162 Int 296 22 146 Int 296 22 145	Lodo-Rock outcrop complex, 30 to 75 percent slopes		40.4	Curti Creek Watershed
ik 288 592 144 ik 289 592 142 ix 289 592 44 142 ix 289 44 142 142 ix 290 43 142 142 ix 292 41 145 142 ix 292 41 168 145 ix 293 40 168 168 ix 294 23 165 23 165 ix 296 22 145 22 22 145	Zaca clay, 30 to 50 percent slopes	55.4 0.7	39.9	
m 200 33 1.02 (* 290 43 1.44 (* 291 42 1.52 (* 291 42 1.52 (* 292 41 1.45 (* 293 40 1.68 (* 293 30 1.82 (* 294 30 1.82 (* 295 23 1.68 (* 295 23 1.62 (* 296 22 1.44	Giazos-Lodo clay loams, 30 to 50 percent slopes		39.8	riscalini Creek
C 290 431 142 C 291 42 152 C 292 41 145 C 293 40 168 C 294 31 62 C 295 23 162 C 295 23 168 C 296 22 144	Diatric and vibu ciays, ou to ou percent stopes	24.7 1.0		
x 250 421145 x 291 421145 x 292 41145 x 293 401168 x 294 39182 x 294 231482 x 294 231482 x 295 231482 x 296 22144	Cartos fina condiction of the Fine Constant alance	- C - C - C - C - C - C - C - C - C - C	0.90	
7 291 41115 6 293 40 168 7 294 39 182 6 294 23 165 7 296 23 165 7 296 22 145	Lade Park automa samular 00 to 75 accord alongs		39.5	LISCAILLI OLEEK
C 232 40 186 (294 39 182 (294 39 185 (295 23 165 (295 23 165 (296 23 165 (296 22 144	Lauro-nous outcipy complex, ou to 73 percent slopes	24:4 1.0	33.1	Headwaters
x 290 39182 x 295 23165 x 296 22144	Lac Dece variant clav loam 15 to 50 vercent slopes		38.4	Headwaters
295 23 165 296 22 144 296 22 144	Lus Osus variarit viag ruarit, 13 tu 30 per cent siupes Nacimiento-Calodo comulay 50 to 75 percent slones	1	38.3	Headwater
2296 22 144	I ac Dese-Diablo comprex, 30 to 50 percent slopes		38.1	ieauwater
	Gazos-Lodo clav loams. 30 to 50 percent slopes		5 38.1	
21 144	Gazos-Lodo clav loams. 30 to 50 percent slopes	18.1 2.		
201144	Gazos-Lodo clav loams. 30 to 50 percent slopes	17.3 2.2	38.0	

ent	Fiscalini Creek		Curti Creek Watershed					North Fork Santa Rosa Creek			Curti Creek Watershed							Perry Creek Headwaters					Curti Creek Watershed			Fiscalini Oreek																		raters									Jreek
al Comment		0	9 Curti C	<u>ω</u> ι		/	9			1 –			6	6	L. *	4 C	ų c			8	3			1 00	/ Eiceoliai	3 Fiscali	2		2	0	7	9	0 v	4 4	t -	0	0	8	7		n u	0. 1	- 0	7 Headwaters		9	5	5	4	4	<u>م</u> 0	- Dorni (6 rerry creek
Total Predicted Annual Soil Loss (tons)	37.3	37.0						36.4		36.1					35.7			35.1			34.3		33.9					33.2		33.			4.25 2.25			32.0				31.7	315	10	31.1	2.16					30.4		50	N C	29.6
RUSLE2 Predicted Annual Soil Loss (tons/acre/vear)	1.1	0.8	3.1	2.7	0.6	1.8	1.6	2.4	1.8	1.8	1.4	1.9	3.2	1.9	1.0	0.0	0.0	1.6	2.0	1.9	2.4	5.9	2.0	1.5	0.0	0.9	2.2	4.7	0.7	1.2	2.1	2.5	2.9	3.6	0.9	1.6	0.5	1.5	2.9	3.1	1.0	0.1	2.7	2.1	1.0	1.5	1.2	2.0	2.2	3.3	0.4	 	1.6
Acres	33.9	44.6	11.9	13.6	63.3	20.4	22.9	202	20.2	20.1	25.8	19.0	11.2	18.9	35.7	- /C	3.0	0.44	17.5	18.3	14.3	5.8	17.0	22.5	35.1	30.0	15.1	7.1	48.1	27.5	15.6	13.0	2.11	20.2	36.1	20.0	65.2	21.2	10.9	10.2	48.4	0.10	1.11	14.6	30.6	20.4	25.5	15.3	13.8	9.2	73.0	22.9 24 p	24.8
Soil Name	San Simeon sandy loam, 9 to 15 percent slopes	Diablo-Lodo complex, 15 to 50 percent slopes	Lodo-Rock outcrop complex, 9 to 30 percent slopes	Nacimiento-Calodo complex, 50 to 75 percent slopes	Diablo-Lodo complex, 15 to 50 percent slopes	Lodo clay loam, 15 to 30 percent slopes	Gazos-Lodo clay loams, 30 to 50 percent slopes	Los Usos-Utablo complex, 15 to 30 percent slopes Bock outerino-1 ithic Handovarolle commerv 30 to 75 percent slone	HOCK DUICTOP-LITTIC TRAPTOVETOUS CUTTIPIES, 30 (0 73 PEICETT STOPE I odo clav Ipam 15 to 30 narcent signes	Gazos-I odo clav home 30 to 50 hercent shores	Diablo and Cibo clays, 15 to 30 percent slopes	Gazos-Lodo clay loams, 15 to 30 percent slopes	Los Osos-Diablo complex, 30 to 50 percent slopes	Los Osos-Diablo complex, 15 to 30 percent slopes	Los Osos-Diablo complex, 9 to 15 percent slopes	Los Osos-Diadio contipiex, y to 15 percent stopes	Edud diay loam, 30 to 73 percent slopes Salinas sitty clav loam 0 to 2 nercent slones	Games and clay hours, or a porcent slopes	Gazos-Lodo clay loams, 30 to 50 percent slopes	Gazos-Lodo clay loams, 30 to 50 percent slopes	Los Osos-Diablo complex, 15 to 30 percent slopes	Cieneba-Millsap loams, 30 to 75 percent slopes	Nacimiento-Calodo complex, 30 to 50 percent slopes	Los Osos-Diablo complex, 15 to 30 percent slopes	Los Usos-Ulablo complex, 9 to 15 percent slopes	Natiniter sity clay loant, ulanted Salinas sity clav loam 2 to 9 nercent slones	Gazos-Lodo clav loams. 30 to 50 percent slopes	Briones-Tierra complex, 15 to 50 percent slopes	Diablo and Cibo clays, 15 to 30 percent slopes	Gazos-Lodo clay loams, 30 to 50 percent slopes	Gazos-Lodo clay loams, 30 to 50 percent slopes	Los Osos-Diablo complex, 15 to 30 percent slopes	Los Usos Ioam, 30 to 50 percent slopes	Louriptico-Interviount Idants, 30 to 73 percent stopes	Gazos-Lodo clav loams. 15 to 30 percent slopes	Los Osos-Diablo complex, 30 to 50 percent slopes	Diablo-Lodo complex, 15 to 50 percent slopes	Diablo and Cibo clays, 15 to 30 percent slopes	Los Osos-Diablo complex, 30 to 50 percent slopes	Los Osos-Diablo complex, 15 to 30 percent slopes	Diablo-Lodo complex, 15 to 50 percent slopes	Lazos-Loud ciay luarits, ou lo ou per cent slopes	Los Osos-Diauto curripres, so to so percent stopes Diable and Cibe clave 15 to 30 nercent stones	Los Osos loam. 15 to 30 percent slopes	Diablo and Cibo clays, 30 to 50 percent slopes	Los Osos-Diablo complex, 30 to 50 percent slopes	Gazos-Lodo clay loams, 30 to 50 percent slopes	Los Osos-Diablo complex, 30 to 50 percent slopes	Los Osos-Diablo complex, 15 to 30 percent slopes	Nacimiento-Calodo complex, 30 to 50 percent slopes	Zaca clay, 15 to 30 percent slopes	Nacimiento-Calodo complex, 30 to 50 percent slopes	Los Usos-Liablo complex, 15 to 30 percent slopes Diablo and Cibo clays, 30 to 50 percent slopes
Soil Map Unit Drainage ID Symbol	200	51 133	151	182	133	148	144	164 195	148		131	143	165	164	163		197		144	144	164	119	181	164	163	198	144	39 110	131	144	144	164	41 161 40 164	131	143		133	131	165	164		144	131	56 160	132	165	144	165		181	225	181 164	54 164 53 132
Soil Map Unit ID	99	300	301	302	303	304	305	305	308	309	310	311	313	314	315	310	318	319	320	321	322	323	324	325	326	328	329	330	331	332	333	334	335	337	338	339	341	342	343	344	345	040	34/	349	350	351	352	353	354	355	356	35/	359
Matershed L		Green Valley Creek	Green Valley Creek	Green Valley Creek	Santa Hosa Creek	Santa Hosa Creek	Santa Hosa Creek	Green Valley Creek Green Valley Creek	Green Valley Creek	Green Vallev Creek	Green Valley Creek	Green Valley Creek	Santa Rosa Creek	Santa Rosa Creek	Santa Rosa Creek	Santa Rosa Creek	Green Vallev Creek	Santa Rosa Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Santa Hosa Creek	Green Vallev Creek	Green Vallev Creek	Santa Rosa Creek	Santa Rosa Creek	Santa Rosa Creek	Santa Rosa Creek	Green Valley Creek	Santa Hosa Creek	Santa Rosa Creek	Santa Rosa Creek	Santa Rosa Creek	Santa Rosa Creek	Green Valley Creek	Green Valley Creek	Santa Rosa Creek	Canta Hosa Creek	Creen Valley Creek	Green Valley Creek	Green Vallev Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek	Green Valley Creek Green Valley Creek

Soil Name Diablo-Lodo complex, 15 to 50 percent slopes Cropley clay, 0 to 2 percent slopes Lodo clay learn, 15 to 30 percent slopes Gazos-Lodo clay loarns, 30 to 50 percent slopes Los Osso-Pilablo complex, 16 to 67 nercent slopes Disbho-Lodo romplex, 16 to 67 nercent slopes		(tons/acre/year)	(
odo complex, 15 to 50 pe clay, 0 to 2 percent slope y loam, 15 to 30 percent odo clay loams, 30 to 50 s-Diablo complex, 9 to 16 och complex, 15 th 50 ne	Acres		Soll Loss (tons)	Comment
y, 0 to 2 percent slope barn, 15 to 30 percent o clay loams, 30 to 50 Diablo complex, 9 to 15 Diablo complex, 15 to 50 per	rcent slopes	7 1.		
o clay loams, 30 percent o clay loams, 30 to 50 Diablo complex, 9 to 15 commlex, 15 to 50 per		0.	6 29.3	
o clay loams, 30 to 50 liablo complex, 9 to 15 commlex 15 to 50 pe	slopes	10.9	29.3	Headwaters
liablo complex, 9 to 15 complex 15 to 50 pe	percent slopes	22.5	29.3	
	percent slopes		29:2	
		4.0.4 0.6	29.1	
		o c	6.02	Dorat Croade Hoodmatana
o cumples, 13 to 30 pe	cerii siupes	0	20.3	FILLY CIERN LIERUWAIELS
citty olov loom 20 to f			20.7	Loodwatar
Tho clave 30 to 50 m	o percent stopes		20.3	icauwater
india complex E to 0				
1400 cumples, a to a			2/.3 27.0	
lablo comprex, 10 to 5	U percent stopes		27.9	Fiscalini Creek
ablo complex, 15 to 5	0 percent slopes		27.9	Perry Creek
<u>oo clays, 30 to 50 p</u>	rcent slopes	-	5 27.7	
 Lithic Haploxerolls (omplex, 30 to 75 percent slope		27.6	Curti Creek Watershed
n. 15 to 30 percent	lopes	25.0 1.	1 27.5	Fiscalini Creek
mnley 15 to 50 ne	cent clones		27 5	
20 00 01 01 10 100 00 00 00 00 00 00 00 0			27.5	Curti Crock Waterchad
ciays, io to ou pi		10.0	C. 12	JULII OLEEK WALEISIIEU
9 to 15 percent s	opes			
30 to 50 percent	lopes	11.4 2.4	4 27.3	
30 to 50 percent	lopes			
15 to 30 nercent	servers	14.2 1.9		
ciays, ip to 50 p	ICERII SIODES	-		
o complex, 30 to 5	0 percent slopes	12	26.5	
o clays, 15 to 30 pr	rcent slopes	18.8 1.4		
ndv loam 9 to 15	ercent clones			
	Jei Ceill Sighes	12:3		
0 Clays, 15 to 30 p	rcent slopes			
lay loam, drained		0	9 25.8	
n, 50 to 75 percent	slopes	8.3 3.	1 25.7	
clay loams, 30 to 50	percent slopes	¢,	0 25.2	
am 30 to 50 nercent	lones	8.6 2.9		25.0
on-Lithic Hanloxerolls o	omplex: 30 to 75 percent slope			Curti Creek Watershed
odo complex 50 to 75	narcant clonae	e.		Jorth Early Santa Bosa Creek
	Iccett stopes			
I Cibo clays, 30 to 50 p	rcent slopes	20.5 1.2		
rop-Lithic Haploxerolls o	omplex, 30 to 75 percent slope	13.3 4.1		Headwater
tv clav loam. 2 to 9 perc	ent slopes	26.0 0.9		
Cibo clave 30 to 50 p	rrant slones			
chair alarr laam 20 to				
		ว่ (
clay loams, 30 to 50	Dercent slopes	2.	24.1	
sap loams, 30 to 75 p	ercent slopes	6.7 3.6	24.1	
clay loam, 2 to 9 perc	ent slopes	14.1 1.7		
m. 30 to 50 percent	lopes	Ċ	23.9	
blo complex. 15 to 3	0 percent slopes	11.4 2.1	23.9	
1 clave 30 to 50 n	rrant slones		2 50	Curti Craak Watarchad
o olavio 20 to 50 p			20.7	
orripiex, io to ou pe	Icent slopes			
o clays, 15 to 30 pi	rcent slopes	23.9 1.0	23.2	
m, 5 to 15 percent s	ppes	21.1 1.	1 23.2	Perry Creek Headwaters
m. 50 to 75 percent	slopes	5.6 4.1	23.2	
clav loams 30 to 50	bercent slopes			
k outoren complex 16	to 75 percent clease		0.00	Down Crook
ck outcrop complex, is	10 /3 percent stopes		23.0	rerry creek
k outcrop complex, 30 t	75 percent slopes	ю.	4 23.0	
d Cibo clays, 30 to 50 p	rcent slopes	7 1.		
do clay loams, 30 to 50	percent slopes	12.7 1.8	22.9	
I Cibo clays, 30 to 50 p	rcent slopes	13.4 1	7 22.8	22.8
40 clav loame 50 to 75	varrant elonge	12.0	22.8	Ja admatare

Watershed	Soil Map Unit ID	Soil Map Unit Drainage ID Symbol	Soil Name	Acres	Annual Soil Loss Total Predicted (tons/acre/vear) Soil Loss (tons)	Annual	Comment
	421	29 131	Diablo and Cibo clays, 15 to 30 percent slopes	15.1	1.5	22.7	
Green Valley Creek	422	62 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.6	22.7	
Green Valley Creek	423	60 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.6	22.6	
Green Valley Creek	424	60 150	Lodo clay loam, 50 to 75 percent slopes	5.0	4.5	22.6	
Santa Rosa Creek	425	29 151	Lodo-Rock outcrop complex, 9 to 30 percent slopes	17.3	1.3	22.5	
Santa Rosa Creek	426	29 161	Los Osos loam, 30 to 50 percent slopes		2.2	22.5	Perry Creek
Green Valley Creek	427	60 197	Salinas silty clay loam, 0 to 2 percent slopes		1.2	22.5	22.5 Fiscalini Creek
Santa Rosa Creek	428	29 131	Diablo and Cibo clays, 15 to 30 percent slopes		0.9	22.5	Perry Creek
Green Valley Creek	429	66 165	Los Osos-Diablo complex, 30 to 50 percent slopes		2.2	22.4	
Santa Rosa Creek	430	32 159	Los Osos loam, 9 to 15 percent slopes	10.6	2.1	22.3	
Santa Rosa Creek	431	31 132	Diablo and Cibo clays, 30 to 50 percent slopes		1.0	22.2	
Santa Rosa Creek	432	30 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.4	22.1	
Green Valley Creek	433	59 145	Gazos-Lodo clay loams, 50 to 75 percent slopes	14.7	1.5	22.0	
Green Valley Creek	434	55 163	Los Osos-Diablo complex, 9 to 15 percent slopes		5.7	21.9	
Green Valley Creek	435	66 148	Lodo clay loam, 15 to 30 percent slopes		1.5	21.8	21.8 Perry Creek
Green Valley Creek	437	63 132	Diablo and Cibo clays, 30 to 50 percent slopes	18.2	1.2	21.8	
Green Valley Creek	438	62 131	Diablo and Cibo clays, 15 to 30 percent slopes		1.0	21.7	
Green Valley Creek	439	58 195	Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope		2.9	21.6	
Green Valley Creek	440	57 119	Cieneba-Millsap loams, 30 to 75 percent slopes		6.2	21.6	
Green Valley Creek	441	56 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.3	21.6	
Green Valley Creek	442	66 150	Lodo clay loam, 50 to 75 percent slopes		2.8	21.5	
Green Valley Creek	443	66 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.2	21.5	
Green Valley Creek	444	62 160	Los Osos loam, 15 to 30 percent slopes		1.9	21.5	
Santa Rosa Creek	445	36 164	Los Osos-Diablo complex, 15 to 30 percent slopes		2.6	21.0	
Santa Rosa Creek	446	29 201	San Simeon sandy loam, 15 to 30 percent slopes		1.6	21.0	21.0 Fiscalini Creek
Green Valley Creek	447	66 198	Salinas silty clay loam, 2 to 9 percent slopes		0.8	21.0	Curti Creek Watershed
Green Valley Creek	448	59 132	Diablo and Cibo clays, 30 to 50 percent slopes	15.0	1.4	20.9	
Green Valley Creek	449	60 127	Cropley clay, 0 to 2 percent slopes		0.5	20.8	
Santa Rosa Creek	450	29 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		0.6	20.7	
Green Valley Creek	451	59 143	Gazos-Lodo clay loams, 15 to 30 percent slopes	15.9		20./	
Green Valley Creek	404	00 140	Diable Lodo ciay loants, ou to 75 percent stopes		n u	20.7	
Green Valley Creek	454	60 201 60 201	San Simon couples, 13 to 30 percent slopes		0.0	20.6	
Green Vallev Creek	455	59 170	Marimel silty clay loam, drained	23.5	0.9	20.4	
Green Vallev Creek	456	60 203	Santa Lucia shaly clay loam, 30 to 50 percent slopes		1.3	20.4	
Santa Rosa Creek	457	29 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.6	20.4	20.4
Santa Rosa Creek	458	29 162	Los Osos-Diablo complex, 5 to 9 percent slopes		0.7	20.3	
Santa Rosa Creek	459	29 182	Nacimiento-Calodo complex, 50 to 75 percent slopes		2.3	20.3	North Fork Santa Rosa
Green Valley Creek	460	63 119	Cieneba-Millsap loams, 30 to 75 percent slopes		4.7	20.0	
Green Valley Creek	461	64 159	Los Osos loam, 9 to 15 percent slopes		1.6	20.0	
Green Valley Creek	462	66 142	Gaviota fine sandy loam, 15 to 50 percent slopes		1.2	20.0	
Green Valley Creek	463	62 131	Diablo and Cibo clays, 15 to 30 percent slopes	23.4	0.9	19.9	Perry Creek
Green Valley Creek	464	63 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.3	19.8	
Green Valley Creek	465	62 131 F0 600	Diablo and Cibo clays, 15 to 30 percent slopes			19.7	
Green valley Greek	400	03 220	Laca ciay, su to su percerti stopes Dishlo and Cibo clave 0 to 15 porcent clane		7:	19.0	
Groop Vallow Crock	004	E6 146	Caracteria and visuo viayo, a to to percent stopes	20.2	0.0	0.01	Borni Proch Hoodmotorio
Groon Vallov Crock	160	56 1 22	Diable and Cibe clarie 20 to 7.0 percent slopes		0.1	10.0	Letty Oreen reduwaters
Green Valley Creek	024	53 164 63 164	Liauto and Oldo Glays, 30 (0.30 percent stopes Lice Dene-Diable complex: 15 to 30 percent clones		0.1		Eiscalini Craak
Santa Rosa Creek	471	29 164	Los Osos-Diablo complex, 15 to 30 percent slopes		1.9	19.0	Perry Creek
Green Vallev Creek	472	60 144	Gazos-Lodo clav loams. 30 to 50 percent slopes		1.5	18.9	Perry Creek Headwaters
Green Vallev Creek	473	146	Henneke-Rock outcrop complex. 15 to 75 percent slopes		2.1	18.9	
Green Vallev Creek	474	168	Los Osos variant clav loam. 15 to 50 percent slopes	-	1.2	18.9	Perry Creek
Green Valley Creek	475		Gazos-Lodo clay loams, 50 to 75 percent slopes	8.9	2.1	18.7	North Fork Santa Rosa Creek
Green Valley Creek	476	61 133	Diablo-Lodo complex, 15 to 50 percent slopes	28.3	0.7	18.7	
Green Valley Creek	477	63 204	Santa Lucia shaly clay loam, 50 to 75 percent slopes	6.2	3.0		Headwater
Green Valley Creek	478	62 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	12.4	1.5	18.6	
Green Valley Creek	479	66 132	Diablo and Cibo clays, 30 to 50 percent slopes	15.5	1:2	18.6	
Current Vieller, Current	180		I O 15 to 30 porcont cloped			0.01	

S Watershed	Soil Map Unit ID	Drainage ID	Soil Map Unit Symbol	Soil Name Ac	Acres	RUSLE2 Predicted Annual Soil Loss (tons/acre/year)	Total Predicted Annual Soil Loss (tons)	Comment
ey Creek	481	59	133		25.4	0.7		
Green Valley Creek	482	57	160	Los Osos loam, 15 to 30 percent slopes	10.3	1.8	18.5	
Green Valley Creek	483		131	Diablo and Cibo clays, 15 to 30 percent slopes	15.4	1.2	18.5	
Green Valley Creek	484	66	130	Diablo and Cibo clays, 9 to 15 percent slopes	19.4	1.0	18.4	
Green Valley Creek	485		132	Diablo and Cibo clays, 30 to 50 percent slopes	26.9	0.7	18.3	
Green Valley Creek	486		161 00E	Los Osos loam, 30 to 50 percent slopes	12.1	1.5	18.2	
Green Valley Creek	100		000	Zaca viay, 10 00 percent stupes	15.1	4.0 4.0		
Green Valley Creek	400	ec Uy	163	Jani Sinieuri sanuy idani, 3 tu 13 percent sibpes Los Osos-Diablo complex 9 to 15 percent sibbes	15.0	4 F		
Green Valley Creek	004		198	Editions eithy clay from 2 to 9 percent slopes	2.0	4 6.0		
Green Valley Creek	490	00	163	Jamiras siriy day idarir, 2 to 3 percent sidpes I os Osos-Diablo complex 9 to 15 percent sidnes	25.7	2.7 7 0	17.7	
Green Valley Creek	707		165	Los Osos-Diablo complex, 3 to 13 percent sippes	7.4	0.7		
Santa Rosa Creek	495			Gazos-Lodo clav loams. 15 to 30 percent slopes	23.6	0.8		
Green Vallev Creek	496			Diablo and Cibo clays. 15 to 30 percent slopes	17.6	1.0		
Green Valley Creek	497		55 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	11.7	1.5		
Green Valley Creek	498			Gazos-Lodo clay loams, 30 to 50 percent slopes	17.5	1.0	17.5	Perry Creek
Green Valley Creek	499	99	132	Diablo and Cibo clays, 30 to 50 percent slopes	18.2	1.0	17.5	Perry Creek
Green Valley Creek	500			Gazos-Lodo clay loams, 30 to 50 percent slopes	18.0	1.0		
Green Valley Creek	501		61 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	11.6	1.5	17.5	
Green Valley Creek	502			Lodo-Rock outcrop complex, 30 to 75 percent slopes	9.7	1.8	17.5	
Green Valley Creek	503			Gazos-Lodo clay loams, 30 to 50 percent slopes	11.6	1.5		
Green Valley Creek	504			Los Osos loam, 15 to 30 percent slopes	9.5	1.8		Perry Creek
Green Valley Creek	505	63	149	Lodo clay loam, 30 to 50 percent slopes	8.5	2.0	17.1	
Green Valley Creek	506	62	119	Cieneba-Millsap loams, 30 to 75 percent slopes	10.7	1.6		
Green Valley Creek	507	55	145	Gazos-Lodo clay loams, 50 to 75 percent slopes	14.2	1.2		
Green Valley Creek	508			Gazos-Lodo clay loams, 30 to 50 percent slopes	14.2	1.2		
Green Valley Creek	509			Cropley clay, 2 to 9 percent slopes	21.0	0.8	16.8	
Green Valley Creek	510		63 131	Diablo and Cibo clays, 15 to 30 percent slopes	16.5	1.0		
Green Valley Creek	511			Cieneba-Millsap loams, 30 to 75 percent slopes	5.3	3.1		
Green Valley Creek	512	57	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	15.0	1.1		
Santa Rosa Creek	513	29	131	Diablo and Cibo clays, 15 to 30 percent slopes	24.1	0.7	16.4	
Green Valley Creek	514			Henneke-Rock outcrop complex, 15 to 75 percent slopes	8.2	2.0		North Fork Santa Rosa Creek
Green Valley Creek	515			Los Osos loam, 15 to 30 percent slopes	7.4	2.2	16.3	
Green Valley Creek	516			Lodo-Rock outcrop complex, 9 to 30 percent slopes	17.3	0.9		
Green Valley Creek	517			Lodo clay loam, 30 to 50 percent slopes	9.6	1.7		
Green Valley Creek	518			San Simeon sandy loam, 9 to 15 percent slopes	21.9	0.7		
Green Valley Creek	519			Salinas silty clay loam, 2 to 9 percent slopes	23.5	0.7		
Green Valley Creek	520			Diablo-Lodo complex, 15 to 50 percent slopes	31.9	0.5		
Green Valley Creek	521			Gazos-Lodo clay loams, 30 to 50 percent slopes	10.5	1.5	15.7	
Green Valley Creek	522		68 131	Diablo and Cibo clays, 15 to 30 percent slopes	14.2			
Green Valley Creek	220			Los Usos-Litable complex, 9 to 15 percent slopes	0.11			
Groon Vallov, Crook	124 F2F		50 144 50 144	Cazos Lodo clay loairis, su lu su per cerri siupes	3.0		10.0	
Green Valley Creek	070 F06			laazus-Loud clay ludiilis, ou lu ou per cerii siupes I oo Acoe-Diablo commlov 20 to 50 norront clonee	11./	0.1		
Green Valley Creek	597			Los Osos-Diaulo Cumpiez, 30 (3 30 percent signes Gazos-Lodo clav Iname 15 to 30 narcent signes	0.9	0.2		
Green Vallev Creek	528	64	127	Croplev clav. 0 to 2 percent slopes	49.1	0.3	15.2	
Green Vallev Creek	529		133	Diablo-Lodo complex. 15 to 50 percent slopes	18.3	0.8		Perry Creek Headwaters
Green Valley Creek	530	67	201	San Simeon sandy loam, 15 to 30 percent slopes	5.2	2.9		
Green Valley Creek	531	99	132	Diablo and Cibo clays, 30 to 50 percent slopes	15.1	1.0		
Green Valley Creek	532	60	132	Diablo and Cibo clays, 30 to 50 percent slopes	21.0	0.7		
Green Valley Creek	533	61	165	Los Osos-Diablo complex, 30 to 50 percent slopes	6.2	2.4	14.9	
Santa Rosa Creek	534		132	Diablo and Cibo clays, 30 to 50 percent slopes	15.2	1.0		
Green Valley Creek	535		143	Gazos-Lodo clay loams, 15 to 30 percent slopes	8.7	1.7		
Green Valley Creek	536		128	Cropley clay, 2 to 9 percent slopes	33.7	0.4		
Green Valley Creek	538		133	Diablo-Lodo complex, 15 to 50 percent slopes	16.7	0.0		
Green Valley Creek	539			Salinas slity clay loam, 2 to 9 percent slopes	19.2	0.8		
Green Valley Creek	040 541			Diable and Cibe alone 30 to 50 percent slopes	0.22	0.0	14.4	
Green Valley Creek	541		5/ 132 56 198	Iutablo and vibu ciays, ou to ou percent siopes Relines sitty clear 1 to 9 hercent siones	11.0		14.4	
מוסטו גמויה כיייי	1			סמווונפט אוול הימל והמוווי, ב זע ט אבועבווי היקאנט		:	-	

C) Clock Sele (F) (F) (C) (Watershed	Soil Map Unit ID	Soil Map Unit Drainage ID Svmbol	Soil Name	RUSLE2 Predicted Annual Soil Loss Acres (tons/acre/year)	ed Total Predicted Annual Soil Loss (tons)	Comment
644 60 60 300		543	67 163	Los Osos-Diablo complex, 9 to 15 percent slopes	8.4		
946 016 Simula inflution from in the protein theorem 42 0 0 0 947 901 Simula inflution from in the protein theorem 9 1 0 1	Green Valley Creek	544	66 132	Diablo and Cibo clays, 30 to 50 percent slopes	17.5		
5 50 51(9 53.0 51(9 53.0 51 51.0 </td <td>Green Valley Creek</td> <td>545</td> <td>60 198</td> <td>Salinas silty clay loam, 2 to 9 percent slopes</td> <td></td> <td></td> <td></td>	Green Valley Creek	545	60 198	Salinas silty clay loam, 2 to 9 percent slopes			
No. Serie S	Santa Rosa Creek	546	29 198	Salinas silty clay loam, 2 to 9 percent slopes			0
No. Selection Sele	Green Valley Creek	547	59 143	Gazos-Lodo clay loams, 15 to 30 percent slopes			
n n	Green Valley Creek	545	60 195 	Hock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope			
Filt Dist Dist <thdist< th=""> Dist Dist <thd< td=""><td>Green valley Creek</td><td>545</td><td>56 133</td><td>Ulablo-Lodo complex, 15 to 50 percent slopes</td><td></td><td></td><td>Perry Creek</td></thd<></thdist<>	Green valley Creek	545	56 133	Ulablo-Lodo complex, 15 to 50 percent slopes			Perry Creek
9 9 14 Construction Constructions 10 10 10 5 5 1 Construction Constructions 30 3 3 3 5 5 1 Construction Constructions 50 3 3 3 3 5 5 2 1 Construction Constructions 50 3 <	Green Valley Creek	55U	55 165 E4 122	Los Usos-Diablo complex, 30 to 50 percent slopes			
950 971 951 <td>Green Valley Creek</td> <td></td> <td>001 H0</td> <td></td> <td></td> <td></td> <td></td>	Green Valley Creek		001 H0				
9 9 10 <td>Green Valley Creek</td> <td>700</td> <td>50 144 67 145</td> <td>Gazos-Loud ciay loanis, su lu su percent slopes</td> <td></td> <td></td> <td></td>	Green Valley Creek	700	50 144 67 145	Gazos-Loud ciay loanis, su lu su percent slopes			
Size Text Description Description <thdescription< th=""> Description <thdescripti< td=""><td>Green Valley Greek</td><td>100</td><td>C+1 /0</td><td>Gazos-Loud ciay loants, ou to 75 percent slopes</td><td></td><td></td><td>+ Perry Creek Readwaters</td></thdescripti<></thdescription<>	Green Valley Greek	100	C+1 /0	Gazos-Loud ciay loants, ou to 75 percent slopes			+ Perry Creek Readwaters
930 61 60 60 60 61	Green Valley Greek	200	00 104 70 100	Los Osos-Diapio complex, 15 to 30 percent stopes			0.0
938 001 002 <td>Green Valley Greek</td> <td>/00</td> <td>100 27</td> <td>Los Osos Idalri, 15 (0 30 percent stopes</td> <td></td> <td></td> <td>0.0</td>	Green Valley Greek	/00	100 27	Los Osos Idalri, 15 (0 30 percent stopes			0.0
0 93 93 94 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 93 11 </td <td>Green Valley Creek</td> <td>220</td> <td>CO1 10</td> <td>Los Osos-Diabio complex, 3 to 3 percent siopes Nocimiento Colodo complex 60 to 75 minorit clanor</td> <td></td> <td></td> <td>0 0 North Early Sente Deco</td>	Green Valley Creek	220	CO1 10	Los Osos-Diabio complex, 3 to 3 percent siopes Nocimiento Colodo complex 60 to 75 minorit clanor			0 0 North Early Sente Deco
97 97 97 97 101 102 102 103 103 98 61 13 Distonent Cloud Ris, 51 to 30 premit Rules 1010 <	Green Valley Creek	200	54 10Z	Inacimiento-caloud complex, ou to 7o percent slopes			
No. No. No. No. No. No. No. No.	Green valley Greek	100	100	Los Usos-Lilabio complex, su to su percent stopes			
Set P M Journel Lobit Controls Out Set Control Display Display <thdisplay< th=""> <thdisplay< th=""> <thdisplay< <="" td=""><td>Green Valley Greek</td><td>100</td><td>00 131</td><td>Diable and Cibo ciays, 15 to 30 percent slopes</td><td></td><td></td><td></td></thdisplay<></thdisplay<></thdisplay<>	Green Valley Greek	100	00 131	Diable and Cibo ciays, 15 to 30 percent slopes			
See Noil		700	201 102				
open open <th< td=""><td>Green valley Creek</td><td>200</td><td>60 144 00 100</td><td>Gazos-Lodo ciay loams, 30 to 30 percent slopes</td><td></td><td></td><td></td></th<>	Green valley Creek	200	60 144 00 100	Gazos-Lodo ciay loams, 30 to 30 percent slopes			
own own <td>Green valley Creek</td> <td>200</td> <td>03 132</td> <td>Utablo and Cloo clays, 30 to 50 percent stopes</td> <td></td> <td></td> <td></td>	Green valley Creek	200	03 132	Utablo and Cloo clays, 30 to 50 percent stopes			
No. Set Sol Joint on Micro and Cho clays. In 0. of Micro and Cho clays. To 0. of M	Green valley Greek	100	04 103 Fr 104	Los Usos loarn, 9 to 15 percent stopes			
570 591 301 <td>Green valley Greek</td> <td>200</td> <td>50 131</td> <td>Diable and Cloo clays, 15 to 30 percent slopes</td> <td></td> <td></td> <td>rerry</td>	Green valley Greek	200	50 131	Diable and Cloo clays, 15 to 30 percent slopes			rerry
57/1 38/1 43 Loon cape, 1 is of present stopes 5.3 0.2 3.3 0.2 6 572 54 1 28 Dablo cidy, 76 9 freent stopes 5.3 0.2 2.4 2.8 7 573 54 1 28 Dablo cidy, 76 9 freent stopes 5.3 0.2 2.4 2.4 2.4 7 573 54 1 31 Dablo cidy, 51 0 3 precent stopes 15.0 0.8 1.2 2.4 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	Green valley Greek	200	70 100				
57 51 61 24 Color cay, fains 53 53 62 72 63 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 73 53 72	Green valiey Creek	7/6	133	Ulabio-Lodo complex, 15 to 50 percent slopes			
573 591 Composition Compositi	Green Valley Creek	5/1	58 14/	Lodo clay loam, 5 to 15 percent slopes			
574 551 70 Mainten Siry cally commentant sing cally compensational complexity calls in the sing call of the calls is to 30 percent signes 10.5 57.4 55.1 Diable and Clob clays, 15 to 30 percent signes 10.5 10.2 12.7 57.7 56 61 1.4 Diable and Clob clays, 15 to 30 percent signes 6.3 2.0 2.1 2.2 2.1 2.2 57.8 57.9 551 2.3 Diable and Clob clays, 30 to 50 percent signes 6.3 1.0 1.1 1.2	Green Valley Creek	7/G	54 129	Ulablo clay, 5 to 9 percent slopes			
575 541 Diable and Cloc clays, 15 to 30 percent stopes 10.6 2.1 12.7 576 61131 Diable and Cloc clays, 51 to 30 percent stopes 13.0 1.1 1.1 1.1 577 61131 Diable and Cloc clays, 51 to 30 percent stopes 15.3 2.0 1.1	Green Valley Creek	5/3	53 1 /0	Marimel slity clay loam, drained			
575 5411 Datio and Cho clays. To 30 percent stopes 6.0 2.1 12.1 577 66 144 Class. 30 to 50 percent stopes 13.0 1.0 1.0 1.0 578 56 114 Class. 30 to 50 percent stopes 1.1 1.1 1.2 578 56 114 Class. 30 to 50 percent stopes 1.1 1.1 1.1 1.2 579 56 113 Dabto-and Cho clays. 30 to 50 percent stopes 1.1 1.1 1.1 1.2 561 60 170 Mamol stally clay class. 30 to 50 percent stopes 1.1<	Green Valley Creek	574	55 131	Diablo and Cibo clays, 15 to 30 percent slopes			
576 67/131 Uable and Cbe clays. 30 to 50 percent slopes 6.3 1.0 1.0 1.0 577 66 143 Cazos-Lodo clay bears. 30 to 50 percent slopes 6.5 1.1 1.1 1.1 1.1 578 5412 Diable and Cbe clays. 30 to 50 percent slopes 6.5 1.2 1.2 1.2 570 561 to Lock Octory and Cbe clays. 30 to 50 percent slopes 1.1 1.1 1.2 1.2 581 601 to Lock octory bar. 30 to 50 percent slopes 1.6 1.2 1.2 1.2 582 661 to Lock octory bar. 30 to 50 percent slopes 1.6 1.7 1.2 1.2 583 561 to Deable-Look octory bar. 30 to 50 percent slopes 1.6 1.7 1.2 1.2 584 511 to Deable-Look octory slopes 1.6 0.7 1.2 1.2 586 561 to Deable-Look octory slopes 1.6 0.7 1.2 1.2 587 511 to Deable-Look octory slopes 1.6 0.7 1.2 <	Green Valley Creek	575	54 131	Diablo and Cibo clays, 15 to 30 percent slopes			
577 561 144 Classes-Lood celly emins, block 125 20 226 217 218 2	Green Valley Creek	576	67 131	Diablo and Cibo clays, 15 to 30 percent slopes			
7:0 531/32 Dathon and Cibo clays, 301 to 50 percent slopes 11.4 1.1 1.1 1.2 680 531 33 232 Dathon and Cibo clays, 301 to 50 percent slopes 0.5 1.1 0.2 0.2 781 531 33 Dathon and Cibo clays, 301 to 50 percent slopes 0.5 1.1 0.2 0.7 1.2 1.2 782 61 13 Datho-Lodo complex, 15 to 50 percent slopes 1.6 7.2 0.7 1.7 1.23 783 561 33 Datho-Lodo complex, 15 to 50 percent slopes 2.3 1.1 0.5 1.2 1.2 784 561 33 Datho-Lodo complex, 15 to 50 percent slopes 2.3 1.2 1.2 1.2 587 511 00 Datho and Cibo clays, 910 50 percent slopes 2.1 1.2 1.2 1.2 587 511 30 Datho and Cibo clays, 910 50 percent slopes 3.1 0.7 1.2 1.2 587 511 30 Datho and Cibo clays, 910 50 percent slopes 3.1 0.7 1.2 1.2 1.2 1.2	Green Valley Creek	2/1	66 144	Gazos-Lodo clay loams, 30 to 50 percent slopes			
579 531 (32) Diablo and Clock expt, 30 to 50 percent slopes 6.5 1.2 1.2 1.2 681 60 170 Marinel sily city/ leam, 15 to 50 percent slopes 6.5 1.9 0.7 1.2 1.2 582 61 133 Diablo-Lode complex, 15 to 50 percent slopes 7.7 1.2 1.2 588 551 to0 Loado complex, 15 to 50 percent slopes 2.3 0.7 1.2 1.2 588 551 to0 Loado complex, 15 to 50 percent slopes 8.7 1.4 1.2 1.2 586 551 to0 Loado complex, 15 to 50 percent slopes 8.7 1.4 1.2 1.2 587 551 to0 Loado complex, 15 to 50 percent slopes 8.7 1.4 1.2 1.2 588 551 to0 Loado complex, 31 to 50 percent slopes 8.7 1.4 2.1 1.4 2.1 580 77 1 142 Diablo and Cloc clays, 30 to 50 percent slopes 5.4 2.1 1.4 2.1 591 591 Loado complex, 15 to 30 percent slopes	Green Valley Creek	9/9	54 132	Diablo and Cibo clays, 30 to 50 percent slopes			0
580 59168 Lues Color variant Galo variant Solution. Lues Color Variant Color Variant Color Lues Color Variant Color Variant Color Lues Color Complex. 15 to 50 percent slopes E.5 13 0.7 12 12 582 66173 Datable-Lodo complex. 15 to 50 percent slopes 16.7 0.7 17 12 583 56180 Lodo complex. 15 to 50 percent slopes 23.1 0.7 12.2 12.2 586 56180 Lues Costo Biant, 15 to 50 percent slopes 13.1 0.6 12.2 12.2 587 71122 Datable Lodo complex. 15 to 50 percent slopes 18.1 0.7 12.1 588 71122 Datable and Cloo clays. 20 to 55 percent slopes 18.1 0.7 12.1 580 71 12 Datable and Cloo clays. 20 to 50 percent slopes 51.8 20 percent slopes 51.8 20 percent slopes 51.8 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1	Green Valley Creek	579	53 132	Diablo and Cibo clays, 30 to 50 percent slopes			+
551 60170 Marrine filty call bulled softwarm, dating Call Call<	Green Valley Creek	580	59 168	Los Osos variant clay loam, 15 to 50 percent slopes			4 Headwater
R 61133 Diablo-Lood complex, 15 to 50 percent slopes 16.7 0.7 17.3 554 561 133 Diablo-Lood complex, 15 to 50 percent slopes 2.3 1 0.5 1.7 1.2.2 564 561 133 Diablo-Lood complex, 15 to 50 percent slopes 2.3 1 0.5 1.1 1.2 1.2	Green Valley Creek	581	60 170	Marimel sitty clay loam, drained			
583 68 143 Lodo caldy leam, 30 to 50 percent slopes 7.2 1.7 7.2 1.7 7.2 1.7 7.2 1.7 7.2 1.2 1.2 586 56 153 Dlabbl-Lodo complex, 15 to 50 percent slopes 19.1 0.6 12.2 587 55 160 Les Osso leam, 15 to 30 percent slopes 18.4 0.7 1.4 12.1 580 71 122 Dlabbl and Clob clays, 9 to 50 percent slopes 8.7 1.1 0.5 1.4 12.1 580 72 130 Dlabbl and Clob clays, 9 to 50 percent slopes 5.8 2.1 0.3 1.1 12.1 590 72 130 Dlabbl and Clob clays, 16 to 30 percent slopes 5.8 1.3 1.1	Green Valley Creek	582	61 133	Diablo-Lodo complex, 15 to 50 percent slopes			
584 58 (133) Diablo-Londo complex, 15 to 50 percent slopes 23.1 0.5 12.2 686 55 (160) Loss Osco learn, 15 to 50 percent slopes 8.7 1.4 12.1 587 55 (160) Loss Osco learn, 15 to 50 percent slopes 8.7 1.4 12.1 587 7 (122) Diablo and Clox clays, 9 to 15 percent slopes 8.7 1.4 12.1 589 72 (132) Diablo and Clox clays, 9 to 15 percent slopes 18.4 0.7 1.4 12.1 590 581 72 (132) Diablo and Clox clays, 9 to 15 percent slopes 1.8 0.3 1.2 12.1 592 72 (134) Diablo and Clox clays, 3 to 15 0 percent slopes 1.6 0.3 1.2 12.1 592 72 (131) Diablo and Clox clays, 3 to 50 percent slopes 0.6 0.3 1.2 12.0 592 72 (131) Diablo and Clox clays, 3 to 50 percent slopes 0.6 1.1 1.1 11.1 592 73 (132) Diablo and Clox clays, 3 to 50 percent slopes 0.8 1.1 1.1	Green Valley Creek	583	68 149	Lodo clay loam, 30 to 50 percent slopes			
(a) 565 56 (133) Diable-Lodo complex, 15 to 50 percent slopes 191 0.6 12.2 587 55 (160 Les Oses learn, 15 to 30 percent slopes 18,4 0.7 1.4 12.1 588 71 (132 Diablo and Cibo clays, 30 to 50 percent slopes 58 2.1 2.1 12.1 589 71 (132 Diablo and Cibo clays, 30 to 50 percent slopes 58 2.1 2.1 12.1 589 71 (132 Diablo and Cibo clays, 30 to 50 percent slopes 9.3 1.1 12.1 592 71 (144 Cazos-Lodo clay canns, 30 to 50 percent slopes 5.4 2.2 12.0 593 72 (131 Diablo and Cibo clays, 30 to 50 percent slopes 5.4 2.2 12.0 593 71 (144 Cazos-Lodo clay slopes 5.4 2.2 12.0 595 513 (158 Los 60 sets lami, 50 to 50 percent slopes 15.0 1.1 11.1 595 71 (132 Diablo and Cibo clays, 30 to 50 percent slopes 1.2 2.2 1.1 515 71 (122	Green Valley Creek	584	58 133	Diablo-Lodo complex, 15 to 50 percent slopes			01
586 55 [60 Los Osos loam, 15 to 30 percent slopes 8.7 1.4 1.21 687 71 [32 Diablo and Clob clays, 9 to 15 percent slopes 5.8 2.1 2.1 2.1 788 71 [32 Diablo and Clob clays, 9 to 15 percent slopes 5.8 2.1 2.1 2.1 789 72 [30 Diablo and Clob clays, 9 to 15 percent slopes 5.8 2.1 2.1 2.1 789 72 [30 Diablo and Clob clays, 9 to 5 percent slopes 5.8 2.1 2.1 2.1 790 559 72 [131 Diablo and Clob clays, 15 to 3 percent slopes 5.4 2.2 2.2 2.1 71 144 Gazos-Lodo clay clays 5.10 § percent slopes 5.4 2.1 2.1 593 72 [131 Diablo and Clob clays, 15 to 3 percent slopes 1.1 1.1 1.1 1.1 594 531 [152 Less Osos loam, 5 to 9 percent slopes 1.2 1.1 1.1 1.1 595 71 [132 Diablo and Clob clays, 15 to 30 percent slopes 1.2 1.1	Green Valley Creek	585	56 133	Diablo-Lodo complex, 15 to 50 percent slopes			01
587 54130 Diable and Cibo clays, 9 to 5 percent slopes 18.4 0.7 12.1 588 72130 Diable and Cibo clays, 30 to 50 percent slopes 6.8 2.1 12.1 588 72130 Diable and Cibo clays, 30 to 50 percent slopes 9.3 1.3 12.0 590 581 70 Les Osce learn, 15 to 30 percent slopes 9.3 1.3 12.0 592 71 144 Cazos-Lodo clay loarns, 30 to 50 percent slopes 5.4 2.2 12.0 593 721 131 Diable and Cibo clays, 15 to 30 percent slopes 1.0 1.1 1.1 594 681 58 Los Osce learn, 5 to 9 percent slopes 1.0 1.1 1.1 1.1 595 71 132 Diable and Cibo clays, 30 to 75 percent slopes 1.5 0.8 1.1 1.1 595 71 132 Diable and Cibo clays, 16 to 30 percent slopes 1.5 0.8 1.1 1.1 606 73 1.1 2.0 2.2 1.1 1.1 1.1	Green Valley Creek	586	55 160	Los Osos loam, 15 to 30 percent slopes			
588 71 1132 Diable and Cibo clays, 30 t5 percent slopes 58 71 1132 Diable and Cibo clays, 30 t5 percent slopes 51 21	Green Valley Creek	587	54 130	Diablo and Cibo clays, 9 to 15 percent slopes			
589 72 130 Diable and Cibo clays, 9 to 15 percent slopes 41.5 0.3 12.0 6 592 71 144 Cazos-Lodo clay barns, 30 to 50 percent slopes 5.4 2.2 13 12.0 592 71 144 Cazos-Lodo clay barns, 30 to 50 percent slopes 5.4 2.2 12.0 593 72 131 Diable and Cibo clays, 15 to 30 percent slopes 5.4 2.2 12.0 595 531 158 Los 60 set dam, 5 to 9 percent slopes 10.8 1.1 11.9 595 531 158 Los 60 set dam, 30 to 50 percent slopes 12.0 0.8 11.8 596 71 132 Diable and Cibo clays, 30 to 50 percent slopes 12.0 0.8 11.8 597 531 Diable and Cibo clays, 15 to 30 percent slopes 2.9 4.0 11.1 600 72 131 Diable and Cibo clays, 15 to 30 percent slopes 2.9 4.0 11.6 601 78 162 Los 60 set olablo complex, 15 to 30 percent slopes 1.3<	Green Valley Creek	586	71 132	Diablo and Cibo clays, 30 to 50 percent slopes			1 Headwater
590 361 600 Loss os loam, 15 to 30 percent slopes 5 4 1.3	Green Valley Creek	585	72 130	Diablo and Cibo clays, 9 to 15 percent slopes			D Perry Creek
532 71 1144 Clazos-Loon carly noams, of to 50 percent slopes 54 2.2 12.0 533 72 131 Diablo and Cibo clays, 15 to 30 percent slopes 10.8 1.1 1119 594 681 58 Los Osce learn, 5 to 9 percent slopes 10.8 1.1 1119 595 53 158 Los Osce learn, 5 to 9 percent slopes 12.0 0.8 1.1 1119 595 53 119 Cleneble and Cibo clays, 30 to 50 percent slopes 12.0 1.0 11.0 1118 598 71 160 Los Osce-Diablo complex, 13 to 50 percent slopes 4.5 2.6 11.5 600 72 130 Diablo and Cibo clays, 15 to 30 percent slopes 4.5 2.6 11.5 601 72 130 Diablo and Cibo clays, 15 to 30 percent slopes 12.0 1.0 11.5 602 58 162 Los Osce-Diablo complex, 15 to 30 percent slopes 12.0 1.0 11.5 601 58 162 Diablo and Cibo clays, 15 to 30 percent s	Green Valley Creek	262	58 160	Los Osos loam, 15 to 30 percent slopes			
593 72 131 Unable and Clob clays, 10 to 20 percent slopes 10.8 1.1 696 53 158 Los Osos loam, 5 to 9 percent slopes 10.8 1.1 11.0 11.9 7 595 53 158 Los Osos loam, 5 to 9 percent slopes 15.0 0.8 11.1 11.1 7 597 53 159 Los Osos loam, 5 to 9 percent slopes 12.0 1.0 11.8 7 597 53 159 Colrede-Millage loans, 30 to 75 percent slopes 12.0 1.0 11.8 6 599 71 165 Los Osos Diablo complex, 51 to 30 percent slopes 2.9 4.0 11.6 7 600 72 131 Diablo and Clob clays, 15 to 30 percent slopes 4.5 2.6 11.5 601 581 62 Los Ossos-Diablo complex, 15 to 30 percent slopes 1.2.0 1.0 1.1 7 81 10 Briones-Terra complex, 15 to 30 percent slopes 1.2.0 1.0 1.1.5 601 581 62 Los Ossos-Diablo complex, 15 to 30 percent slopes 1.2.0 1.0 1.1.5 1	Green Valley Creek	292	71 144	Gazos-Lodo clay loams, 30 to 50 percent slopes			
594 60 38 10.9 11.3 596 71 132 Lues Osse learn. 5 to 9 percent stopes 15.0 0.8 11.1 696 71 132 Diablo and Cibo clays, 30 to 50 percent stopes 12.0 1.0 11.8 696 71 132 Diablo and Cibo clays, 30 to 50 percent stopes 2.9 4.0 11.8 607 73 131 Cleneba-Millasp beams, 30 to 75 percent stopes 2.9 4.0 11.8 608 71 132 Diablo and Cibo clays, 15 to 30 percent stopes 2.9 4.0 11.1 601 72 131 Diablo and Cibo clays, 15 to 30 percent stopes 1.2 1.0 11.5 11.5 601 581 162 Lues Osso-Diablo complex, 15 to 50 percent stopes 1.1 1.0 11.5 11.5 603 581 20 Datablo and Cibo clays, 15 to 50 percent stopes 1.3 1.1 11.5 11.5 604 691 91 3.0 1.0 1.0 1.0 1.0	Green valley Greek	290	72 131	Utablo and Cloo clays, 15 to 30 percent stopes			
595 73 38 Loss Uses Gam. 70 S percent sopes 13.0 0.8 11.3 6 597 53 1132 Diablo and Cibo clays. 30 to 50 percent slopes 12.0 10 118 7 1 165 Loss Osco-Diablo canys. 30 to 50 percent slopes 2.9 4.0 118 6 598 71 165 Los Osco-Diablo canyex. 30 to 50 percent slopes 2.6 116 7 599 71 130 Diablo and Cibo clays. 9 to 15 percent slopes 4.5 2.6 115 600 72 131 Diablo and Cibo clays. 9 to 15 percent slopes 12.0 1.1 115 7 600 72 131 Diablo and Cibo clays. 16 to 30 percent slopes 11.5 11.0 115 7 602 58 110 Briones-Tierar complex, 16 to 30 percent slopes 13.6 3.8 115 7 602 58 130 Diablo and Cibo clays. 9 to 15 percent slopes 3.0 3.8 115 7 603 58	Green valley Creek	204	68 158 158	Los Usos loam, 5 to 9 percent slopes			
539 71 1.32 Unation clarge, on too clarge, or too endy, on the prevent stopes 1.3 0.4 <th0.4< th=""> 0.4 <th0.4< th=""> <th0.4< th=""></th0.4<></th0.4<></th0.4<>	Creen Valley Creek	280	001 00	Los Usos loarri, o to 9 percent stopes Dichle and Citic alore on to E0 porcont clance			0.0
5 53 71 15 Unstant manage browns, but with a pertorn slopes 4.5 2.6 11.6 6 599 71 130 Diablo and Cibo clays, 10 to 5 percent slopes 4.5 2.6 11.5 6 600 72 131 Diablo and Cibo clays, 15 to 30 percent slopes 8.9 1.3 1.3 11.5 7 601 78 162 Los Osse-Diablo complex, 15 to 30 percent slopes 1.2 1.1 1.1 11.5 11.5 7 601 58 162 Los Osse-Diablo complex, 15 to 9 percent slopes 1.1.5 1.1.6 11.5 7 601 58 130 Bitones-Terra complex, 15 to 9 percent slopes 3.0 3.8 11.5 7 603 58 130 Diablo and Cibo clays, 9 to 15 percent slopes 13.8 0.8 11.5 8 603 58 130 Diablo and Cibo clays, 9 to 15 percent slopes 2.0.8 0.6 6.6 6.1 11.5 8 605 53 144 Clays	Green Valley Creek	290	71 132	Diable and Ciays, ou to ou percent stupes Cisester Millere Isome 20 to 75 percent clanes			
5 590 711 00 Lues Cuentor, and the order function of any percent stopes 8-3 1.3 11.5 6 72 131 Diablo and Cibo clays, 15 to 30 percent stopes 8-3 1.3 1.1 6 72 131 Diablo and Cibo clays, 15 to 30 percent stopes 1.2 1.0 1.1 6 581 16 Elos Ossor-Diation ocmplex, 15 to 30 percent stopes 1.1.5 1.0 11.5 6 601 581 10 Brinotand Cibo clays, 15 to 50 percent stopes 1.1.5 1.0 11.5 6 603 581 30 Diablo and Cibo clays, 9 to 15 percent stopes 1.3 3.0 3.8 11.5 6 604 691 198 Salinas stilty clay learn, 2 to 9 percent stopes 2.0.8 0.6 6.6 11.5 11.5 6 604 691 198 Salinas stilty clay learn, 2 to 9 percent stopes 9.5 1.1 2.0 6.6 11.5 6 605 531 44 Clazos-Ludo clay percent stopes 9.5 1.2 1.1 1.1 1.1 1.1		160	901 190	Urerreua-rymisap ruarris, ou ru 70 perceri i siupes			0 (
0.99 171 300 721 311 Diabitio and Clob clays, 15 to 30 percent slopes 1.20 1.00 1.15 k 601 58 162 Los Osse-Diablo camplex, 15 to 30 percent slopes 11.5 1.0 11.5 k 601 58 162 Los Osse-Diablo complex, 15 to 30 percent slopes 11.5 1.0 11.5 k 602 58 110 Briones-Tierra complex, 15 to 50 percent slopes 3.0 3.8 11.5 k 603 58 130 Diablo and Clob clays, 9 to 15 percent slopes 3.0 3.8 11.5 k 603 58 138 0.8 0.8 11.5 k 606 53 144 Cazo-Lodo clay loam, 2.0 0 50 percent slopes 2.0.8 0.6 11.5 k 605 53 144 Cazo-Lodo clay loam, 3.0 50 percent slopes 9.5 1.2 1.1 k 605 53 144 Cazo-Lodo clay loam, 3.0 50 percent slopes 9.5 1.1 2.8 1.1 <td>Green valley Greek</td> <td>280</td> <td>001 1/</td> <td>Los Osos-Diabio complex, ou to ou percent stopes</td> <td></td> <td></td> <td></td>	Green valley Greek	280	001 1/	Los Osos-Diabio complex, ou to ou percent stopes			
601 58162 Loss Osse-Tablo complex, 5 to 9 percent stopes 11.5 1.0 11.5 x 602 58 110 Briones-Tierra complex, 15 to 50 percent stopes 3.0 3.8 11.5 x 603 58 110 Briones-Tierra complex, 15 to 50 percent stopes 3.0 3.8 11.5 x 603 58 1130 Diablo and Cibo clays, 9 to 15 percent stopes 13.8 0.8 11.5 x 604 99 198 Satinas stift clay toam, 2 to 9 percent stopes 2.0.8 0.6 11.5 x 605 53 144 Gazos-Lodo clay loams, 3 to 50 percent stopes 9.5 1.2 11.4 x 605 53 144 Gazos-Lodo clay loams, 3 to 55 percent stopes 9.5 1.1.2 11.4	Green Valley Creek	295	79 131	Diable and Cibe clays, 3 to 13 percent slopes			
No. 5602 581 10 Benomescher answerten support 11.5 K 603 581 10 Bronnes-Tierra complex, 15 to 50 percent slopes 3.0 3.8 11.5 K 603 581 130 Diablo and Cibo clays, 9 to 15 percent slopes 13.8 0.8 11.5 K 604 691 198 Salinas silly clay loam, 2 to 9 percent slopes 2.0 8 0.6 6.6 531 144 Clazos-Lodo clay loam, 3 to 55 percent slopes 9.5 11.2 K 605 531 144 Clazos-Lodo clay loam, 3 to 55 percent slopes 9.5 1.2 114.5 K 606 531 144 Clazos-Lodo clay loams, 3 to 55 percent slopes 9.5 1.2 114.5	Green Valley Creek	601 601	58 162	Lice Dece-Diable complex 5 to 9 percent slopes			
No. 603 561 10 Individual control field or and field or clays, 91 of 50 percent slopes 13.8 0.8 11.5 k 604 691198 Salinas silly clay loam, 21 of 9 percent slopes 13.8 0.8 0.16 11.5 k 604 691198 Salinas silly clay loam, 21 of 9 percent slopes 20.8 0.6 11.5 k 605 53144 Clazos-Lodo clay pare, 30 percent slopes 9.5 1.2 11.4 k 605 53144 Clazos-Lodo clay percent slopes 9.5 1.2 11.4	Groon Vallay Crock	00	20 102	Lus Osus-Diaulo cumprex, 3 to 3 percent supres			
0.00 0.00 <th< td=""><td>Green Valley Creek</td><td>907 603</td><td>58 130</td><td>Dilation and Citho clave 9 to 15 nercent slopes</td><td></td><td></td><td></td></th<>	Green Valley Creek	907 603	58 130	Dilation and Citho clave 9 to 15 nercent slopes			
t 605 53 144 Cazos-Lodo clay loams, 30 to 50 percent slopes 9.5 1.2 114 c 606 71 152 Lodo-Rock outeron complex, 30 to 75 percent slopes 4.0 2.8 11.3	Green Vallev Creek	604	69 198	Salinas silty clav loam. 2 to 9 percent slopes			
606 71152 Lodo-Rock outicion complex: 30 to 75 bercent slopes 4.0 2.8	Green Vallev Creek	605	53 144	Gazos-Lodo clav loams. 30 to 50 percent slopes		2	
	Green Vallev Creek	606	71 152	Lodo-Rock outcrop complex. 30 to 75 percent slopes			

Clone Non- Non- </th <th>Watershed</th> <th>Soil Map</th> <th>Soil Map Unit Drainage ID Symbol</th> <th>Sail Nama</th> <th>Annual Soil Loss Acres (trons/acre/vear)</th> <th>Total Predicted Annual Soil Loss (tons)</th> <th>al Comment</th>	Watershed	Soil Map	Soil Map Unit Drainage ID Symbol	Sail Nama	Annual Soil Loss Acres (trons/acre/vear)	Total Predicted Annual Soil Loss (tons)	al Comment
666 54 (3) Diston-Londo Confront, 15 to 15 (0) Experiment Supers 42 22 (2) 611 75 (3) Disto-Londo Confront, 15 to 50 (2) Experiment Supers 1 (2) 1 (2) 613 75 (3) Disto-Londo Confront, 15 to 50 (2) Experiment Supers 1 (2) 1 (2) 613 75 (3) Disto-Londo Confront, 15 (15) (5) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Green Valley Creek	607	55 132	Diablo and Cibo clays, 30 to 50 percent slopes	8.7	1.3 11	3
010 0114 Control controls on the control work in	Green Valley Creek	909	54 132	Diablo and Cibo clays, 30 to 50 percent slopes		2.7 11	.3
(1) (2) <td>Green Valley Creek</td> <td>605</td> <td>53 143</td> <td>Gazos-Lodo clay loams, 15 to 30 percent slopes</td> <td></td> <td></td> <td>.2</td>	Green Valley Creek	605	53 143	Gazos-Lodo clay loams, 15 to 30 percent slopes			.2
11 712 712 11 713 11 11 11 2113 2114 Introde-Montroy Complex, 301 b.75 percent fabors 12	Green Valley Creek	610	67 133	Diablo-Lodo complex, 15 to 50 percent slopes			2
610 501 601 612 613 613 614 613 613 614 613 614 613 <td>Green Valley Creek</td> <td>611</td> <td>72 152</td> <td>Lodo-Rock outcrop complex, 30 to 75 percent slopes</td> <td></td> <td></td> <td></td>	Green Valley Creek	611	72 152	Lodo-Rock outcrop complex, 30 to 75 percent slopes			
11 2010 Sames and work dam. 7 is 15 and mode and 2 is 15 present slopes 10.0 10.0 10.0 10.0 15 73 73 73 74 74 72 71	Green Valley Creek	612	55 154	Lompico-McMullin loams, 30 to 75 percent slopes			.
61 72 73 73 73 73 74 74 74 74 74 74 74 74 74 74 74 74 75 74 74 73 74<	Green Valley Creek	613	54 198 70 000	Salinas slity clay loam, 2 to 9 percent slopes			
610 72 630 70000 110 710 611 101 Construction Conding, 10 to 50 percent slopes 010 11 611 101 Construction Conding, 10 to 50 percent slopes 010 11 611 1010 Construction Conding, 10 to 50 percent slopes 010 11 11 622 71 104 Construction Conding, 10 to 50 percent slopes 11 21 21 623 71 106 Construction Conding, 200 to 50 percent slopes 11 21 21 624 71 106 Construction Conding, 200 to 50 percent slopes 11 21 21 21 624 71 106 Construction Conding, 200 to 50 percent slopes 11 2	Green Valley Creek	614 615	72 200	San Simeon sandy loam, 9 to 15 percent slopes			
617 72 617 701 0.016 and ord/block days. To 53 prevent slopes 617 11 618 71 147 Construction of the only brain. 15 to 33 prevent slopes 619 12 23 620 71 147 Construction of the only brain. 35 to 35 prevent slopes 619 13 23 23 621 71 148 Construction of the only only 30 to 55 prevent slopes 51 23 23 622 71 144 Construction of the only only 30 to 55 prevent slopes 51 24 23 628 71 144 Construction of the only only 30 to 55 prevent slopes 71 24 23 628 73 144 Construction of the only only 30 to 55 prevent slopes 71 24 14 628 73 141 Construction of the only only 30 to 55 prevent slopes 71 24 15 628 73 141 Construction of the only only 30 to 55 prevent slopes 71 14 17 630 71 141 Construction of the only only 30	Green Valley Creek	616	70 133	Diable-Lode complex 15 to 50 percent closes			
616 61 Construction constrain a file and constrain a file	Green Valley Creek	010	101 100	Diable and City alove 15 to 30 percent stupes			
61 61 Construction Cole Ny num. 15.0.3 Present shores 10 62 71 14.0 Construction Cole Ny num. 15.0.3 Present shores 10 62 71 14.0 Construction Cole Ny num. 15.0.3 Present shores 11 62 71 14.0 Construction Cole Ny num. 20.0.0 Cole Num. <	Green Valley Creek	615	54 167	Liable and vide carrys, 12 to 30 percent slopes			<u>ο</u> σ
620 71 141 Classes Lation for lowns, 31 to 30 present slopes 22 622 70 162 Lots Carlos and Cloc Lings, 30 to 50 present slopes 31 23 623 70 163 Lato Carlos and Cloc Lings, 30 to 50 present slopes 35 23 31 626 70 164 Casas Latoh clink Jorns, 30 to 50 present slopes 35 23 31 626 70 164 Casas Latoh clink Jorns, 30 to 50 present slopes 11.4 14 628 77 164 Casas Latoh clink Jorns, 30 to 50 present slopes 17.4 0.6 628 77 164 Casas Latoh clink Jorns, 50 to 57 present slopes 17.4 0.6 628 77 151 Casas Latoh clink Jorns, 50 to 77 present slopes 17.4 0.6 628 77 151 Casas Latoh clink Jorns, 50 to 77 present slopes 1.7 1.9 1.9 628 77 151 Casas Latoh clink Hapkords 50 7.7 1.9 1.9 628 77 151 Casas Lat	Green Vallev Creek	619	54 143	Gazos-I odo clav loams 15 to 30 percent slopes			9 Perry Creek
(2) (2) (3) (4) (2) <td>Green Valley Creek</td> <td>620</td> <td>71 143</td> <td>Gazos-I odo clav loams 15 to 30 percent slopes</td> <td></td> <td></td> <td>9 Perry Creek</td>	Green Valley Creek	620	71 143	Gazos-I odo clav loams 15 to 30 percent slopes			9 Perry Creek
(62) (7) (22) (23) (24)	Green Vallev Creek	621	72 164	Los Osos-Diablo complex. 15 to 30 percent slopes			8
62 161 Loto old y Jam, 30 to 50 preent stores 51 32 31 62 70 144 Gazer-Loot olgs, Bams, 30 to 50 preent stores 51 21 21 62 71 144 Gazer-Loot olgs, Bams, 30 to 50 preent stores 51 21 21 62 71 44 Gazer-Loot olgs, Bams, 30 to 50 preent stores 17 0 14 62 73 13 Dake at Colo Sup, Gars, 91 to 50 preent stores 17 0 1 63 71 13 Dake at Colo Sup, Gars, 91 to 50 preent stores 17 0 1 1 63 72 19 Dake at Colo Corp, 610 to 30 preent stores 7 1	Green Vallev Creek	622	70 132	Diablo and Cibo clavs. 30 to 50 percent slopes			00
62 71 140 Lace Scase band, beins, 30 to 50 percent slopes 51 21 22 62 71 144 Gazes-Lond obje berns, 30 to 50 percent slopes 11.4 12.8 12.8 62 51 144 Gazes-Lond obje berns, 30 to 50 percent slopes 11.7 10.6 63 54 30.00-Long-Link Hapbarells complex, 30 to 50 percent slopes 11.7 10.9 63 51 30.00-Long-Link Hapbarells complex, 30 to 50 percent slopes 61 3.5 63 51 30.00-Long-Link Hapbarells complex, 30 to 50 percent slopes 61 3.6 64 75 50 Slowers slowers, 50 to 50 percent slopes 61 1.7 65 73 50 Slowers slowers, 50 to 50 percent slopes 7.6 1.1 66 73 51 Slowers slowers, 50 to 50 percent slopes 7.7 1.1 67 70 Corea-Dialob complex, 15 to 20 percent slopes 7.7 1.1 1.1 68 73 Slowers slowers slower 1.1 1.1 1.1 1.1 1	Green Valley Creek	623	69 149	Lodo clay loam, 30 to 50 percent slopes			Ø
626 7) 1(44) Gauss-Lood city horms, 2016 50 percent lopes 7 627 53 1(4) Gauss-Lood city horms, 2016 50 percent lopes 7 628 53 1(4) Gauss-Lood city horms, 2016 50 percent lopes 7 628 53 1(4) Gauss-Lood city horms, 2016 50 percent lopes 63 630 54 Reacouction city horms, 2016 50 percent lopes 63 3 630 51 Reacouction city horms, 2016 50 percent lopes 63 3 631 71 131 Reacouction city horms, 2016 50 percent lopes 5 3 632 73 163 Reacouction city horms, 2016 50 percent lopes 5 3 3 3 633 73 164 Reacouction city horms, 2016 50 percent lopes 7 1 3 3 633 73 144 Reacouction city horms, 2016 50 percent lopes 7 1 1 1 633 73 144 Reacouction city horms, 2016 50 percent lopes 7 1 1 1 1<	Green Valley Creek	624	71 160	Los Osos loam, 15 to 30 percent slopes			.7
(25) (1) (44) (2ares-lood city barrs, 50 to 50 percent slopes (1)	Green Valley Creek	625	70 144	Gazos-Lodo clay loams, 30 to 50 percent slopes			
227 51 Gazzo Loci ely Jams, 15 to 30 perenti slopes 112 110 228 72 130 Dablo and Cho clays, 15 to 30 perenti slopes 112 113 231 73 131 Dablo and Cho clays, 15 to 30 perenti slopes 61 123 232 73 132 Recourtor-Lithe Habosenells complex, 30 to 75 perenti slopes 61 123 232 72 131 Recourtor-Lithe Habosenells complex, 30 to 75 perenti slopes 61 123 233 72 144 Salvas unit class 213 015 113 233 72 141 National Clob clays, 30 to 75 perenti slopes 61 123 123 234 71 161 National National Stopes 71 123 123 123 235 72 13 National National National 123 123 123 123 235 72 13 National National 124 124 123 123 123 235 73 14 National Na	Green Valley Creek	626	71 144	Gazos-Lodo clay loams, 30 to 50 percent slopes			.7
628 72 330 Datio and Cho clays, 9 th 5 percent slopes 17.4 0.6 630 53 54 Hand. Guode city band, 51 to 3 percent slopes 1.7 1.0 0.5 631 71 13 Datio and Cho clays, 9 th 5 percent slopes 6.1 3.5 631 71 13 Datio and Cho clays, 15 to 3 percent slopes 6.1 3.5 632 72 14 Cazzet-ado caly bann, 15 to 3 percent slopes 6.1 3.5 633 72 14 Datio and Cho clays, 9 to 5 percent slopes 7.7 1.1 634 71 R2 Datio and Cho clays, 30 to 5 percent slopes 7.7 1.1 1.1 635 77 1.8 Datio and Cho clays, 30 to 5 percent slopes 7.7 1.1 1.1 636 71 R2 Datio and Cho clays, 30 to 5 percent slopes 1.1 1.1 1.1 1.1 638 71 R2 Description complex, 50 to 5 percent slopes 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <td< td=""><td>Green Valley Creek</td><td>627</td><td>53 143</td><td>Gazos-Lodo clay loams, 15 to 30 percent slopes</td><td></td><td></td><td>.6 Perry Creek Headwaters</td></td<>	Green Valley Creek	627	53 143	Gazos-Lodo clay loams, 15 to 30 percent slopes			.6 Perry Creek Headwaters
620 51 144 Classes-Lood cally karns. 30 to 55 percent slopes 61 1.3 1.3 620 53 156 Totaxes-Lood cally clave. 51 to 50 percent slopes 61 1.3 1.7 621 77 191 Deuble and Clob clays. 15 to 30 percent slopes 61 1.3 1.7 623 72 197 Deuble and Clob clays. 15 to 30 percent slopes 6.1 1.1 633 77 143 Classre.Lod cally. Joints. 15 to 30 percent slopes 7.7 1.3 1.3 636 77 182 Darkov Lodo cally. Joints. 15 to 30 percent slopes 7.7 1.3 1.3 641 71 182 Darkov Lodo cally. Joints. 15 to 30 percent slopes 1.7 1.3 1.3 642 71 182 Darkov Lodo cally. Joints. 15 to 30 percent slopes 1.6 0.3 1.3 643 77 182 Darkov Lodo cally. Joint . 15 to 30 percent slopes 1.1 1.3 1.3 644 71 182 Loc Oscie bank Occingy. Joint . 15 to 30 percent slopes 1.1	areen Valley Creek	626	72 130	Diablo and Cibo clays, 9 to 15 percent slopes	-		6
650 731 156 Index unclose Limb Halboreriels complex, 30 to 75 percent slopes 61 33 91 651 71 110 Dabb and Clob clays, 151 to 30 percent slopes 61 1.7 651 73 195 Deck outcore Limb Halborerie Scomplex, 30 to 75 percent slopes 61 1.7 658 72 197 Jammas silv cablo complex, 15 to 30 to 50 percent slopes 7.1 11.1 1.1 658 72 154 Maminerio Slop 50 (50 percent slopes 7.1 11.2 0.9 1.1 658 72 154 Dabbe Lobb complex, 15 to 30 percent slopes 7.7 1.1 1.1 1.1 658 72 154 Dabbe Lobb complex, 15 to 30 percent slopes 1.1 1.2 0.9 650 61 107 Dabbe Lobb complex, 15 to 30 percent slopes 1.1 1.1 1.1 651 71 162 Loc Oscie Alboh complex, 15 to 30 so 77 1.1 1.1 1.1 1.1 651 161 Loc Osci Alboh complex, 15 to 30 so 77 1.1	Green Valley Creek	620	54 144	Gazos-Lodo clay loams, 30 to 50 percent slopes			.5 Perry Creek Headwaters
62/ 71 131 Under and current storges 10 11 653 72 195 Rook outcop. Units of the precent stopes 51 9 1.1 653 72 195 Rook outcop. Units of the precent stopes 21 9 0.5 653 72 194 Gazas-stop (alp dam), 15 10.5 9 1.1 655 71 181 Dablo metric Calob complex, 15 0.3 9 1.1 656 73 148 Dablo metric Calob complex, 15 0.3 9 1.1 657 7 142 Las Conse Dablo complex, 15 0.3 9 1.1	Green Valley Creek	630	53 195	Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope			.4 Curti Creek Watershed
633 73 135 Concorrection requirements compare, we use of precent slopes 71 131	creen valley Creek	031	70 105	Diable and Cloc clays, 15 to 30 percent stopes			4 <u>;</u> c
63 72 1.43 Gazzes-Lood of Jonns, Vis Deprending Sopes 1.1	Breen Valley Creek	529	79 193	RUCK OUICIOP-LINING HAPIOVENOUS CUTIOPIEX, SO 10 7 3 PEICETH STOPE Salinas silty riav Iram 0 to 3 narrent sinnes			<u>1</u>
636 71 181 Nacimiento-Calodo complex, 30 to 50 percent slopes 77 1.3 1.3 1.3 637 72 1 etc Dable loco complex, 15 to 50 percent slopes 7.7 1.3 0.3 637 72 1 etc Los Osson TG/to cinplex, 15 to 50 percent slopes 7.7 1.3 0.3 638 72 1 sts Dable loco complex, 15 to 50 percent slopes 1.5 1.3 0.3 640 69 170 Marrine sliv clay clained 1.05.7 0.1 1.3 0.1 641 72 1 690 Los Osso bam, 91 61 5 percent slopes 6.5 1.5 0.1 642 70 194 Los Osso bam, 91 61 5 percent slopes 6.6 1.5 0.1 643 70 194 Los Osso bank on the slope stopes 6.1 1.6 1.6 1.6 644 70 1161 Los Osso bank on the slope stopes 6.1 1.6 1.6 1.6 644 70 1162 Los Osso bank on the slope stopes 1.0 1.1 1.1 1.6 644 70 118 Los Osso bank	arcen vallev Creek	634	72 143	Gazos-Lodo clav loams. 15 to 30 percent slopes			
658 72 122 Dablo and Cluo clays. 30 to 50 percent slopes 11.6 0.9 637 77 164 Lice Soss-Diablo complex, 15 to 30 percent slopes 5.2 1.9 1.3 638 77 162 Lice Soss-Diablo complex, 15 to 30 percent slopes 5.2 1.9 0.9 640 71 162 Lice Soss-Diablo complex, 15 to 30 percent slopes 16.7 0.1 641 70 150 Lue Soss barm, 9 to 15 percent slopes 16.7 0.1 643 70 159 Lice Soss barm, 9 to 15 percent slopes 6.1 1.6 0.9 644 70 159 Lice Soss barm, 9 to 15 percent slopes 6.1 1.6 1.6 645 70 168 Lice Soss barbo complex, 5 to 9 percent slopes 6.1 1.6 1.3 646 61 0 Diable and Cluc clays, 30 to 55 percent slopes 7.4 1.3 1.2 647 53 162 Lice Soss barbo complex, 5 to 5 percent slopes 7.4 1.3 1.2 648 7	areen Vallev Creek	635	71 181	Nacimiento-Calodo complex, 30 to 50 percent slopes			F
637 72 164 Los Oase Dablo complex, 15 to 3 percent slopes 77 1.3 1.3 638 72 133 Dablo complex, 15 to 3 percent slopes 11.2 0.9 640 70 150 Les Oase Dablo complex, 15 to 3 percent slopes 11.2 0.9 641 70 159 Les Oase barm, 9 to 15 percent slopes 6.5 1.5 0.9 642 70 159 Les Oase barm, 9 to 15 percent slopes 6.5 1.5 0.9 643 70 159 Les Oase barm, 9 to 15 percent slopes 6.6 1.6 1.6 644 70 159 Les Oase Dablo complex, 5 to 9 percent slopes 6.0 1.6 1.6 645 71 163 Les Oase Dablo complex, 16 to 8 percent slopes 7.4 1.1 1.1 646 71 163 Les Oase Dablo complex, 16 to 8 percent slopes 7.2 1.1 1.2 645 71 163 Les Oase Plablo complex, 16 to 8 percent slopes 7.2 1.1 1.2 1.2 <td< td=""><td>areen Valley Creek</td><td>636</td><td>72 132</td><td>Diablo and Cibo clays, 30 to 50 percent slopes</td><td></td><td></td><td>0.</td></td<>	areen Valley Creek	636	72 132	Diablo and Cibo clays, 30 to 50 percent slopes			0.
638 71162 Les Osso-Diatho complex, 15 to 50 percent sippes 5.2 1.9 640 631 70 Matrime faily clary loann 105.7 0.0 641 721 59 Les Osso loann 91.15 percent sippes 6.1 1.2 0.9 0.4 642 721 59 Les Osso loann 91.15 percent sippes 6.1 1.12 0.13 643 691 44 Cazos-Lodo clay loarns, 30 to 50 percent sippes 6.1 1.6 0.1 645 691 44 Cazos-Lodo clay loarns, 30 to 50 percent sippes 6.1 1.6 0.1 645 691 45 Les Osso-Lodo clay loarns, 30 to 50 percent sippes 6.1 1.6 0.1 646 691 30 Los Osso-Lodo clay loarns, 4.10 f5 percent sippes 0.0 1.6 1.6 0.1 1.6 647 711 163 Les Osso-Lodo clay, 51 of 5 percent sippes 7.4 1.1 1.2 1.3 1.1 1.2 1.2 1.2 1.2 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.1 1.2 <td>areen Valley Creek</td> <td>637</td> <td>72 164</td> <td>Los Osos-Diablo complex, 15 to 30 percent slopes</td> <td></td> <td></td> <td>0.</td>	areen Valley Creek	637	72 164	Los Osos-Diablo complex, 15 to 30 percent slopes			0.
639 72 133 11.2 0.9 641 70 Bittele Lodo complex, 15 to 50 percent slopes 11.2 0.1 641 70 159 Los Oscos leam, 9 to 15 percent slopes 6.5 0.1 642 72 159 Los Oscos leam, 9 to 15 percent slopes 6.1 0.1 643 70 195 Rock outcrop-Lithic Haptoxerolls complex, 310 75 percent slopes 6.1 1.6 644 70 195 Rock outcrop-Lithic Haptoxerolls complex, 310 75 percent slopes 6.1 1.6 645 69 102 Los Osco-Diablo complex, 310 75 percent slopes 7.4 1.3 647 53 162 Los Osco-Diablo complex, 510 9 percent slopes 7.4 1.3 648 771 164 Casca-Diablo complex, 1510 3 percent slopes 7.2 1.3 1.3 649 771 164 Los Osco-Diablo complex, 1510 3 percent slopes 7.2 1.3 1.3 647 73 162 Los Osco-Diablo complex, 1510 3 percent slopes 7.4 1.3 1.3	areen Valley Creek	636	71 162	Los Osos-Diablo complex, 5 to 9 percent slopes			ōį
640 69170 Marrinel sify clay loam, chained 105.7 0.1 642 72 199 Los Goss leam, 910.15 percent slopes 6.5 1.5 642 72 199 Los Goss leam, 910.15 percent slopes 6.5 1.5 643 69144 Gazos-Lodo clay leam, 30 to 50 percent slopes 6.1 1.6 644 70 195 Los Oscos lean (910 complex, 510 50 percent slopes 6.1 1.6 645 691162 Los Oscos leal complex, 510 50 percent slopes 6.0 1.6 1.6 648 71168 Los Oscos leal complex, 16 to 30 percent slopes 7.4 1.1 1.1 649 70 132 Dablo and Clob clays 30 to 50 percent slopes 7.4 1.2 649 70 132 Dablo and Clob complex, 15 to 30 percent slopes 7.2 1.2 650 70 144 Casos Placko complex, 15 to 30 percent slopes 7.2 1.3 651 70 128 Dablo and Clob caps leans, 30 to 50 percent slopes 7.2 1.3 652 7	areen Valley Creek	630	72 133	Diablo-Lodo complex, 15 to 50 percent slopes			<u>oi</u>
641 70159 Loss Osso loam, 91 to 15 percent slopes 63 13.0 0.8 643 69 144 Cazos-Lodo clay learts, 30 to 50 percent slopes 61 16 644 69 125 Less Osso loam, 91 to 15 percent slopes 61 16 645 69 126 Less Osso-Lodo clay learts, 30 to 50 percent slopes 61 16 646 69 120 Less Osso-slobto-complex, 51 of 9 percent slopes 61 1.1 647 53 162 Less Osso-slobto complex, 51 of 9 percent slopes 7.4 1.3 648 70 122 Less Osso-slobto complex, 51 of 9 percent slopes 7.4 1.3 649 70 122 Less Osso-slobto complex, 51 of 9 percent slopes 7.9 1.1 647 71 164 Less Osso-slobto complex, 51 of 9 percent slopes 7.9 1.1 648 70 142 Less Osso-slobto complex, 51 of 50 percent slopes 7.2 1.3 1.3 649 70 143 Less Osso-slobto complex, 50 of 50 percent slopes 7.2 1.3 1.3 650 71 164 Less Ossos-plabto complex, 30 to 55 percent s	areen Valley Creek	640	69 170	Marimel silty clay loam, drained	-		œ
642 72159 Les Gost am, 91 t5 percent slopes 6.5 1.5 643 701 Gazzs-Lodo clay hearns, 30 t6 50 percent slopes 6.1 1.6 644 701 Bax ox outrop-Lifter Hapkverelis complex, 30 to 75 percent slopes 6.1 1.6 645 631 Diad cutorp-Lifter Hapkverelis complex, 30 to 75 percent slopes 6.0 1.6 645 701 Les Cosos-Diablo complex, 51 to 9 percent slopes 7.1 1.1 647 551 Les Osos-Diablo complex, 31 to 15 percent slopes 7.1 1.1 1.1 648 71163 Les Osos-Diablo complex, 31 to 15 percent slopes 7.1 1.1 1.1 649 701 Les Osos-Diablo complex, 31 to 15 percent slopes 7.1 1.1 1.1 640 701 Les Osos-Diablo complex, 30 to 55 percent slopes 7.2 1.1 1.2 641 701 Les Osos-Diablo complex, 30 to 55 percent slopes 7.2 1.1 1.2 652 701 Les Osos-Diablo complex, 30 to 55 percent slopes 7.2 1.3 1.2 653 <	areen Valley Creek	641	70 159	Los Osos loam, 9 to 15 percent slopes			
643 69114 Clazos-Lodo city learns, 30 to 50 percent stopes 6.1 1.6 644 70 195 Rok outcropt. Lifter Haploxerolls complex, 30 to 75 percent stopes 8.0 2.7 645 691 (3) Datable camplex, 51 of 9 percent stopes 7.4 1.3 646 691 (3) Datable camplex, 51 of 9 percent stopes 7.4 1.3 647 731 (82 Los Osso-Diable camplex, 51 of 9 percent stopes 7.4 1.3 648 70 122 Diable and Cibo clays, 30 to 56 percent stopes 7.4 1.1 649 70 122 Diable and Cibo clays, 30 to 56 percent stopes 7.2 1.1 650 71 164 Cazos-Lodo clay to 76 percent stopes 7.2 0.3 651 70 128 Diable and Cibo clays, 30 to 75 percent stopes 7.2 1.3 653 71 195 Rock outcrop-Liftle Haptoxerolis complex, 30 to 75 percent stopes 7.1 5.3 653 71 195 Rock outcrop-Liftle Haptoxerolis complex, 30 to 75 percent stopes 7.1 5.3	Breen Valley Creek	642	72 159	Los Osos loam, 9 to 15 percent slopes			
644 70(195 Hock outcrop-Liftic Haploxerolis complex, 30 to 75 percent sopes 640 631 630 2.7 645 691 130 Loss Osso-Diablo complex, 5 to 9 percent sopes 6.0 1.6 648 691 33 Les Osso-Diablo complex, 5 to 9 percent slopes 7.4 1.3 648 701 152 Los Osso-Diablo complex, 5 to 9 percent slopes 7.4 1.3 648 701 162 Los Osso-Diablo complex, 15 to 30 percent slopes 7.1 1.1 1.1 650 71 164 Los Osso-Diablo complex, 15 to 30 percent slopes 7.2 1.3 1.3 651 701 128 Los Osso-Diablo complex, 15 to 30 percent slopes 7.2 1.3 1.3 653 701 144 Caroley clay, 20 to 57 percent slopes 7.2 1.3 5.3 1.1 655 701 154 Los Osso-Lodo clay learns, 30 to 57 percent slopes 1.7 5.3 5.3 655 701 154 Caroley clay, 20 to 57 percent slopes 1.7 5.3 5.3<	areen Valley Creek	643	69 144 	Gazos-Lodo clay loams, 30 to 50 percent slopes			· · · · · · · · · · · · · · · · · · ·
644 691 0.0 <td>areen Valley Creek</td> <td>644</td> <td>70 195</td> <td>Hock outcrop-Lithic Haploxerolls complex, 30 to /5 percent slope</td> <td></td> <td></td> <td>./ North Fork Santa Hosa Creek</td>	areen Valley Creek	644	70 195	Hock outcrop-Lithic Haploxerolls complex, 30 to /5 percent slope			./ North Fork Santa Hosa Creek
040 041 <td>reen valley Creek</td> <td>240</td> <td>102</td> <td>Los Usos-Diabio complex, 5 to 9 percent slopes</td> <td></td> <td></td> <td></td>	reen valley Creek	240	102	Los Usos-Diabio complex, 5 to 9 percent slopes			
648 71 103 Lues Osses-Dation complex, 3 to 15 percent slopes 7.1 648 70 132 Diablo and Cibo clays, 30 to 50 percent slopes 1.1.0 0.8 9.4 650 71 164 Caso Soss-Dation complex, 3 to 50 percent slopes 7.2 1.3 9.4 650 71 164 Caso Soss-Dation complex, 3 to 50 percent slopes 5.3 9.3 651 70 122 Copolar slopes 5.8 1.6 9.3 655 71 195 Caropic visits Alphoserolis complex, 30 to 75 percent slopes 5.3 9.3 655 71 195 Rock outcrop-Lithic Haploxerolis complex, 30 to 75 percent slopes 5.3 9.2 North Fork 655 71 154 Caropic Multin hams, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 656 51 74 Lonpico-Multin hams, 30 to 75 percent slopes 1.7 9.2 North Fork 656 71 152 Lodo clay learn, 50 to 75 percent slopes 7.6 1.2 9.2 <tr< td=""><td>areen valley Creek</td><td>040</td><td>69 130 Fo 1 Fo</td><td>Utable and Cibo clays, 9 to 15 percent slopes</td><td>Ţ</td><td></td><td><u>ס</u> ע</td></tr<>	areen valley Creek	040	69 130 Fo 1 Fo	Utable and Cibo clays, 9 to 15 percent slopes	Ţ		<u>ס</u> ע
649 701 32 but over component and solves 11.6 0.8 9.4 650 71 164 0.3 0.3 0.4 0.4 651 70 128 Color clary, 20 of sone many complex, 15 to 30 percent slopes 7.2 0.3 9.4 653 71 164 Gazole Jay, 20 of sone mans, 30 to 57 percent slopes 3.7 0.3 9.3 655 70 154 Gazole Jay, 20 to 75 percent slopes 3.7 2.1 9.3 655 70 154 Carophy clay, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 655 70 154 Lompico-Molutin loams, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 656 74 Londo-Root complex, 15 to 75 percent slopes 1.7 5.3 9.2 North Fork 656 71 155 Londo-Root complex, 15 to 75 percent slopes 7.6 9.2 9.3 657 74 Londo-Root complex, 15 to 75 percent slopes 7.6 0.7 9.2	areen Valley Creek	04/2 6/5	201 102	Los Osos-Diablo cumptes, o to a percent stopes I de Acos-Diablo complex o to 15 percent clones			0.
650 71 164 Loss Osse-Jably complex, 15 to 30 percent slopes 7.2 1.3 9.4 651 70 128 Corolev clay, 2 to 9 percent slopes 37.2 0.3 9.3 653 70 144 Cass-Lodo clay hars, 30 to 55 percent slopes 37.2 0.3 9.3 655 70 154 Corolev clay, 2 to 9 percent slopes 30.4 7.2 0.3 9.3 655 70 154 Lompico-McMulin learns, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 656 73 133 Diablo-Lodo complex, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 656 73 145 Lompico-McMulin learns, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 656 73 133 Diablo-Lodo complex, 15 to 50 percent slopes 7.6 2.3 9.2 North Fork 658 72 147 Lodo cary learn, 150 pes 7.6 2.3 9.2 North Fork 658 72	Green Valley Creek	040	70 132	Diable and Cibe clave 30 to 50 percent slopes			T.
651 70 128 Cropley clay, 2 to 9 percent slopes 37.2 0.3 9.3 652 69 144 Gazos-Lodo clay learns, 30 to 50 percent slopes 5.8 1.6 9.3 653 71 195 Ronck outcrop complex, 30 to 57 percent slopes 1.7 5.3 9.2 North Fork 655 70 154 Londor outcrop complex, 15 to 50 percent slopes 1.7 5.3 9.2 North Fork 656 53 133 Diablo-Lodo complex, 15 to 50 percent slopes 1.2 9.2 North Fork 657 74 152 Lodo-Rock outcrop complex, 30 to 75 percent slopes 1.2 9.3 9.2 658 53 133 Diablo-Lodo complex, 15 to 50 percent slopes 1.2 9.3 9.2 658 72 147 Lodo Caly learn, 15 to 50 percent slopes 1.2 9.3 9.2 658 72 147 Lodo Caly learn, 15 to 50 percent slopes 1.2 9.3 9.1 659 72 147 Lodo Caly learn 9.4	Green Valley Creek	650	71 164	Los Osos-Diablo complex. 15 to 30 percent slopes			4
652 69 14 Gazos-Lodo clay learns, 30 to 50 percent slopes 5.8 1.6 9.3 9.3 653 71 195 Rook outcrop-Liftin Haploxerolls complex, 30 to 75 percent slopes 4.2 2.1 9.3 9.3 655 531 33 Diablo-Lodo complex, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 656 531 33 Diablo-Lodo complex, 30 to 75 percent slopes 1.2.6 0.7 9.2 North Fork 656 531 33 Diablo-Lodo complex, 30 to 75 percent slopes 1.2.6 9.2 North Fork 658 721 147 Lodo-Rock outcrop complex, 30 to 75 percent slopes 7.6 1.2 9.2 North Fork 658 72147 Lodo-Rock outcrop complex, 15 to 50 percent slopes 7.6 1.2 9.2 9.1 660 69152 Lodo-Rock outcrop complex, 15 to 50 percent slopes 4.0 2.3 9.1 Perry Cree 661 69152 Lodo-Rock outcrop complex, 15 to 50 percent slopes 4.0 2.3 9.1 Perry Cr	Green Valley Creek	651	70 128	Cropley clay, 2 to 9 percent slopes			¢.
653 71 1195 Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slopes 4.2 2.1 9.3 North Fork 655 70 154 Lompico-McMultin barns, 30 to 75 percent slopes 1.7 5.3 9.2 North Fork 655 70 152 Lodo-Rock outcrop-Camplex, 30 to 75 percent slopes 12.6 0.7 9.2 North Fork 657 74 152 Lodo-Rock outcrop complex, 30 to 75 percent slopes 12.6 0.7 9.2 658 72 147 Lodo-Rock outcrop complex, 30 to 75 percent slopes 16.0 0.7 9.2 658 72 147 Lodo-Rock outcrop complex, 15 to 50 percent slopes 17.2 9.2 9.1 659 72 133 Diable-Lodo complex, 15 to 30 percent slopes 16.0 0.6 9.1 9.1 661 69 164 Los Oscia-Diablo complex, 15 to 30 percent slopes 11.2 0.1 9.1 Perry Cree 662 72 159 Los Oscia-Diablo complex, 15 to 30 percent slopes 11.2 0.1 9.1	Green Valley Creek	652	69 144	Gazos-Lodo clay loams, 30 to 50 percent slopes			.3
655 70154 Lompico-MeMulin Jame, 310 75 percent slopes 1.7 5.3 9.2 North Fork 656 73 333 Diablo-Lodo complex, 15 to 50 percent slopes 1.2 0.7 9.2 9.2 North Fork 657 74 152 Lodo-Rock complex, 15 to 50 percent slopes 1.2 0.7 9.2 9.2 658 72 147 Lodo clay learn, 5 to 15 percent slopes 7.6 1.2 9.2 659 72 133 Diablo-Lodo complex, 15 to 50 percent slopes 16.0 0.6 9.1 661 691 162 Lodo clay learn, 5 to 15 percent slopes 4.0 2.3 9.1 662 72 159 Lodo clay learn, 15 to 30 percent slopes 4.0 2.3 9.1 661 691 164 Los Gose learn, 910 15 percent slopes 1.12 0.8 9.1 662 72 159 Lodo clay slopes 1.12 0.8 9.1 663 691 164 Los Gose learn, 910 15 percent slopes 1.12	Green Valley Creek	653	71 195	Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope			
656 53 133 Utable-Lodo complex, 15 to 50 percent stopes 12.6 0.7 39.2 658 72 147 Lodo-Rock outcrop complex, 15 to 50 percent stopes 7.6 1.2 9.2 658 72 147 Lodo clay learn, 5 to 15 percent stopes 7.6 1.2 9.2 658 72 147 Lodo clay learn, 5 to 50 percent stopes 7.6 1.2 9.2 660 691 162 Lodo clay learn, 5 to 50 percent stopes 4.0 2.3 9.1 661 691 164 Los Soss-Diablo complex, 15 to 30 percent stopes 4.0 2.3 9.1 662 72 159 Lodo chay learn stopes 4.1 2.3 9.1 663 691 Los Soss-Diablo complex, 15 to 30 percent stopes 1.1.2 0.8 9.1 663 691 Los Soss-Diablo complex, 51 to 30 percent stopes 1.1.2 0.8 9.1 663 691 Los Soss-Diablo complex, 51 to 50 percent stopes 1.1.2 0.8 9.1 663 691 <td>Green Valley Creek</td> <td>655</td> <td>70 154</td> <td>Lompico-McMullin loams, 30 to 75 percent slopes</td> <td></td> <td></td> <td>North Fork</td>	Green Valley Creek	655	70 154	Lompico-McMullin loams, 30 to 75 percent slopes			North Fork
Boy 74 11-3c Locor-rock outcop complex, and or 3 percent stopes 7.4 1.2 9.2 658 72 147 Locdo realy learn, 5 to 15 percent stopes 7.6 1.2 9.2 659 72 133 Diablo-Lodo complex, 15 to 50 percent stopes 16.0 0.6 9.1 660 69 152 Lodo-Rock outcrop complex, 15 to 30 percent stopes 4.0 2.3 9.1 661 69 164 Los Oscs-Diablo complex, 15 to 30 percent stopes 4.0 2.3 9.1 662 72 159 Los Oscs-Diablo complex, 15 to 30 percent stopes 4.1 2.3 9.1 663 69 164 Los Oscs-Diablo complex, 15 to 30 percent stopes 11.2 9.1 664 69 130 Diablo and Clay 5 to 9 percent stopes 16.0 0.6 9.1 665 53 161 Los Oscs loam, 30 to 50 percent stopes 3.3 2.7 9.1	areen valley Creek	909	53 133	Diablo-Lodo complex, 15 to 50 percent slopes			<u>, iv</u>
636 7/2 13/1 Locdo clay learn, so to be percent stopes 7/5 1/2 9/2 650 72 133 Diable Lood complex, 15 to 50 percent stopes 16.0 0.6 9.1 660 69 152 Lodo-Rock outrop complex, 15 to 30 percent stopes 4.0 2.3 9.1 661 69 152 Lodo-Rock outrop complex, 15 to 30 percent stopes 4.0 2.3 9.1 662 72 159 Los Osce-Diablo complex, 15 to 30 percent stopes 4.8 1.9 9.1 663 69 164 Los Osce-Diablo complex, 15 percent stopes 4.8 1.2 9.1 663 69 129 Los Osce Ioan, 9 to 15 percent stopes 11.2 0.3 9.1 664 69 130 Datablo and Clay. 5 to 9 percent stopes 16.0 0.5 9.1 665 53 161 Los Osce loan, 30 to 50 percent stopes 3.3 2.7 8.9	areen valley Uteek	/00	74 152	Lodo-Hock outcrop complex, 30 to / 5 percent stopes			
033 1 133 Unatore complex, 15 to 30 percent stopes 0.0 2.3 9.1 660 6915.2 Lodo-Rock controp complex, 30 to 30 percent stopes 4.0 2.3 9.1 661 69164 Los Osos-Diablo complex, 15 to 30 percent stopes 4.8 1.9 9.1 662 72159 Los Osos-Diablo complex, 15 to 30 percent stopes 11/2 0.8 9.1 663 69129 Los Osos loam, 9 to 15 percent stopes 11/2 0.8 9.1 663 69130 Diablo clay, 5 to 9 percent stopes 19.7 0.5 9.1 665 53161 Los Osos loam, 30 to 50 percent stopes 16.0 0.6 9.1	STOCHI VAILEY VIECN	00C	70 1 22	Load Clay luarri, 2 tu 12 percerit siupes Dickla 1 ada aamalaa 15 ta 60 paraant clanac			<u>vi</u> 7
661 691 64 Less Conservation on the percent stopes 4.8 1.9 9.1 662 72 159 Los Oscs-Diado complex, 15 to 30 percent stopes 11.2 0.8 9.1 662 72 159 Los Oscs-Diado camplex, 15 to 30 percent stopes 11.2 0.8 9.1 663 691 129 Diado caly, 5 to 9 percent stopes 11.2 0.8 9.1 663 691 129 Diado caly, 5 to 9 percent stopes 15.7 0.6 9.1 663 691 129 Diado caly, 5 to 15 percent stopes 16.0 0.6 9.1 665 53 161 Los Oscs loam, 30 to 5 percent stopes 3.3 2.7 8.9	Green Valley Creek	299	69 152	Utablo-Edua cumprex, 10 to 00 percent stopes It ada-Rack american complex, 30 to 75 percent stopes			
662 72 159 Los Osos loam, 9 to 15 percent slopes 11.2 0.8 9.1 663 69 129 Diablo clay, 5 to 9 percent slopes 19.7 0.5 9.1 664 69 130 Diablo and Cibo clays, 9 to 15 percent slopes 16.0 0.6 9.0 665 53 161 Los Osos loam, 30 to 50 percent slopes 3.3 2.7 8.9	Green Vallev Creek	661	69 164	Los Osos-Diablo complex, 15 to 30 percent slopes			
663 69 129 Diablo clay, 5 to 9 percent stopes 9.1 9.7 0.5 9.1 664 69 130 Diablo and Cibo clays, 9 to 15 percent stopes 16.0 0.6 9.0 665 53 161 Los Osos loam, 30 to 50 percent stopes 3.3 2.7 8.9	Green Vallev Creek	662	72 159	Los Osos loam. 9 to 15 percent slopes			
664 69 130 Diablo and Cibo clays, 9 to 15 percent slopes 16.0 0.6 9.0 665 53 161 Los Osos loam, 30 to 50 percent slopes 3.3 2.7 8.9	Green Valley Creek	663	69 129	Diablo clay, 5 to 9 percent slopes			1.
665 53 161 Los Osos loam, 30 to 50 percent slopes 3.3 2.7	Green Valley Creek	664	69 130	Diablo and Cibo clays, 9 to 15 percent slopes		0	
	Green Valley Creek	665	53 161	Los Osos loam, 30 to 50 percent slopes		7	

Genern Valley Creek (e)e (f) (f)	Soil Name	Acres (tons/acre/vear)	ear) Soil Loss (tons)	s) Comment	
669 71 132 670 7.1 139 671 7.1 159 673 69 159 674 70 167 675 53 165 676 53 159 673 673 53 673 53 165 673 53 165 673 53 165 673 53 165 673 53 165 674 73 133 683 73 145 684 73 143 685 73 143 685 73 143 686 73 143 683 70 143 703 152 143 704 73 152 705 73 153 706 73 154 706 73 154		2.8	3.2	8.9	
670 72 159 671 71 128 673 614 70 674 70 167 675 53 159 676 69 159 677 71 165 678 678 73 678 679 73 679 73 146 679 73 148 683 73 148 683 73 143 683 73 143 683 73 143 684 73 143 683 73 143 684 73 143 683 73 143 684 73 143 689 73 143 690 73 143 705 703 155 706 73 156 703 156 73	Diablo and Cibo clays, 30 to 50 percent slopes	13.0	0.7	8.8	
671 71 128 672 72 195 673 691 159 677 691 159 677 691 159 677 691 159 677 691 128 677 72 195 678 73 148 679 73 148 683 73 143 683 73 143 683 73 143 683 73 143 683 73 143 684 73 143 689 73 143 690 73 143 700 73 154 700 73 168 700 73 168 700 73 168 700 73 168 710	Los Osos loam, 9 to 15 percent slopes	11.3	0.8	8.7	
672 73 159 673 671 70 674 70 167 677 73 166 678 673 166 677 73 161 677 74 162 678 73 146 679 73 148 680 53 143 681 73 161 683 73 161 684 70 151 685 73 144 686 73 144 687 73 161 688 73 144 689 73 144 689 73 143 700 73 152 703 165 73 696 73 143 706 70 73 707 73 165 708 73 165 <t< td=""><td>Cropley clay, 2 to 9 percent slopes</td><td>4.5</td><td>1.9</td><td>8.6</td><td></td></t<>	Cropley clay, 2 to 9 percent slopes	4.5	1.9	8.6	
6/3 6/1 6/1 6/3 6/3 6/1 6/7 70 167 6/7 53 165 6/7 53 165 6/7 53 165 6/7 53 167 6/7 53 128 6/7 53 128 6/87 72 131 6/87 72 131 6/87 72 131 6/87 72 131 6/87 73 144 6/87 73 143 6/87 73 143 6/87 73 143 6/87 73 143 6/87 73 143 6/96 73 143 6/97 73 143 6/98 73 156 700 73 156 710 73 156 710 73 156	Los Osos loam, 9 to 15 percent slopes	4.5	1.9	8.5 Fiscalini Cree	eek
674 71 1167 677 53 105 678 63 105 679 73 195 679 73 136 679 73 148 681 73 148 683 73 148 683 73 141 684 73 141 685 73 143 686 53 143 686 73 143 687 73 143 688 73 143 689 73 143 689 73 143 689 73 143 690 73 143 700 73 143 703 73 155 690 70 73 703 73 155 704 73 156 705 70 131 <t< td=""><td>Los Usos loam, 9 to 15 percent slopes</td><td>13.6</td><td>0.6</td><td>8.5</td><td></td></t<>	Los Usos loam, 9 to 15 percent slopes	13.6	0.6	8.5	
67/5 73 165 677 73 165 677 73 148 673 73 148 673 73 148 673 73 148 673 73 148 680 53 128 681 73 143 683 73 141 683 73 143 683 73 143 683 73 143 683 73 143 684 73 143 685 73 143 689 73 143 691 73 143 692 73 143 693 73 143 694 73 154 705 73 155 706 73 154 705 70 73 710 71 73 <td< td=""><td>Los Usos-Lodo complex, 30 to /5 percent slopes</td><td>2.2</td><td>0.0 1</td><td>8.4</td><td></td></td<>	Los Usos-Lodo complex, 30 to /5 percent slopes	2.2	0.0 1	8.4	
67/6 73 128 673 74 162 673 74 162 681 73 148 683 53 128 681 73 161 683 73 161 683 73 161 684 70 153 685 73 161 686 73 144 687 70 151 687 70 153 688 70 154 689 73 144 690 73 144 691 73 152 700 73 152 701 73 152 703 73 162 696 73 152 703 153 153 704 73 152 705 73 162 706 73 154	Los Osos-Diablo complex, 30 to 50 percent slopes	5.6	d. 1 0 0	8.3	
670 73 102 679 72 105 680 53 128 681 73 148 682 73 161 682 73 161 682 73 161 682 73 161 683 70 151 684 70 151 685 70 151 686 73 143 687 74 144 688 73 182 689 73 143 689 73 143 680 73 152 690 73 154 690 73 152 700 73 152 703 153 133 703 73 156 710 73 156 711 73 158 713 73 156 <	U on Open Diable commistry 5 to 0 account alonge	20.2	- <u>-</u>		
67/2 7/3 1/3 67/2 7/3 1/3 68/1 73 1/3 68/2 73 1/3 68/3 73 1/3 68/3 73 1/3 68/3 73 1/3 68/3 73 1/3 68/3 73 1/3 68/3 73 1/4 68/3 73 1/4 68/3 73 1/43 68/3 73 1/43 68/3 73 1/43 68/3 73 1/43 68/3 73 1/43 69/3 7/4 1/3 701 73 1/3 703 1/3 1/3 704 73 1/3 705 73 1/3 706 73 1/3 713 1/3 1/3 713 1/3 1/4 705 7/3 1/3	Los Osos-Diablo complex, 5 to 9 percent slopes	0.9	7. C	8.3 Perry Creek	~
60/3 $60/3$ 146 661 73 143 682 73 131 683 73 131 683 73 143 683 73 143 683 73 143 684 70 151 683 73 143 684 70 159 686 53 143 687 74 144 688 73 143 689 73 143 691 73 133 702 73 133 703 154 73 704 73 162 705 73 163 706 73 163 701 73 163 713 133 703 714 73 163 705 73 163 <td>I ada alari laam 15 ta 20 aaraad olis curiipiex, ou tu 70 percerit siupe</td> <td>0.0</td> <td>2.0 1 1</td> <td></td> <td></td>	I ada alari laam 15 ta 20 aaraad olis curiipiex, ou tu 70 percerit siupe	0.0	2.0 1 1		
680 73 126 681 74 133 682 73 161 683 73 161 684 70 151 685 73 161 686 73 161 687 70 151 688 70 151 689 70 154 689 73 144 689 73 182 694 73 182 695 73 182 696 73 162 696 73 162 696 73 162 696 73 162 696 73 162 700 73 162 703 73 163 704 73 162 705 73 163 706 73 163 707 73 163 <t< td=""><td>Contact Identity 10 to 30 percent slopes</td><td>0.0</td><td>+ c</td><td></td><td>Ferry Greek headwaters</td></t<>	Contact Identity 10 to 30 percent slopes	0.0	+ c		Ferry Greek headwaters
682 72 135 683 72 161 35 683 70 151 161 686 53 143 35 686 53 143 36 686 53 143 31 687 73 133 31 688 73 182 31 689 73 182 31 683 73 133 31 697 73 133 31 697 73 152 31 693 73 152 31 701 73 152 31 703 152 73 162 704 73 133 133 710 73 152 55 708 73 162 56 708 73 152 70 713 73 152 73 714 <td< td=""><td>Uropiey ciay, 2 to 9 percent stopes</td><td>0.02</td><td>0.0</td><td>7.0</td><td></td></td<>	Uropiey ciay, 2 to 9 percent stopes	0.02	0.0	7.0	
6682 73 151 6683 73 161 6684 70 151 6685 73 165 6686 53 143 6687 73 143 6687 74 144 6687 74 144 6693 73 142 694 73 143 695 73 143 696 73 143 697 73 154 698 73 143 699 73 143 691 73 154 693 73 154 694 73 155 693 73 155 703 154 133 704 73 154 705 73 156 710 73 154 711 73 153 715 73 156 7	Diablo-Load Complex, 13 to 30 percent slopes	24.2	0.3	7.0	
693 70 161 694 70 151 685 70 151 686 73 143 687 74 197 688 73 143 689 73 144 689 73 144 690 73 144 691 73 143 692 73 143 693 73 152 694 73 152 695 73 156 696 73 156 701 73 152 695 73 156 703 152 133 704 73 156 705 71 133 716 73 156 717 73 156 718 73 156 714 73 156 715 73 156 <	Liablo and Cloo clays, 15 to 30 percent slopes	5.11 4.0	0.7	0.7 0	
669 70 151 689 53 143 689 73 144 689 74 144 689 73 143 689 73 144 689 73 144 689 73 144 697 73 152 696 73 152 697 73 156 698 73 152 696 73 152 697 73 156 698 73 152 699 73 152 700 73 153 703 130 143 704 73 148 707 73 148 708 703 143 710 73 158 711 73 158 712 71 73 718 73 156 <	Los Usos loarri, 30 to 30 percent slopes	0.4 0	2.4 2.0	0.7 0	
666 53 133 687 53 133 687 74 197 688 73 143 689 73 143 689 73 143 689 73 143 690 73 143 691 73 143 692 73 143 693 73 154 694 73 155 695 73 156 696 73 143 697 73 155 698 73 155 699 73 156 700 73 152 703 162 73 704 73 163 705 70 74 713 153 73 714 73 163 715 71 73 716 73 156		0.0			
680 73 145 688 74 147 689 73 182 689 73 182 691 73 182 693 73 182 694 73 143 695 73 143 696 73 143 697 73 154 698 73 154 696 73 154 697 73 153 698 73 154 699 73 155 697 73 155 698 73 155 699 73 155 700 73 155 703 165 73 704 73 165 710 73 165 711 73 165 712 73 165 713 71 73 <td< td=""><td>Los Usos loarri, 9 to 15 percerti siopes</td><td>4.0.4</td><td></td><td></td><td>ABR</td></td<>	Los Usos loarri, 9 to 15 percerti siopes	4.0.4			ABR
688 74 144 689 74 197 689 74 197 690 73 144 691 73 144 692 73 143 693 73 152 694 73 152 695 73 156 696 73 152 697 73 156 698 73 156 696 73 156 697 73 156 701 73 156 703 73 156 704 73 143 705 73 143 706 73 143 707 73 158 710 71 73 714 73 156 715 73 156 716 73 156 717 73 156 <td< td=""><td>Gazos-Lodo clay loams, 15 to 30 percent slopes</td><td>12.2</td><td>0.7</td><td>8.2</td><td></td></td<>	Gazos-Lodo clay loams, 15 to 30 percent slopes	12.2	0.7	8.2	
680 73 182 690 73 143 691 73 143 692 73 143 693 73 143 697 73 133 698 73 143 697 73 152 696 73 195 697 73 152 698 73 152 698 73 152 698 73 152 699 73 152 701 73 152 703 73 153 704 73 133 708 73 148 709 73 148 710 73 158 711 73 158 715 73 158 716 73 158 717 73 158 718 771 151 <	Gazos-Lodo clay loams, 30 to 50 percent slopes	0.0 7 7 0	0.9	8.1 0 1	
650 73 142 651 73 143 691 73 143 692 73 143 693 73 143 694 73 154 695 73 154 694 73 154 695 73 154 696 73 154 697 73 154 698 73 154 699 73 154 690 73 154 691 73 152 693 70 73 153 700 73 163 73 703 165 73 163 705 74 156 73 710 73 163 73 705 73 163 73 706 73 163 73 711 73 163 713 <t< td=""><td>Dailitias Siliy ciay IDariti, U tu z percerti siopes</td><td>0.1</td><td>0.0</td><td>1.0</td><td></td></t<>	Dailitias Siliy ciay IDariti, U tu z percerti siopes	0.1	0.0	1.0	
690 73 144 651 73 143 653 73 143 654 73 152 655 73 152 656 73 152 659 73 152 659 73 152 659 73 152 659 73 152 659 73 152 659 73 152 659 73 152 659 73 152 650 73 152 703 703 133 704 73 152 705 74 15 706 74 15 710 74 15 714 73 156 715 73 156 716 73 156 717 73 157 718 773 156 <td< td=""><td>Nacimiento-Calodo complex, 50 to /5 percent slopes</td><td>07</td><td>3.2</td><td>8.1</td><td></td></td<>	Nacimiento-Calodo complex, 50 to /5 percent slopes	07	3.2	8.1	
691 73 133 692 73 143 693 73 156 694 73 156 695 73 156 696 73 152 698 73 152 699 73 152 698 73 152 699 73 152 699 73 152 690 73 133 701 73 133 703 73 148 704 73 148 708 74 151 709 74 156 700 74 156 710 73 148 711 73 158 716 73 156 716 73 156 717 73 156 718 27 156 719 73 156 <t< td=""><td>Gazos-Lodo clay loams, 30 to 50 percent slopes</td><td>5.7</td><td>1.4</td><td>8.0</td><td></td></t<>	Gazos-Lodo clay loams, 30 to 50 percent slopes	5.7	1.4	8.0	
692 73 143 693 73 196 694 73 195 695 73 196 697 73 154 698 73 154 697 73 155 698 73 155 698 73 155 699 73 152 698 73 152 699 73 152 699 73 152 700 73 152 703 70 74 704 73 225 705 74 165 706 73 163 707 74 165 708 713 178 713 73 158 714 73 158 715 73 158 716 73 158 718 771 131 <	Diablo-Lodo complex, 15 to 50 percent slopes	13./	0.6		
653 73 150 654 73 155 656 73 155 659 73 155 659 73 155 659 73 155 659 73 155 659 73 152 659 73 152 659 73 162 700 73 133 701 73 125 703 73 163 704 73 225 707 74 153 708 73 163 709 73 148 707 74 156 710 73 158 711 73 158 715 73 156 716 73 156 717 73 156 718 714 57 719 73 156 <t< td=""><td>Gazos-Lodo clay loams, 15 to 30 percent slopes</td><td>8.8</td><td>0.9</td><td></td><td>Curti Creek Watershed</td></t<>	Gazos-Lodo clay loams, 15 to 30 percent slopes	8.8	0.9		Curti Creek Watershed
654 73 198 659 73 154 696 73 155 698 73 155 699 73 154 696 73 155 699 73 155 699 73 152 700 73 133 701 73 133 703 73 133 704 73 148 705 74 131 706 74 151 707 73 148 708 714 73 709 74 152 710 74 153 711 73 158 712 71 73 718 77 158 718 77 158 719 73 156 718 73 158 719 73 154 <td< td=""><td>Lodo clay loam, 50 to /5 percent slopes</td><td>2.2</td><td>2.8</td><td></td><td></td></td<>	Lodo clay loam, 50 to /5 percent slopes	2.2	2.8		
695 73 195 697 73 154 697 73 155 697 73 155 698 73 156 699 73 155 699 73 155 699 73 153 700 73 133 703 703 131 703 703 131 703 703 148 704 73 183 705 74 156 706 74 151 707 74 156 710 73 183 710 73 183 711 73 156 715 73 156 716 73 156 717 73 156 718 27 151 720 28 157 722 27 131	Salinas slity clay loam, 2 to 9 percent slopes	16.8	0.5	Perry	
69/6 73 154 69/8 73 152 69/8 73 162 69/9 73 162 69/9 73 162 700 73 163 701 73 163 702 74 133 703 74 133 704 73 2163 705 74 165 706 73 163 707 73 163 708 73 163 709 73 165 710 73 165 711 73 178 712 73 165 713 73 131 714 73 156 715 73 156 716 73 156 717 73 156 718 73 156 719 73 156	Hock outcrop-Lithic Haploxerolls complex, 30 to /5 percent slope	6.2	2.8	North	Fork Santa Hosa
69/ 73 152 698 73 162 698 73 162 699 73 133 700 73 133 701 73 133 702 74 14 703 73 122 704 73 1225 707 74 165 708 73 145 710 74 150 710 74 151 711 73 178 712 73 158 713 73 153 714 73 158 715 73 158 716 73 156 717 73 156 718 714 73 719 73 156 715 73 156 716 73 156 717 73 156 773	Lompico-McMullin loams, 30 to /5 percent slopes	1.5	5.4	/.8	
698 73 162 699 73 143 701 73 130 702 73 133 703 73 143 704 73 136 705 73 148 706 73 148 707 73 148 708 74 151 709 73 148 700 73 148 701 73 153 708 74 151 710 74 151 711 73 158 715 73 158 716 73 158 715 73 158 716 73 158 717 73 158 718 27 158 719 73 158 719 73 158 718 77 153 <t< td=""><td>Lodo-Hock outcrop complex, 30 to 75 percent slopes</td><td>3.3</td><td>2.4</td><td>7.8</td><td></td></t<>	Lodo-Hock outcrop complex, 30 to 75 percent slopes	3.3	2.4	7.8	
701 73 143 702 73 133 703 70 73 136 703 70 73 156 704 73 225 705 73 148 706 73 148 707 73 225 708 73 148 709 73 148 707 74 150 708 74 151 710 74 156 711 73 158 713 153 131 714 73 156 715 73 156 716 73 156 718 27 131 720 28 151 721 27 143 722 27 143 723 28 157 73 73 153 73 74 <td< td=""><td>Los Usos-Ulablo complex, 5 to 9 percent slopes</td><td>7.8</td><td>0.1</td><td>7.8</td><td></td></td<>	Los Usos-Ulablo complex, 5 to 9 percent slopes	7.8	0.1	7.8	
700 73 1.35 702 73 1.35 703 73 1.65 704 73 1.65 705 74 156 706 73 1.48 707 73 1.63 708 73 1.48 709 73 1.41 707 74 1.50 708 74 1.51 710 74 1.52 711 73 1.82 712 73 1.82 713 73 1.58 714 73 1.58 715 73 1.58 716 73 1.58 717 73 1.58 718 27 1.31 718 27 1.31 720 28 1.57 733 7.33 1.43 722 27 1.43 722 27 1.43	Giable Lada commelary 15 to 50 percent slopes	1.1		7.0	
701 701 701 703 701 73 704 73 148 707 73 148 706 73 148 707 74 156 708 74 156 709 74 156 709 74 156 710 74 158 710 74 158 711 73 132 712 73 132 713 73 132 714 73 158 715 73 158 716 73 156 715 73 156 716 73 156 717 27 145 718 27 143 720 28 157 722 27 143 722 27 143 723 28 157 723	Diablo-Lodo complex, 13 to 30 percent slopes	0.11	1.0	7.0	
702 73 155 703 73 68 704 73 148 705 73 148 706 73 148 707 74 156 708 73 165 707 74 151 708 74 151 710 74 151 711 73 158 712 73 133 713 73 133 714 73 131 715 73 133 714 73 133 715 73 133 716 73 158 717 73 158 718 73 158 718 73 158 718 73 158 718 73 158 718 73 143 722 27 143 722	Diablo and Cloo clays, 9 to 15 percent slopes	α.U	0		101-1
704 73 15 705 73 148 707 73 146 707 73 146 707 73 146 707 74 150 708 73 148 709 74 151 709 74 151 709 74 151 710 713 183 711 73 183 713 73 131 714 73 131 715 73 131 716 73 145 717 73 145 718 73 145 719 73 145 718 73 145 719 73 143 718 73 143 721 27 131 722 27 133 723 27 143 723	H on Open Diable complex, 0 to 15 complex, 30 to 75 percent stope	0.0	2.6		CURI Creek watersned
704 73 42.85 705 73 146 707 73 148 708 73 148 709 73 148 709 73 148 710 74 155 711 73 138 712 73 138 713 73 138 713 73 138 713 73 136 713 73 131 713 73 145 715 73 145 717 27 131 718 73 143 721 27 143 722 27 143 723 28 154 723 27 143 723 28 154 724 73 143	Los Usos-Liablo complex, y to 15 percent slopes	0 r	1./	1.1	
705 748 706 74165 707 74165 708 74165 709 73183 710 73183 711 73183 712 73131 713 73131 714 73131 715 73133 716 73153 715 73158 716 73158 717 73158 718 73158 719 131 718 73158 719 131 718 73158 718 27131 719 27131 719 27131 719 27131 719 27143 713 27143 7143 77 7143 7143 722 27143 723 27143 724 28165		1.61	G.D		
700 74 100 708 74 131 709 74 131 710 74 152 711 73 131 712 73 131 713 73 131 714 73 131 715 73 131 714 73 131 713 73 131 714 73 131 715 73 131 716 73 131 717 73 131 718 73 145 719 71 73 718 27 130 718 27 130 718 27 130 718 27 145 722 28 144 722 28 143 723 28 157 733 743 743 <t< td=""><td>Loud diay loain, ib to by beldent slupes</td><td>4.0</td><td>1-1-0</td><td>7.6 TEILY CIERN</td><td>,</td></t<>	Loud diay loain, ib to by beldent slupes	4.0	1-1-0	7.6 TEILY CIERN	,
700 71 100 709 73 183 710 74 152 711 73 178 712 73 178 713 73 178 714 73 159 715 73 159 714 73 159 715 73 159 716 73 159 717 73 159 718 73 159 716 73 145 717 73 145 718 27 131 719 15 131 720 28 144 721 27 133 722 28 143 722 28 157 723 28 157 733 28 157	Lodo olovi home E0 to 75 horizont alanos	0.0	1.1	0.7	
700 71 131 710 74 157 711 73 152 712 73 132 713 73 132 712 73 132 712 73 132 712 73 132 713 73 134 714 73 145 715 73 145 716 73 145 716 73 145 718 27 131 719 15 131 719 15 133 719 73 145 719 21 145 719 21 144 720 28 144 720 28 15 722 28 15 723 28 15 724 73 143 722 27 143 723	Loud clay loain, ou to 75 beform slopes	3.6	2.4	7.6 Down ()	
710 74 152 711 73 178 712 73 131 713 73 132 714 73 131 715 73 131 714 73 131 715 73 158 716 73 158 716 73 158 716 73 158 717 73 158 718 27 130 719 15 131 719 15 131 719 73 145 719 713 151 713 73 144 720 28 144 722 27 143 722 28 157 73 28 157	Dhisno, Bock outcron complex 15 to 75 hercent slopes	5.1	1.5		
711 73 132 712 73 131 713 131 132 714 73 131 713 131 132 714 73 131 715 73 131 716 73 145 717 73 145 717 73 145 717 27 130 718 27 130 719 15 131 719 27 130 718 27 131 719 27 131 719 27 131 720 28 144 721 27 143 722 28 157 723 28 157 723 28 157 723 28 157 733 743 77	Lodo-Book outcop complex, 13 to 75 percent alopes	- 96	5 0 - 0	7.5	
712 73 132 713 73 159 714 73 158 715 73 158 716 73 158 717 73 158 717 73 145 718 27 130 719 21 131 719 27 131 719 27 131 721 28 144 721 27 143 722 28 143 723 28 157 723 28 157	Nacimiento sitty clav loam 30 to 50 percent slopes	6.8	1.1	7.5	
713 73 131 714 73 159 715 73 158 716 73 145 717 27 130 718 27 131 719 131 131 719 27 131 719 27 131 721 27 131 721 27 131 721 27 131 721 27 144 721 27 143 722 28 143 723 28 157 723 28 157	Diablo and Cibo clavs. 30 to 50 percent slopes	7.7	1.0	7.4	
714 73 159 715 73 158 716 73 145 717 27 130 718 27 131 719 15 133 719 15 133 719 15 133 719 15 133 720 28 144 721 27 131 722 28 144 722 27 143 722 27 143 723 28 157 724 724 28	Diablo and Cibo clays, 15 to 30 percent slopes	18.0	0.4	7.4	
715 73 158 716 73 145 717 73 145 718 27 130 718 27 131 719 15 133 720 28 144 722 27 143 722 28 157 723 28 157 723 28 157	Los Osos loam, 9 to 15 percent slopes	6.7	1.1	7.4 Perry Creek	~
716 73 145 717 27 130 718 27 131 719 15 133 719 28 144 720 28 143 721 27 143 721 27 143 722 27 143 723 28 143 723 28 157	Los Osos loam, 5 to 9 percent slopes	12.2	0.6	7.3	
717 27 130 718 27 161 719 28 144 720 28 144 721 27 143 722 27 143 723 28 157 723 28 157	Gazos-Lodo clay loams, 50 to 75 percent slopes	4.6	1.6	7.3	
718 27 [13] 719 15] 133 721 28 [143 721 27 [143 723 28 [157 723 28 [157 724 28 [157	Diablo and Cibo clays, 9 to 15 percent slopes	7.5	1.0	7.2 Perry Creek	4
719 15 33 720 25 144 721 22 144 722 27 143 723 26 157 723 26 157	Diablo and Cibo clays, 15 to 30 percent slopes	6.5	1.1	7.2	
720 28144 721 22143 722 27143 723 28157 733 28157	Diablo-Lodo complex, 15 to 50 percent slopes	20.0	0.4	7.2	
721 27143 722 27143 723 28157 724 281457	Gazos-Lodo clay loams, 30 to 50 percent slopes	9.2	0.8	7.1	
723 27 143 723 28 157 724 78 144	Gazos-Lodo clay loams, 15 to 30 percent slopes	7.1	1.0	7.1 Perry Creek	ý
701 28 127	Gazos-Lodo clay loams, 15 to 30 percent slopes	13.9	0.5	7.1 Perry Creek	
	Corror I add alow lowing 20 to 50 more alowing alowing and alow lowing 20 to 50 more alowing a	6.4 F.O		7.0 Perry Creek	×
7.05 27 1.44	Gazas-Loud clay loanis, 30 to 50 percent slopes	0. U	1 0	0.7	
28 130	Clabbo and Cibo clave 9 to 16 percent slopes	0.00	1:5	6.0	
1 20 20 1 30	חומטוט מווא טואט גומאט, א וע דע אפיטטווי איצעטט	o o	0.0	0.0	

So Watershed	Soil Map Unit ID	Soil Map Unit Drainage ID Svmbol	Soil Name	Acres	RUSLE2 Predicted Annual Soil Loss (tons/acre/vear)	Total Predicted Annual Soil Loss (tons)	Comment
	727	28 198	Salinas silty clay loam, 2 to 9 percent slopes				
Santa Rosa Creek	728	29 130	Diablo and Cibo clays, 9 to 15 percent slopes	6.6	0	7	
Santa Rosa Creek	729	29 159	Los Osos loam, 9 to 15 percent slopes	11.3		0.6 6.8	3 Perry Creek
Santa Rosa Creek	730	29 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	3.8			
Santa Rosa Creek	731	29 128	Cropley clay, 2 to 9 percent slopes	32.1	0	0.2 6.7	
Santa Rosa Creek	768	28 149	Lodo clay loam, 30 to 50 percent slopes	3.1	2	2	
Santa Rosa Creek	771	29 119	Cieneba-Millsap loams, 30 to 75 percent slopes	2.5			
Green Valley Creek	0	124 148	Lodo clay loam, 15 to 30 percent slopes	5.2		1.3 6.7	
Green Valley Creek	-	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	5.2			
Green Valley Creek	2	158 159	Los Osos loam, 9 to 15 percent slopes	8.4		0.8 6.7	
Green Valley Creek	e	131	Diablo and Cibo clays, 15 to 30 percent slopes	7.0			
Green Valley Creek	4	132 165	Los Osos-Diablo complex, 30 to 50 percent slopes	3.7			
Green Valley Creek	5	133 197	Salinas silty clay loam, 0 to 2 percent slopes	17.1	0	0.4 6.7	
Green Valley Creek	6	124 133	Diablo-Lodo complex, 15 to 50 percent slopes	12.7	0		
Green Valley Creek	7	127 164	Los Osos-Diablo complex, 15 to 30 percent slopes	4.7		1.4 6.6	S Fiscalini Creek
Green Valley Creek	8	124 159	Los Osos loam, 9 to 15 percent slopes	8.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Green Valley Creek	9	125 133	Diablo-Lodo complex, 15 to 50 percent slopes	9.9	0.7	~	
Green Valley Creek	10	158 149	Lodo clay loam, 30 to 50 percent slopes	3.8			
Green Valley Creek	11	124 197	Salinas silty clay loam, 0 to 2 percent slopes	28.9		0.2 6.4	
Green Valley Creek	12	125 198	Salinas silty clay loam, 2 to 9 percent slopes	15.1			Perry Creek
Green Valley Creek	13	124 133	Diablo-Lodo complex, 15 to 50 percent slopes	13.5		0.5	
Green Valley Creek	14	158 226	Zaca clay, 30 to 50 percent slopes	7.3	0		8
Green Valley Creek	15	124 132	Diablo and Cibo clays, 30 to 50 percent slopes	5.7	-	1.1 6.2	
Green Valley Creek	16	125 165	Los Osos-Diablo complex, 30 to 50 percent slopes	2.4			
Green Valley Creek	17	158 164	Los Osos-Diablo complex, 15 to 30 percent slopes	3.6			
Green Valley Creek	18	125 158	Los Osos loam, 5 to 9 percent slopes	13.3			Perry Creek
Green Valley Creek	19	126 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	4.7			
Green Valley Creek	20	133 206	Santa Lucia very shaly clay loam, 9 to 15 percent slopes	10.7		0.6 6.0) Headwater
Green Valley Creek	21	124 168	Los Osos variant clay loam, 15 to 50 percent slopes	4.6			Perry Creek
Green Valley Creek	22	125 178	Nacimiento silty clay loam, 30 to 50 percent slopes	4.3			(
Green Valley Creek	23	126 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	7.4	0	0.8 5.5	6
Green Valley Creek	24	127 199	San Simeon sandy loam, 2 to 9 percent slopes	13.1			6
Green Valley Creek	25	128 167	Los Osos-Lodo complex, 30 to 75 percent slopes	1.7		3.5 5.6	
Green Valley Creek	26	129 158	Los Osos loam, 5 to 9 percent slopes	5.3		1.1 5.8	Berry Creek
Green Valley Creek	27	130 133	Diablo-Lodo complex, 15 to 50 percent slopes	7.9		0.7 5.8	8
Green Valley Creek	28	145 131	Diablo and Cibo clays, 15 to 30 percent slopes	5.3		1.1 5.8	
Green Valley Creek	29	146 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	3.6			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Green Valley Creek	30	147 162	Los Osos-Diablo complex, 5 to 9 percent slopes	9.5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Green Valley Creek	31	154 131	Diablo and Cibo clays, 15 to 30 percent slopes	5.7		1.0 5.7	
Green Valley Creek	32	155 128	Cropley clay, 2 to 9 percent slopes	18.3			
Green Valley Creek	33	156 149	Lodo clay loam, 30 to 50 percent slopes	4.4			
Green Valley Creek	34	157 181	Nacimiento-Calodo complex, 30 to 50 percent slopes	3.8			North Fork Santa Rosa Creek
Green Valley Creek	35	158 130	Diablo and Cibo clays, 9 to 15 percent slopes	6.7			
Green Valley Creek	8	12/ 19/	Salinas slity clay loam, u to 2 percent slopes	0. ±		1.4 1.1	
Green Valley Greek	10	100	Los Osos-Diabio complex, 9 (0-13 percent slopes	0			
	8	100 100		0.00			
Green Valley Creek	50	15/ 198	Dicklo Lode commins 15 to 9 percent stopes	29.2		0.7 1	
Creen Valley Creek	14 14	150 155	Diable and Citic claric 0 to 15 minutes	10.0			
Green Valley Creek	41	157 120	Diable and Cibe clays, 3 to 13 percent stopes	0.01			s Curti Crook Watershed
Green Valley Creek	24	13/ 132	Lauro and Oldo diays, 30 (0.30 percent slopes	j r			
	2 F	100 104	Diable Lode complex, 13 to 30 percent stopes	0.0		0.0	
Green Valley Creek	45	157 130	Diablo-Ludu cumplex, 13 to 30 percent slopes	0.0 1			
Green Valley Creek	A A	107 144	Gazos-I odo clay loame 30 to 60 nercent slopes	- u			
Groon Vallov Crook	40	111111111111111111111111111111111111111	Lazus-Luuu viay ivariis, su ju su perverit siupes	100		1.0 7.1 7.1	
Green Valley Creek	49	120 103	Los Osos-Diabio cumprex, 3 to 13 percent supres	0.01			Curti Creek Watershed
Green Valley Creek	40	127 144	Los Osos Iodiri, o to o percent slopes Gazos-Lodo clav Ioams 30 to 50 nercent slopes	41		10 U	
Green Valley Creek	64	128 127	Cranter day 104 13, 30 to 30 percent subes	τα τ		2 0	
Green Valley Creek	3 5	131 130	Cruptey uay, 0 to 2 percent subes Diablo and Cibo clave 0 to 15 nercent slones	0.01 4 A		0 4	
	5	001 101	רומטום מות סומס אימלה, ל זל יל אל יל איניליון לואליל	5			

Watershed	Soil Map Unit ID	Soil Map Unit Drainage ID Symbol	Soil Name	Acres	n s	Total Predicted Annual Soil Loss (tons)	Comment
	52	132 163	Los Osos-Diablo complex, 9 to 15 percent slopes	4.8	1.1		
Green Valley Creek	54	134 183	Obispo-Rock outcrop complex, 15 to 75 percent slopes	2.4	2.2	5.3	
Green Valley Creek	55	144 133	Diablo-Lodo complex, 15 to 50 percent slopes		0.4	5.2	
Green Valley Creek	56	145 165	Los Osos-Diablo complex, 30 to 50 percent slopes		2.2	5.2	
Green Valley Creek	21	130 127	Cropley clay, 0 to 2 percent slopes		0.2	5.1	
Green Valley Creek	58	131 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.6	5.1	
Green Valley Creek	69	145 159	Los Osos loam, 9 to 15 percent slopes		1.0	5.1	Perry Creek
Green Valley Creek	09	137 130	Diablo and Cibo clays, 9 to 15 percent slopes	9.5	0.5	5.0	
Green Valley Creek	19	131 131	Diablo and Cibo clays, 15 to 30 percent slopes		0.7	5.0	
Green valley Creek	29	136 150	Lodo clay loam, 50 to 75 percent slopes	1.9	9.7	5.0	
Green Valley Creek	63	13/ 143	Gazos-Lodo clay loams, 15 to 30 percent slopes		1.1	4.9	
Green Valley Creek	64	138 168	Los Osos variant clay loam, 15 to 50 percent slopes		1.4	4.9	Perry Creek Headwaters
Green Valley Creek	6 9	139 165	Los Osos-Diablo complex, 30 to 50 percent slopes	5.2	0.9	4.9	
Green valley Creek	99	140 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		0.6	4.9	
Green Valley Creek	91	136 164	Los Osos-Diablo complex, 15 to 30 percent slopes		2.3	4.9	
Green Valley Creek	89	138 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.2	4.8	
Green Valley Creek	69	128 130	Diablo and Cibo clays, 9 to 15 percent slopes		0.9	4.8	
Green Valley Creek	01	129 149	Lodo clay loam, 30 to 50 percent slopes		0.9	4.8	
Green Valley Creek	1/	130 128	Cropley clay, 2 to 9 percent slopes	19.0	0.3	4.7	Headwaters
Green Valley Creek	72	137 165	Los Osos-Diablo complex, 30 to 50 percent slopes		2.3	4.7	
Green Valley Creek	13	135 150	Lodo clay loam, 50 to 75 percent slopes		2.8	4.6	
Green Valley Creek	74	128 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.0	4.6	
Green Valley Creek	75	129 158	Los Osos loam, 5 to 9 percent slopes		0.8	4.6	
Green Valley Creek	76	130 131	Diablo and Cibo clays, 15 to 30 percent slopes		2.1	4.6	
Green Valley Creek	11	139 148	Lodo clay loam, 15 to 30 percent slopes		1.3	4.6	
Green Valley Creek	78	135 142	Gaviota fine sandy loam, 15 to 50 percent slopes		4.8	4.6	Fiscalini Creek
Green Valley Creek	6/	135 198	Salinas silty clay loam, 2 to 9 percent slopes		0.9	4.6	
Green Valley Creek	08 2	136 152	Lodo-Hock outcrop complex, 30 to /5 percent slopes		80 0	4.6	
Green valley Creek	8	140 198	Salinas silty clay loarn, 2 to 9 percent slopes		0.9	0.4 1	
Green valiey Creek	200	134 150	Lodo clay loam, 50 to 75 percent slopes		0.N	0.4	CULTI Creek watershed
Green valley Greek	00	134 19/	Diable and City clay loarn, U to 2 percent stopes	4.7	0. t	4.4	
Green Valley Creek	94 BR	137 131	Deck outcom. Lithic Handoveralle commany 20 to 75 percent clone		1.1	4.4	
Green Valley Creek	S S	133 133	Diable-Lode complex 15 to 50 percent slopes		2.7	4.3	
Green Valley Creek	87	134 162	Los Osos-Diahlo complex 5 to 9 nercent slones	15.4	0.3	4.3	
Green Valley Creek	88	156 144	Gazos-1 orto clav home 30 to 50 percent slopes		0.0	4.9	
Green Valley Creek	8	156 133	Diable-Loud city rearies, or to be benefit and each and the Diable-Loud complex 15 to 50 hercent slopes		0.5	4.2	
Green Vallev Creek	91	156 131	Diablo and Cibo clavs. 15 to 30 percent slopes		0.3	4.2	
Green Valley Creek	92	133 149	Lodo clay loam, 30 to 50 percent slopes		1.5	4.2	
Green Valley Creek	93	134 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.0	4.2	Perry Creek
Green Valley Creek	64	144 163	Los Osos-Diablo complex, 9 to 15 percent slopes		2.0	4.1	
Green Valley Creek	96	134 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		1.6	4.1	
Green Valley Creek	96	135 119	Cieneba-Millsap loams, 30 to 75 percent slopes		3.1	4.0	
Green Valley Creek	97	139 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		0.9	4.0	
Green Valley Creek	86	140 133	Ulablo-Lodo complex, 15 to 50 percent slopes		0.7	4.0	-
Green Valley Creek	66	141 170	Marimel silty clay loam, drained	-	0.3	3.9	Perry Creek
Green Valley Creek	100	142 164	Los Osos-Diablo complex, 15 to 30 percent slopes		0.8	3.9	
Green valley Creek		129 149	Correction for the second stopes	2.0	0.1.0	3.9	
Green Valley Creek	102	130 144	Lados-Lodo clay loanis, 30 to 30 percent stopes		1.7	3.9	
Green Valley Creek	501	101 101	Loud-hock outcrop complex, 3 to 30 percent stopes		- -	0.0	Londuntor
Green Valley Creek	101	142 150	I activitiento sinty user locatini, ou to ou percenti stupes	4.0		0.0	Fiscaliai Crack
Green Valley Creek	106	132 225	zaca clav 15 to 30 nercent slopes		0.9	0.0	
Green Valley Creek	107	130 1 70	Arimel sity clavinami drained		0.0	0.0	
Green Vallev Creek	108	141 132	Diable and Cibe clave 30 to 50 percent slopes		0.6	3.8	
Green Vallev Creek	109	142 132	Diablo and Cibo clavs. 30 to 50 percent slopes		0.6	9. C	
Green Valley Creek	110	140 128	Cropley clay, 2 to 9 percent slopes	4	0.1	3.8	
Green Valley Creek	111	141 203	Santa Lucia shaly clay loam, 30 to 50 percent slopes	3.1	1.2	3.7	
Green Vallev Creek	112	11011	Grane Lode claw learne 30 to 50 mercent clance	10	00	37	

Green Valley Creek Green Valley Creek	113 114 114 115 116 117 118 118 128 128 128 128 128 128 128 128	144 165 144 165 141 181 142 170 142 170 141 165 141 170 141 170 143 197 143 197 133 146 133 146 133 146 133 146 133 146 133 146 133 146 133 159 132 156 132 156 133 159 152 156	McMultin-Rock outcrop complex, 50 to 75 percent slopes Gazos-Lodo clay learns, 30 to 50 percent slopes Racimiento-Calodo complex, 30 to 50 percent slopes Martimel stily clay learns, 30 to 50 percent slopes Martimel stily clay learns, 30 to 50 percent slopes Martimel stily clay learns, 30 to 50 percent slopes Cazos-Lodo clay learns, 30 to 50 percent slopes Loss Osso-Jbablo complex, 15 to 50 percent slopes Lucs Osso-Valodo complex, 15 to 50 percent slopes Diablo-Lodo complex, 15 to 50 percent slopes Diablo-Lodo complex, 15 to 50 percent slopes Diablo-Lodo controlor complex, 15 to 75 percent slopes Diablo-Lodo controp complex, 15 to 75 percent slopes Corpley learn, 2 to 9 percent slopes Corpley learn, 2 to 9 percent slopes Cazas-Lodo clay, 3 0 to 50 percent slopes Diablab-Lodo and Clay clays, 30 to 50 percent slopes Corpley learn, 2 to 9 percent slopes Cazas clay, 9 to 15 percent slopes Cazas-Lodo clay, 30 to 50 percent slopes Cazas-Lodo clay, 30 to 50 percent slopes Cazas-Lodo clay, 30 to 50 percent slopes Cazas clay, 9 to 15 percent slopes Diatub and Clob clay, 30 to 50 percent slopes Laco Seso loan to 2 percent slopes	2, 2, 4, 7 2, 2, 4 2, 2, 2 3, 3 4, 6 5, 3 2, 9 3, 3 4, 6 5, 5 1, 2 6, 5 1, 2 7, 4 7, 4 7, 4 7, 2 7, 4 7, 2 7, 4 7, 2 7, 4 7, 4 7, 6 7, 2 7, 4 7, 6 7, 2 7, 4 7, 6 7, 6 7, 6 7, 6 7, 6 7, 7 7, 6 7, 6	3.6 3.6 0.8 0.8 0.15 3.5 0.15 3.5 0.112 3.5 0.123 3.5 0.123 3.5 0.123 3.5 0.123 3.5 0.123 3.5 0.123 3.5 0.133 3.5 0.143 3.5 0.143 3.5 0.143 3.5 0.143 3.5 0.335 3.5 0.335 3.5 0.35 3.5 0.35 3.5 0.35 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 <th></th>	
Green Valley Creek Green Valley Creek	114 115 116 117 118 118 118 118 118 118 118 118 118	144 1110 1110 1122 1122 1132 114 1132 114 1132 114 1132 114 114 114 114 114 114 114 114 114 11	Gazos-Lodo clay loams, 30 to 50 percent slopes Nacimiento-Caldo complex, 30 to 50 percent slopes Marimel silv (aly loam, drained Gazos-Lodo clay loam, drained Los Osos-Diablo complex, 30 to 50 percent slopes Los Osos-Diablo complex, 30 to 50 percent slopes Marimel silv (aly loam, drained Marimel silv (aly loam, drained Diablo-Lodo complex, 15 to 50 percent slopes Salinas silty clay loam, 0 to 2 percent slopes Diablo-Lodo complex, 30 to 50 percent slopes Diablo-Lodo complex, 15 to 75 percent slopes Salinas silty clay loam, 0 to 2 percent slopes Salinas silty clay loam, 2 to 9 percent slopes Cropiely clay, 2 to 9 percent slopes Salinas silty clay loam, 2 to 9 percent slopes Cazos-Lodo clay, 30 to 50 percent slopes Lazos-Lodo clay, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Loso Sens loan, 9 to 15 percent slopes Loso Fock outcrop complex, 30 to 75 percent slopes Loso Fock outcrop complex, 15 to 30 percent slopes Loso Fock outcrop complex, 15 to 30 percent slopes	24.7 24.7 27.2 2.4 2.5 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9		
Green Valley Greek Green Valley Creek Green Valley Creek	115 115 116 116 118 118 118 118 118 118 118 118	181 1470 146 146 148 128 128 128 128 128 128 128 128 128 12	Nacimiento-Catoblo complex, 30 to 50 percent slopes Marimel silty clay of oram, drained Gazos-Lodo clay loam, drained Cazos-Lodo clay loam, 30 to 50 percent slopes Los Osce-Diablo complex, 30 to 50 percent slopes Los Osce-Diablo complex, 30 to 50 percent slopes Diablo-Lodo clay loam, 0 to 2 percent slopes Salinas silty clay loam, 1 to 2 percent slopes Diablo-Lodo clay, 30 to 50 percent slopes Erropiet slopes Cropiet velay loam, 2 to 9 percent slopes Salinas silty clay loam, 2 to 9 percent slopes Cacoa clay, 3 to 150 percent slopes Salinas silty clay loam, 2 to 9 percent slopes Cacoa clay, 9 to 15 percent slopes Cacoa clay, 9 to 15 percent slopes Cacoa clay, 9 to 15 percent slopes Loso Pack outcrop complex, 30 to 75 percent slopes Loso Seos loam, 9 to 15 percent slopes	2.44 3.52 3.53 3.46 1.1 3.46 9.3 9.3 9.3 9.3 9.3 1.7 1.7 1.7 1.7 1.7 1.7 2.9 2.9 2.9 2.9 2.1 1.7 2.1 2.1 1.7 2.1 2.8 8 2.1 2.1 2.8 2.1 2.8 2.1 2.1 2.1 2.1 2.2 2.3 3.5 5.3 2.3 3.5 5.3 2.3 3.5 5.3 2.1 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3		
Green Valley Greek Green Valley Creek Green Valley Creek	116 118 119 119 122 122 122 122 122 133 133 133 133 133	1 170 166 1129 128 128 128 128 128 128 128 128 128 128	Marmel stiry clay loam, dramed darmel stiry clay loams, 30 to 50 percent slopes Leacos-Lodo complex, 30 to 50 percent slopes Marimel stiry clay loam, dramed Marimel stiry clay loam, dramed Salinas slity clay loam, 0 to 2 percent slopes Diablo and Clox clays, 30 to 50 percent slopes Herneke-Rock outcrop complex, 15 to 75 percent slopes Salinas slity clay loam, 2 to 9 percent slopes Salinas slity clay loam, 2 to 9 percent slopes Salinas slity clay loam, 2 to 9 percent slopes Cropely clay loam, 2 to 9 percent slopes Salinas slity clay loam, 2 to 9 percent slopes Laca clay, 9 to 15 percent slopes Gazo Lodo Rock vutcrop complex, 30 to 75 percent slopes Los Pecc, bloc clays, 30 to 50 percent slopes Los Coso sloam, 9 to 15 percent slopes Los Coso sloam, 9 to 15 percent slopes Los Coso sloam, 9 to 15 percent slopes	2/2 2/1 3/6 1.1 3.4 6.3 9.3 9.3 9.3 1.1 7 1.7 6.5 1.7 1.7 6.5 1.7 1.7 6.5 1.7 1.7 6.5 1.1 2.8 8 2.1 2.9 8 2.1 2.9 8 2.1 2.1 8 2.1 8 2.1 8 2.1 8 2.3 8 2.6 7 2.3 8 2.3 8 2.3 8 2.6 7 2.5 8 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.6 7 2.8 8 2.6 7 2.8 8 2.8 8 2.6 7 2.6 7 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.9 8 2.0 8 2.0 8 2.8 8 2.6 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 2.8 8 8 8		
Green Valley Greek Green Valley Creek Green Valley Creek	111/ 111/ 111/ 111/ 111/ 111/ 111/ 111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Clazzos-Lodo clay loams, 30 to 50 percent slopes Lus Cosso-Dialov Complex, 30 to 50 percent slopes Lus Cosso-Dialov Camplex, 30 to 50 percent slopes Diablo-Lodo complex, 15 to 50 percent slopes Salinas slity clay loam, 0 to 2 percent slopes Dialona clioto clays, 30 to 50 percent slopes Dialona clioto clays, 30 to 50 percent slopes Copeley clay, 2 to 9 percent slopes Copeley clay, 2 to 9 percent slopes Salinas slity clay loam, 2 to 9 percent slopes Cazac -Lodo clay loam, 2 to 9 percent slopes Diablo clay loam, 2 to 9 percent slopes Cazac -Lodo clay loam, 2 to 9 percent slopes Diablo and Clibo clays, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 70 percent slopes Lodo-Rock outcrop complex, 30 to 70 percent slopes Loso Clays to 16 percent slopes	2. 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		
Green Valley Creek Green Valley Creek	119 119 121 122 122 122 122 122 122 122	1705 146 146 147 152 148 152 158 159 159 159 159 159 159 159 159 159 159	Los Cosos-Utatolo complex, su to 50 percent stopes Marimel sily clay loam, drained Diablo-Lodo complex, 15 to 50 percent stopes Salinas silty clay loam, 0 to 2 percent stopes Diablo and Cibo clays, 30 to 50 percent stopes Cocpley clay, 2 to 9 percent stopes Salinas silty clay loam, 2 to 9 percent stopes Cocpley clay, 2 to 9 percent stopes Zaca clay, 9 to 15 percent stopes Cazos-Lodo clays, 30 to 50 percent stopes Lodo-Rock outcrop complex, 30 to 75 percent stopes Lodo-Rock outcrop complex, 30 to 75 percent stopes Loso Seak and 10 to 15 percent stopes Loso Seak 10 to 16 percent stopes Loso Seak 10 to 16 percent stopes	24.6 24.6 25.5 26.5 26.5 26.5 26.5 26.5 26.5 26		0
Green Valley Creek Green Valley Creek	130 132 132 132 133 133 133 133 133 133 133	1 197 1 197 1 198 1 199 1 197 1 197	mainten siny taxi, admi, qianta i fo 50 percent slopes Diablo-Lodo complex, 15 to 50 percent slopes Salinas sity clay loam, 0 to 2 percent slopes Diablo and Cibo clays, 30 to 50 percent slopes Diable and Cibo clays, 30 to 50 percent slopes Cropelye clay, 2 to 9 percent slopes Salinas sity clay loam, 2 to 9 percent slopes Zaca clay, 9 to 15 percent slopes Clabio and Cibo clays, 30 to 50 percent slopes Lado-Rock outcrop complex, 30 to 75 percent slopes Lado-Rock outcrop complex, 30 to 75 percent slopes Los 6 seas learty, 9 to 15 percent slopes Los Ceso sleart, 9 to 15 percent slopes Los Ceso sleart, 9 to 15 percent slopes Los Ceso sleart, 9 to 15 percent slopes	5.5 9.3 1.7 1.7 2.8 6.5 1.7 1.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5		
Green Valley Creek Green Valley Creek	121 122 122 122 132 133 133 133 133 133	1955 1146 1146 1144 1144 1152 1164 1153 1164	Lietano: Loto acompany and the periodinal super- Salinas situ (ski) kam, 1 o to 2 percent slopes Diablo and Cibo clays, 30 to 50 percent slopes Hennek Flock outcrop complex, 15 to 75 percent slopes Corpelve der 7 to 9 percent slopes Salinas sitly 2 to 9 percent slopes Zaca clay, 9 to 15 percent slopes Gazo-Lodo clay loam, 2 to 9 percent slopes Gazo-Lodo clay loams, 30 to 50 percent slopes Lodo-Rock outcrop complex, 15 to 75 percent slopes Los Ses loam 9 to 15 percent slopes	935 2.9 2.1 2.5 5.5 1.7 1.7 1.7 1.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8		Double Michael
Green Valley Creek Green Valley Creek	122 122 122 122 122 133 133 133 133 133	132 146 152 153 154 155 155 155 155 155 155 155 155 155	Diablo and Cibo clays, 30 to 50 percent slopes Henneke-Rock outcrop complex, 15 to 75 percent slopes Cropley clay, 2 to 9 percent slopes Salimas sity clay loam, 2 to 9 percent slopes Saca clay, 9 to 15 percent slopes Gazos-Lodo clay loams, 30 to 50 percent slopes Diablo and Cibo clays, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Loso Sel adm, 3 to 15 bercent slopes	2.9 2.1 5.5 1.7 1.7 1.7 2.8 2.8 2.8		
Green Valley Creek Green Valley Creek	128 128 128 128 128 128 138 138 138 138 138 138 138 138 138 13	146 128 138 159 159 159 159 159 159 159 159 159 159	Hemneke-Rotson outcrop complex, 15 to 75 percent slopes Cropley clay, 2 to 9 percent slopes Satinas slity clay loarn, 2 to 9 percent slopes Zaca clay 9 to 15 percent slopes Zazos-Lodo clay o loarns, 30 to 50 percent slopes Diablo and Ciby clays, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Los Seco sloarn, 9 to 15 percent slopes Los Seco sloarn, 9 to 15 percent slopes	0.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1		
Green Valley Creek Green Valley Creek	124 125 127 127 127 127 127 127 137 137 137 137 137 137 137 137 137 13	128 198 132 159 159 164	Copiley clay, 2 to 9 percent slopes Satinas sitly clay loam, 2 to 9 percent slopes Zaca clay, 9 to 15 percent slopes Diazos-Lodo Ploams, 30 to 50 percent slopes Diablo and Clob clays, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Los Ceso Island, 9 to 15 percent slopes Los Ceso Island, 9 to 15 percent slopes	6.5 7.5 12.6 1.7 1.6 1.6 2.8 8 2.8 8 2.8		4 North Fork Santa Bosa
Green Valley Creek Green Valley Creek	128 128 128 128 128 128 128 128 128 138 138 138 138 138 138 138 138 138 13	198 224 1144 155 155 155 155	Salinas sitiy clay loam. 2 to 9 percent slopes Zaca clay, 9 to 15 percent slopes Dazaz-Lodo clay loams. 30 to 50 percent slopes Dazbo and Clbo clays. 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Los Ceso Isanh or tomplex, 15 to 30 percent slopes	5.5 12.6 1.7 1.6 1.6 2.8 8 2.8		1
Green Valley Creek Green Valley Creek	128 127 128 128 133 133 133 133 133 133 133 133 133 13	224 144 132 152 159	Zaca clay, 9 to 15 percent slopes Gazos-Lodo clay loarns, 30 to 50 percent slopes Diablo and Cibo clays, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Los Socs loarn, 9 to 15 percent slopes Los Corso Ilanko, crimalex, 15 to 30 percent slopes	12.6 1.7 1.6 1.6 1.6 2.8 2.8		
Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek	127 128 129 130 131 132 133 133 133 133 133 133 133 133	144 132 159 164	Cazos-Lódo clay lóams, 30 to 50 percent slopes Diablo and Cibo clays, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Loso Sea loam, 91 to 15 percent slopes Los Cress Dianh, ortomilex, 15 to 30 percent slopes	2.1.7 2.8 8.8 8.8 8.8 8.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		3 Perry Creek
Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek	128 129 131 132 133 133 133 133 133 133 133 133	132 152 159	Diablo and Cibo clays, 30 to 50 percent slopes Lodo-Rock outcrop complex, 30 to 75 percent slopes Loso Seo Ioam, 10 to 15 percent slopes Los Cosc Jiahlo commlex, 15 to 30 percent slopes	4.5 2.88 2.88		
Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek	120 130 131 132 133 135 135 135 135 135 135 135 135 135	152 159 164	Lodo-Rock outcrop complex, 30 to 75 percent stopes Los Osos loam, 9 to 15 percent stopes Il ne Oren-Diatha commar 15 to 30 percent stopes	1.6		2 Perry Creek
Green Valley Creek Green Valley Creek Green Valley Creek Green Valley Creek	130 131 132 133 135 135 135 135 135 135 135 135 135	159 164	Los Osos loam, 9 to 15 percent slopes Il ne Oene-Diahln comulex 15 to 30 percent slopes	2.8	2.0 3.1	-
Green Valley Creek Green Valley Creek Green Valley Creek	131 132 133 135 135 135 136 137 136 137 137	164	I ne Oene-Diablo comolex 15 to 30 percent slopes	2.8		1 Perry Creek
Green Valley Creek Green Valley Creek	132 133 135 135 135 137 138 133	101				-
Green Vallev Creek	133 134 135 135 135 136 137 137 138	131	Diablo and Cibo clays, 15 to 30 percent slopes	3.7		<u>(</u>
	134 135 136 137 137 137 138 138	128	Cropley clay, 2 to 9 percent slopes	7.1		<u>(</u>
Green Valley Creek	135 136 137 138 138 139		Diablo and Cibo clays, 15 to 30 percent slopes	3.9		6
Green Valley Creek	136 137 138 138 139	143 133	Diablo-Lodo complex, 15 to 50 percent slopes	6.8	0.4 2.9	6
Green Valley Creek	137 138 139	149	Lodo clay loam, 30 to 50 percent slopes	1.4		6
Green Valley Creek	138 139 140	148	Lodo clay loam, 15 to 30 percent slopes	4.2	0.7 2.9	9 Perry Creek
Green Valley Creek	139		Diablo-Lodo complex, 15 to 50 percent slopes	6.3		
Green Valley Creek	110		Zaca clay, 30 to 50 percent slopes	4.7		8 Headwater
Green Valley Creek	5		Gazos-Lodo clay loams, 30 to 50 percent slopes	1.7		
Green Valley Creek	141		Cropley clay, 2 to 9 percent slopes	6.7		3
Green Valley Creek	142		Diablo clay, 5 to 9 percent slopes	10.3		3
Green Valley Creek	143		Diablo and Cibo clays, 9 to 15 percent slopes	8.9		
Green Valley Creek	144		Gazos-Lodo clay loams, 30 to 50 percent slopes	1.9		7 Perry Creek
Green Valley Creek	145	144 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	3.0	0.9 2.7	~ ~
Green Valley Creek	146		Diablo and Cibo clays, 9 to 15 percent slopes	9.0	0.3 2.7	7 Perry Creek
Green Valley Creek	147		Salinas silty clay loam, 0 to 2 percent slopes	4.0		
Green Valley Creek	148		Gazos-Lodo clay loams, 30 to 50 percent slopes	2.6		
Green Valley Creek	149		Los Osos loam, 5 to 9 percent slopes	3.3		5
Green Valley Creek	150		Marimel silty clay loam, drained	40.0		6
Green Valley Creek	151		Salinas silty clay loam, 2 to 9 percent slopes	12.1		5
Green Valley Creek	153		Cropley clay, 2 to 9 percent slopes	21.2		5 Perry Creek
Green Valley Creek	154		Los Osos-Diablo complex, 15 to 30 percent slopes	1.5	1.7 2.5	2
Green Valley Creek	155		Salinas silty clay loam, 0 to 2 percent slopes	60.1		5
Green Valley Creek	156	163	Los Osos-Diablo complex, 9 to 15 percent slopes	3.9		5
Green Valley Creek	157	198	Salinas silty clay loam, 2 to 9 percent slopes	2.7		
Green Valley Creek	158	130	Diablo and Cibo clays, 9 to 15 percent slopes	4.4	0.6 2.5	
Green Valley Creek	159	129	Diablo clay, 5 to 9 percent slopes	9.5		10
Green Valley Creek	160	159	Los Osos loam, 9 to 15 percent slopes	3.1	0.8 2.4	4
Green Valley Creek	161	133	Diablo-Lodo complex, 15 to 50 percent slopes	4.9		4
Green Valley Creek	162	225	Zaca clay, 15 to 30 percent slopes	4.2		3 Headwater
Green Valley Creek	163	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.9		
Green Valley Creek	164	131	Diablo and Cibo clays, 15 to 30 percent slopes	3.9		
Green Valley Creek	165	199	San Simeon sandy loam, 2 to 9 percent slopes	2.4		
Green valley Creek	100	12/	Cropley clay, U to 2 percent slopes	30.6	- 0	
Green Valley Creek	167	132	Diablo and Cibo clays, 30 to 50 percent slopes	4.1		
Green Valley Creek	168	133	Diablo-Lodo complex, 15 to 50 percent slopes	4.1		01
Green Valley Creek	169	165	Los Osos-Diablo complex, 30 to 50 percent slopes	27.1	1.8	
Green valley Creek	1/1	100	zaca ciay, 30 to 30 percent stopes	0.0	0	
Green valley Creek	1/1		Salinas sitty clay loam, 2 to 9 percent slopes	0.2	0.4	
Green valiey Greek	7/1		Ulablo-Lodo complex, 10 to 50 percent slopes	4.2	0	N

Watershed	Soil Map Unit ID	Soil Map Unit Drainage ID Symbol	Soil Name	Annual Soil Loss Acres (tons/acre/vear)	Total Predicted Annual Soil Loss (tons)	Comment
Green Valley Creek	233	149 159	Los Osos loam, 9 to 15 percent slopes	1.3	1.4	
Green Valley Creek	234	150 152	Lodo-Rock outcrop complex, 30 to 75 percent slopes		.6 1.4	1
Green Valley Creek	235	151 131	Diablo and Cibo clays, 15 to 30 percent slopes	2.6	.5 1.4	
Green Valley Creek	236	150 170	Marimel silty clay loam, drained	38.8	0 1.4	
Green Valley Creek	237	148 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.6	1.9	
Green Valley Creek	238	153 182	Nacimiento-Calodo complex, 50 to 75 percent slopes		1.0	
Green Valley Creek	239	153 127	Cropley clay, 0 to 2 percent slopes	3.0	1.0	
Green Valley Creek	240	148 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.2		
Green Valley Creek	241	151 158	Los Osos loam, 5 to 9 percent slopes	3.4		B Perry Creek
Green Valley Creek	242	149 160	Los Usos loam, 15 to 30 percent slopes	2.3		-
Green Valley Creek	243	150 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.6		B Perry Creek
Green Valley Creek	244	151 128	Cropley clay, 2 to 9 percent slopes	5.3	1.3	
Green Valley Creek	245	152 159	Los Osos loam, 9 to 15 percent slopes	4.0		
Green Valley Creek	246	148 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.8 0.7		
Green Valley Creek	247	149 195	Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope		1.2	Peadwater
Green Valley Creek	248	149 198	Salinas silty clay loam, 2 to 9 percent slopes	0.7		
Green valiey Creek	249	148 1/0	Marimei siity ciay loam, drained	20.4		
Green valiey Creek	092	149 133	Diabio-Lodo complex, 15 to 50 percent slopes	C O		
Green valley Creek	251	153 19/	Salinas silty clay loam, u to 2 percent slopes	6.2		
Green Valley Creek	253	151 144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.4	1.2	
Green valley Greek	254	140 160	Los Osos-Diapio complex, su to su percent stopes	v		0
Green valley Greek	200	149 109	Los Osos Ioam, 9 to 15 percent slopes	0.0		Perry Creek
Green Valley Greek	007	102 103	Los Osos-Diabio complex, su lo su percent stopes	0.0		
Green valiey Creek	162	153 12/	Cropiey clay, U to 2 percent slopes		1.1	
Green Valley Creek	007	151 131	Litable and Clock clays, 15 to 30 percent slopes			
Green Valley Creek	200	101 104	Lus Osus-Diable curripted, 13 to 30 percent slopes	0.0		
Green Valley Greek	102	102 103		1.0 0.1		
Green Valley Creek	107	143 144	Diction and City Identity ou to ou percent stopes	0.0		
Crock Valley Crock	202	102 101	Diable Lede complex 15 to 50 percent slopes	0.0	0.1	
Cross Valley Creek		101 100		2.14 2.1		
Green Valley Creek		150 127	Crupter viay, or to E percent studies Gazoe-1 odo clavi loame - 30 to 50 norcent clones			
Green Valley Creek		149 132	Diable and Cibe clave 30 to 50 percent slopes	07		
Green Vallev Creek		152 167	Los Osos-Lodo complex. 30 to 75 percent slopes	0.3		
Green Valley Creek		151 127	Croplev clay, 0 to 2 percent slopes	28.8		
Green Valley Creek		152 162	Los Osos-Diablo complex, 5 to 9 percent slopes	2:4		
Green Valley Creek		152 158	Los Osos loam, 5 to 9 percent slopes	2.9	0.0	Perry Creek
Green Valley Creek		152 198	Salinas silty clay loam, 2 to 9 percent slopes	1.8		
Green Valley Creek		152 170	Marimel silty clay loam, drained	10.2		
Green Valley Creek	273	152 127	Cropley clay, 0 to 2 percent slopes	11.7		
Green Valley Creek	275	152 144	Gazos-Lodo clay loams, 30 to 50 percent slopes			
Green Valley Creek	276	152 128	Cropley clay, 2 to 9 percent slopes	3.9	2 0.9	
Santa Rosa Creek	0		Cropley clay, 2 to 9 percent slopes	18.1		
Santa Hosa Creek	- 0	132	Diablo and Cibo clays, 30 to 50 percent slopes	1.2		
Santa Hosa Creek			Ulablo clay, 5 to 9 percent slopes			
Santa Hosa Creek	υ -	261	Lodo-Hock outcrop complex, 30 to 75 percent stopes	0.9	0.0	
Sama Hosa Creek	4 Π		Diablo-Lodo complex, 15 to 50 percent stopes	1.1 0.8		
Santa Rosa Creek	о Ч	170	Oroprey ciay, z to 9 percent stopes Marimel sitty clay loam drained	1:3	0.0	
Santa Rosa Creek	7	128	Cropley clay. 2 to 9 percent slopes	23.9		
Santa Rosa Creek	8	145	Gazos-Lodo clay loams, 50 to 75 percent slopes	1.0		
Santa Rosa Creek	6	81 128	Cropley clay, 2 to 9 percent slopes	11.2	.1 0.8	
Santa Rosa Creek	10	133	Diablo-Lodo complex, 15 to 50 percent slopes	1.7		
Santa Rosa Creek	11		Nacimiento-Calodo complex, 30 to 50 percent slopes	0.4		
Santa Rosa Creek	12	127	Cropley clay, 0 to 2 percent slopes	20.0	.0 0.8	
Santa Rosa Creek	13	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.3		1
Santa Rosa Creek	14	206	Santa Lucia very shaly clay loam, 9 to 15 percent slopes	2.9	3	
Santa Rosa Creek	15		Diablo clay, 5 to 9 percent slopes		.1 0.8	
Santa Rosa Creek	17	167	I as Osas-Lada complex 30 to 75 nercent slanes	04		

Watershed Un	Soil Map Unit ID	Drainage ID	Soil Map Unit Svmbol	Soil Name	Annual Soil Loss Acres (tons/acre/vear)	Total Predicted Annual Soil Loss (tons)	l Comment
	18	86	129	Diablo clay, 5 to 9 percent slopes	5.1		
Santa Rosa Creek	19	87	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	1.0 0	0.8 0.8	B Fiscalini Creek
Santa Rosa Creek	20	79	129	Diablo clay, 5 to 9 percent slopes	7.9 0	0.1 0.7	2
Santa Rosa Creek	21	80	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	0.6	1.2 0.7	2
Santa Rosa Creek	22	76	144	Gazos-Lodo clay loams, 30 to 50 percent slopes			7
Santa Rosa Creek	23	80	128	Cropley clay, 2 to 9 percent slopes		1	7
Santa Rosa Creek	24	79	119	Cieneba-Millsap loams, 30 to 75 percent slopes	0.3	2.7 0.7	7
Santa Rosa Creek	25	79	132	Diablo and Cibo clays, 30 to 50 percent slopes		1.0 0.1	2
Santa Rosa Creek	26	79	183	Obispo-Rock outcrop complex, 15 to 75 percent slopes			2
Santa Rosa Creek	27	80	145	Gazos-Lodo clay loams, 50 to 75 percent slopes	0.8	0.9 0.7	
Santa Rosa Creek	28	79	143	Gazos-Lodo clay loams, 15 to 30 percent slopes			7 Perry Creek
Santa Rosa Creek	29	80	131	Diablo and Cibo clays, 15 to 30 percent slopes			7
Santa Rosa Creek	30	81	198	Salinas silty clay loam, 2 to 9 percent slopes			
Santa Rosa Creek	31	82	131	Diablo and Cibo clays, 15 to 30 percent slopes	1.6 C	0.4 0.1	7 Perry Creek
Santa Rosa Creek	32	83	129	Diablo clay, 5 to 9 percent slopes			7 Perry Creek
Santa Rosa Creek	33	84	170	Marimel silty clay loam, drained	1.3 0	0.5 0.7	2
Santa Rosa Creek	34	85		Gazos-Lodo clay loams, 15 to 30 percent slopes	1.0 0		2
Santa Rosa Creek	35	86	142	Gaviota fine sandy loam, 15 to 50 percent slopes	0.2	3.0 0.6	6 Fiscalini Creek
Santa Rosa Creek	36	87	198	Salinas silty clay loam, 2 to 9 percent slopes	1.1 0		0
Santa Rosa Creek	37	114	148	Lodo clay loam, 15 to 30 percent slopes	1.1 0		6 Fiscalini Creek
Santa Rosa Creek	38	115 127		Cropley clay, 0 to 2 percent slopes		0.3 0.6	5
Santa Rosa Creek	39	116	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	0.6	1.1 0.6	0
Santa Rosa Creek	40	117	161	Los Osos loam, 30 to 50 percent slopes			6 Fiscalini Creek
Santa Rosa Creek	41	118		Lodo clay loam, 15 to 30 percent slopes			9
Santa Rosa Creek	42	119		Cropley clay, 2 to 9 percent slopes			0
Santa Rosa Creek	43	120	120 198	Salinas silty clay loam, 2 to 9 percent slopes	2.3	0.3 0.6	0
Santa Rosa Creek	44	77		Cropley clay, 0 to 2 percent slopes	2.4 0		0
Santa Rosa Creek	45	78	78 144	Gazos-Lodo clay loams, 30 to 50 percent slopes		0.6 0.6	0
Santa Rosa Creek	46	121	170	Marimel silty clay loam, drained	16.5 C		0
Santa Rosa Creek	47	122	133	Diablo-Lodo complex, 15 to 50 percent slopes	0.8		6 Headwaters
Santa Rosa Creek	49	88		Diablo-Lodo complex, 15 to 50 percent slopes		0.3 0.5	2
Santa Rosa Creek	50	79		Diablo-Lodo complex, 15 to 50 percent slopes	1.7 0		2
Santa Rosa Creek	51	79		Salinas silty clay loam, 0 to 2 percent slopes		0.1 0.1	2
Santa Rosa Creek	52	75		Henneke-Rock outcrop complex, 15 to 75 percent slopes			5 North Fork Santa Rosa
Santa Rosa Creek	53	78		Lodo-Rock outcrop complex, 30 to 75 percent slopes			2
Santa Rosa Creek	54	87	119	Cieneba-Millsap loams, 30 to 75 percent slopes		3.0 0.5	0
Santa Rosa Creek	55	88	164	Los Osos-Diablo complex, 15 to 30 percent slopes			01
Santa Rosa Creek	56	89	127	Cropley clay, 0 to 2 percent slopes			010
Santa Rosa Creek	57	81	129	Diablo clay, 5 to 9 percent slopes			20
Santa Rosa Creek	58	82	181	Nacimiento-Calodo complex, 30 to 50 percent slopes		1.3 0.5	10
Santa Rosa Creek	59	83	164	Los Osos-Diablo complex, 15 to 30 percent slopes	2.2	0.2	10
Santa Rosa Creek	60	29	132	Diablo and Cibo clays, 30 to 50 percent slopes			10
Santa Rosa Creek	61	80	152	Lodo-Rock outcrop complex, 30 to 75 percent slopes		2.1 0.1	
Santa Rosa Creek	62	79		Lodo clay loam, 50 to 75 percent slopes			5 Headwaters
Santa Hosa Creek	64	6/		Salinas silty clay loam, 0 to 2 percent slopes			4
santa Rosa Creek	65	119	128	Cropley clay, 2 to 9 percent slopes			4
Santa Rosa Creek	99	120	165	Los Osos-Diablo complex, 30 to 50 percent slopes		1.1 0.4	4 Perry Creek
Santa Hosa Creek	6/	6/		Diablo and Cibo clays, 30 to 50 percent slopes			4
Sama Hosa Creek	80.00	//		Diablo-Lodo complex, 15 to 50 percent slopes		0.7 0.4	
Sama Hosa Creek	60	8/	144	Gazos-Lodo ciay loams, 30 to 50 percent slopes			+
Sama Hosa Creek	10	88	123	Liablo ciay, 5 to 9 percent slopes			1
Santa Rosa Creek	70	99	10/ 167	Las Osos-Ludu cuttipted, su to 75 percent stopes	0.2	1.0 0.4	+ *
Santa Rosa Creek	77	75	198	Salinas sitty clav loam 2 to 9 nercent slopes			1
Santa Rosa Creek	78	76		Cronlev clav. 2 to 9 nercent slopes			4
Santa Rosa Creek	62	77		Los Osos loam, 30 to 50 percent slopes			4
Santa Rosa Creek	80		128	Cropley clay, 2 to 9 percent slopes			4 Perry Creek
Santa Rosa Creek	81	123	165	Los Osos-Diablo complex, 30 to 50 percent slopes	9	0.6 0.3	3 Perry Creek

S Watershed	Soil Map Unit ID	Drainage ID	Soil Map Unit Svmbol	Soil Name	Acres	s	Total Predicted Annual Soil Loss (tons) Co	Comment
	83	82	132	Diablo and Cibo clays, 30 to 50 percent slopes	0.8	0.4	0.3	
Santa Rosa Creek	85	116	133	Diablo-Lodo complex, 15 to 50 percent slopes	1.0	0.3	0.3	
Santa Rosa Creek	86	117	170	Marimel sitty clay loam, drained		0.1	0.3	
Santa Rosa Creek	87	118	127	Cropley clay, 0 to 2 percent slopes	9.9	0.0	0.3	
Santa Rosa Creek	88	119	164	Los Osos-Diablo complex, 15 to 30 percent slopes		0.2	0.3	
Santa Hosa Creek	68	120	144	Gazos-Lodo clay loams, 30 to 50 percent slopes		0.5	0.3	
Santa Hosa Creek	90	121	198	Salinas slity clay loam, 2 to 9 percent slopes		0.3	0.3	
Santa Hosa Creek	91	/9/	16/	Los Osos-Lodo complex, 30 to /5 percent slopes		L. L	0.3	
Santa Hosa Creek	55	800		Salinas sirty clay loam, U to 2 percent slopes		0.1	0.3	
Santa Doca Creek	40 PR	99		Urupiey clay, 2 to 3 percent stupes	0.0	- 0 0	0.0	
Santa Rosa Creek	се Чо	83	144	Lus Osus-Ulaulu cultiples, su lu su percetti slupes Gazac-I ada clav laame 30 ta 50 narrant clanas		6.0 0	0.0	
Santa Roca Creek	20 20	84		Diable and Cibe clave 15 to 30 narcent clones		0.0	0.0	
Santa Rosa Creek	86	120 198		Salinas silty clav Ioam 2 to 9 percent sinnes	0.5	0.5	0.3	
Santa Rosa Creek	66	89		Cropley clay. 0 to 2 percent slopes		0,1	0.3	
Santa Rosa Creek	100	76		Cropley clay, 0 to 2 percent slopes		0.0	0.3	
Santa Rosa Creek	101	120		Salinas silty clay loam, 0 to 2 percent slopes		0.0	0.3	
Santa Rosa Creek	102	121		Santa Lucia shaly clay loam, 30 to 50 percent slopes		1.2	0.3	
Santa Rosa Creek	103	76		Zaca clay, 30 to 50 percent slopes	0.3	0.8	0.3	
Santa Rosa Creek	104	75		Salinas silty clay loam, 2 to 9 percent slopes		0.3	0.2	
Santa Rosa Creek	105	89		Diablo clay, 5 to 9 percent slopes	5.9	0.0	0.2	
Santa Rosa Creek	106	06		Henneke-Rock outcrop complex, 15 to 75 percent slopes		0.1	0.2	
Santa Rosa Creek	107	118		Salinas silty clay loam, 0 to 2 percent slopes	6.8	0.0	0.2	
Santa Rosa Creek	109	120		Los Osos-Diablo complex, 15 to 30 percent slopes		0.3	0.2	
Santa Rosa Creek	110	75		Gaviota sandy loam, 50 to 75 percent slopes		2.0	0.2 He	Headwater
Santa Rosa Creek	111	76		Diablo-Lodo complex, 15 to 50 percent slopes		0.4	0.2	
Santa Rosa Creek	112	87		Salinas silty clay loam, 2 to 9 percent slopes		0.1	0.2	
Santa Rosa Creek	113	112		Los Osos-Diablo complex, 30 to 50 percent slopes	0.1	1.6	0.2	
Santa Rosa Creek	114	113		Diablo and Cibo clays, 15 to 30 percent slopes		0.1	0.2	
Santa Rosa Creek	115	114		Gazos-Lodo clay loams, 30 to 50 percent slopes	0.3	0.7	0.2	
Santa Rosa Creek	116	115		Salinas silty clay loam, 2 to 9 percent slopes		0.8	0.2	
Santa Hosa Creek	/11	116		Pock outcrop-Lithic Haploxerolis complex, 30 to /5 percent slope		0.9	0.2	
Sarita Hosa Creek	110	011		Dailitias Sitty ciay toatrit, 0 to 2 percerti stopes	0.4	0.4	2.0	
Santa Rosa Creek	120	10		Diaple stay, 0 to 2 percent stopes		0.1	0.0	
Santa Rosa Creek	121	06		Diable and Cibe clays, 50 to 30 percent stopes		- 6	0.0	
Santa Rosa Creek	120	90		Liable and vide riags, 13 to 30 percent stopes	- 0	0.0	0.1	
Santa Rosa Creek	123	66		Los Ceses roam, ou to ou percent suppes Il odo-Bock outeron complex 30 to 75 percent slones		1.1	0.1	
Santa Rosa Creek	124	63		Lodo clav loam. 50 to 75 percent slopes		0.3		Headwaters
Santa Rosa Creek	125	94		Diablo-Lodo complex, 15 to 50 percent slopes	0.2	0.7	0.1	
Santa Rosa Creek	126	95 198		Salinas silty clay loam, 2 to 9 percent slopes		0.5	0.1	
Santa Rosa Creek	127	96		Salinas silty clay loam, 0 to 2 percent slopes		0.0	_	Perry Creek
Santa Rosa Creek	128	97		Los Osos-Diablo complex, 9 to 15 percent slopes	0.2	0.7	0.1	
Santa Rosa Creek	129	98		Diablo and Cibo clays, 15 to 30 percent slopes		0.1	0.1	
Santa Rosa Creek	130	100		Salinas silty clay loam, 0 to 2 percent slopes	0.4	0.3	0.1	
Santa Rosa Creek	131	101		Santa Lucia shaly clay loam, 30 to 50 percent slopes		1.0	0.1	
Santa Hosa Creek	132	102	165	Los Usos-Ulablo complex, 30 to 50 percent slopes		0.3		-
Santa Hosa Creek	133	103	131	Diable and Cibo clays, 15 to 30 percent stopes	0.4	0.3	0.1 Pe	Perry Creek
Santa Doca Creek	1.24	105	120	Diable and Cibe clays 20 to 50 normant clanae		0.4	0.1	
Santa Doca Creek	901	901	107	Priable and Club clays, 30 to 30 percent slopes		- 0		
Santa Roca Creek	137	107	145	Orbrey clay, 0 to 2 percent supes Gazoe-I odo clav loame 50 to 75 percent clones		0.0	0.1	
Santa Rosa Creek	138	108		Los Osos-Lodo complex: 30 to 75 percent slopes		1.1	0.1	
Santa Rosa Creek	139	109	128	Cropley clay. 2 to 9 percent slopes		0.2	0.1	
Santa Rosa Creek	140	110		Los Osos-Diablo complex. 15 to 30 percent slopes		0.6	0.1	
Santa Rosa Creek	141	111		Cropley clay, 2 to 9 percent slopes		0.1	0.1	
Santa Rosa Creek	142	112	164	Los Osos-Diablo complex, 15 to 30 percent slopes		0.6	0.1	
Santa Rosa Creek	143	113	127	Cropley clay, 0 to 2 percent slopes		0.0	0.1	
	1 15							

Watershed	Soil Map Unit ID	Soil Ma Drainage ID Symbol	Soil Map Unit Symbol		Acres	RUSLEZ Predicted Annual Soil Loss (tons/acre/year)	Total Predicted Annual Soil Loss (tons)	Comment
Santa Rosa Creek	146							
Santa Rosa Creek	147	84	127	Cropley clay, 0 to 2 percent slopes	0.5	0.2		
Santa Rosa Creek	148	114	182	Nacimiento-Calodo complex, 50 to 75 percent slopes	0.1	1.2	0.1	North Fork Santa Rosa
Santa Rosa Creek	149	115	198	Salinas silty clay loam, 2 to 9 percent slopes	0.3	0.3	0.1	
Santa Rosa Creek	150	116	165	Los Osos-Diablo complex, 30 to 50 percent slopes	0.1	1.1	0.1	
Santa Rosa Creek	151	75	206	Santa Lucia very shaly clay loam, 9 to 15 percent slopes	0.2	0.4		
Santa Rosa Creek	152	76	129	Diablo clay, 5 to 9 percent slopes	0.9	0.1		Perry Creek
Santa Rosa Creek	153			Gazos-Lodo clay loams, 30 to 50 percent slopes	0.4	0.2	0.1	
Santa Rosa Creek	154		89 133	Diablo-Lodo complex, 15 to 50 percent slopes	0.2	0.3	0.1	
Santa Rosa Creek	155		89 195	Rock outcrop-Lithic Haploxerolls complex, 30 to 75 percent slope	0.2	0.7	0.1	
Santa Rosa Creek	156	75	119	Cieneba-Millsap loams, 30 to 75 percent slopes	0.1	0.9	0.1	
Santa Rosa Creek	157	123	131	Diablo and Cibo clays, 15 to 30 percent slopes	0.2	0.4	0.1	
Santa Rosa Creek	158	121	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	0.1	0.8	0.1	
Santa Rosa Creek	159	75	151	Henneke-Rock outcrop complex, 15 to 75 percent slopes	0.1	0.5	0.1	North Fork Santa Rosa Creek
Green Valley Creek	160	159	129	Diablo clay, 5 to 9 percent slopes	0.8	0.1		
Santa Rosa Creek	161	122	165	McMullin-Rock outcrop complex, 50 to 75 percent slopes	0.1	0.8		North Fork Santa Rosa Creek
Santa Rosa Creek	162	123	154	Lompico-McMullin loams, 30 to 75 percent slopes	0.1	0.8		
Santa Rosa Creek	163	89	133	Diablo-Lodo complex, 15 to 50 percent slopes	0.2	0.3	0.0	
Santa Rosa Creek	164			Salinas silty clay loam, 0 to 2 percent slopes	0.2	0.2	0.0	
Santa Rosa Creek	165	91	91 165	Los Osos-Diablo complex, 30 to 50 percent slopes	0.3	0.2	0.0	
Santa Rosa Creek	166			Los Osos loam, 30 to 50 percent slopes	0.2	0.2		
Santa Rosa Creek	167		163	Los Osos-Diablo complex, 9 to 15 percent slopes	0.1	0.5		
Santa Rosa Creek	168	122	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	0.3	0.1	0.0	
Santa Rosa Creek	169	110		Diablo-Lodo complex, 15 to 50 percent slopes	0.3	0.1		
Santa Rosa Creek	170	111	143	Gazos-Lodo clay loams, 15 to 30 percent slopes	0.1	0.3		Fiscalini Creek
Santa Rosa Creek	171	112	165	McMullin-Rock outcrop complex, 50 to 75 percent slopes	0.1	0.4		North Fork Santa Rosa Creek
Santa Rosa Creek	172	113	132	Diablo and Cibo clays, 30 to 50 percent slopes	0.3	0.1		
Santa Rosa Creek	173	93	198	Salinas silty clay loam, 2 to 9 percent slopes	0.3	0.1		
Santa Rosa Creek	174	94	162	Lompico-McMullin complex, 50 to 75 percent slopes	0.2	0.2		North Fork Santa Rosa
Santa Rosa Creek	175	123	133	Diablo-Lodo complex, 15 to 50 percent slopes	0.1	0.2		
Santa Rosa Creek	176	121	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	0.1	0.2		
Santa Rosa Creek	177		197	Salinas silty clay loam, 0 to 2 percent slopes	0.7	0.0		
Green Valley Creek	178	159	132	Diablo and Cibo clays, 30 to 50 percent slopes	0.2	0.2		Perry Creek Headwaters
Santa Rosa Creek	180	123		Los Osos loam, 5 to 9 percent slopes	0.1	0.2		
Green Valley Creek	181	159	127	Cropley clay, 0 to 2 percent slopes	1.2	0.0		
Santa Rosa Creek	182	91	198	Salinas silty clay loam, 2 to 9 percent slopes	0.6	0.0		
Santa Rosa Creek	183	93	127	Cropley clay, 0 to 2 percent slopes	0.1	0.2		
Santa Rosa Creek	184	94	128	Cropley clay, 2 to 9 percent slopes	0.1	0.2		
Santa Rosa Creek	185	121	159	Los Osos loam, 9 to 15 percent slopes	0.2	0.1		
Santa Rosa Creek	186	100	127	Cropley clay, 0 to 2 percent slopes	0.6	0.0		
Santa Rosa Creek	187	109	127	Cropley clay, 0 to 2 percent slopes	0.3	0.1		
Santa Rosa Creek	188	96	158	Los Osos loam, 5 to 9 percent slopes	0.1	0.2		
Santa Rosa Creek	189	97	127	Cropley clay, 0 to 2 percent slopes	0.2	0.1		
Santa Rosa Creek	190	107	128	Cropley clay, 2 to 9 percent slopes	0.1	0.1		
Santa Rosa Creek	191		164	Los Osos-Diablo complex, 15 to 30 percent slopes	0.1	0.2		
Santa Rosa Creek	194	102	170	Marimel sitty clay loam, drained	0.2	0.1	0.0	
Santa Rosa Creek	195	101	144	Gazos-Lodo clay loams, 30 to 50 percent slopes	0.2	0.0	0.0	
Santa Rosa Creek	196	105	197	Salinas silty clay loam, 0 to 2 percent slopes	0.1	0.0	0.0	
Santa Rosa Creek	197		107 162	Los Osos-Diablo complex, 5 to 9 percent slopes	0.1	0.1	0.0	

APPENDIX J

PREDICTED SOIL LOSS BY BLUE-LINE STREAM DRAINAGES AND OTHER DRAINAGES WITHIN THE UPPER SANTA ROSA CREEK WATERSHED

Results from RUSLE2 analysis

PREDICTED SOIL LOSS BY BLUE-LINE STREAM DRAINAGES AND OTHER DRAINAGES WITHIN THE UPPER SANTA ROSA CREEK WATERSHED

Drainage ID	Watershed	COMMENTA ROSA		Predicted Soil Loss (T/Ac/Yr)
	Santa Rosa Creek	oonninent	679.40	
	Santa Rosa Creek		530.35	
	Santa Rosa Creek		453.31	837.36
	Santa Rosa Creek		325.10	
	Santa Rosa Creek		271.91	343.13
	Santa Rosa Creek		102.08	195.99
			1360.53	
	Santa Rosa Creek	Curti Creek		2338.04
	Santa Rosa Creek		39.96	
	Santa Rosa Creek		26.11	43.76
	Santa Rosa Creek		81.45	
	Santa Rosa Creek		164.26	
	Santa Rosa Creek		68.82	205.64
	Santa Rosa Creek		17.61	28.55
	Santa Rosa Creek		313.91	368.20
	Santa Rosa Creek		766.66	
	Santa Rosa Creek		494.10	
	Santa Rosa Creek		12.42	
	Santa Rosa Creek		33.43	
	Santa Rosa Creek		164.90	760.35
	Santa Rosa Creek		35.33	
	Santa Rosa Creek		7.90	
	Santa Rosa Creek		17.32	44.05
	Santa Rosa Creek		143.80	688.74
	Santa Rosa Creek		14.96	
	Santa Rosa Creek		53.82	243.05
	Santa Rosa Creek	North Fork Santa Rosa Creek	27.05	
	Santa Rosa Creek	North Fork Santa Rosa Creek	1667.17	5161.38
	Santa Rosa Creek	North Fork Santa Rosa Creek	1252.86	
	Santa Rosa Creek	Headwater	1194.95	4358.87
	Santa Rosa Creek		113.23	76.63
	Santa Rosa Creek		29.25	
	Santa Rosa Creek		23.80	
	Santa Rosa Creek		21.16	
	Santa Rosa Creek		22.31	62.85
	Santa Rosa Creek		23.45	
	Santa Rosa Creek		65.30	
	Santa Rosa Creek		48.12	
	Santa Rosa Creek		17.68	
	Santa Rosa Creek		26.89	
	Santa Rosa Creek		13.30	
	Santa Rosa Creek		16.99	
	Santa Rosa Creek		30.13	
	Santa Rosa Creek		26.19	
	Santa Rosa Creek		90.86	
	Santa Rosa Creek		9.20	
	Santa Rosa Creek		49.90	
	Santa Rosa Creek		18.13	
	Santa Rosa Creek		25.08	
	Santa Rosa Creek		17.44	
	Santa Rosa Creek		13.71	17.68
	Perry Creek		122.08	
52	Perry Creek		296.78	726.07

Drainage ID		Comment	Drainage Acres	Predicted Soil Loss (T/Ac/Yr)
53	Perry Creek	Fiscalini Creek	747.65	1894.01
54	Perry Creek	Fiscalini Creek	371.93	785.50
55	Perry Creek	Fiscalini Creek	471.60	1091.72
56	Perry Creek		1082.23	1588.46
57	Perry Creek		421.34	615.71
	Perry Creek		576.42	1120.53
	Perry Creek		1443.32	1680.86
	Perry Creek		387.02	388.00
	Perry Creek		127.29	210.39
	Perry Creek		647.73	1346.72
	Perry Creek		370.45	436.29
	Perry Creek		166.52	
	Perry Creek		16.34	
	Perry Creek		651.24	
	Perry Creek		217.60	
	Perry Creek		22.73	
	Perry Creek		224.69	327.69
	Perry Creek		107.18	194.89
	Perry Creek		404.11	379.69
	Perry Creek		852.72	1542.29
	Perry Creek		346.76	
	Perry Creek		230.77	420.53
	Santa Rosa Creek		183.20	255.30
	Santa Rosa Creek		110.83	177.73
	Santa Rosa Creek		199.65	
	Santa Rosa Creek		230.62	250.34
	Santa Rosa Creek		429.27	556.78
	Santa Rosa Creek		56.43	
	Santa Rosa Creek		50.28	
	Santa Rosa Creek		12.80	
	Santa Rosa Creek		19.35	
	Santa Rosa Creek		45.01	63.38
	Santa Rosa Creek		1.27	0.78
	Santa Rosa Creek		4.66	
	Santa Rosa Creek		43.53	103.30
	Santa Rosa Creek		1.48	
	Santa Rosa Creek		91.99	
	Santa Rosa Creek		7.78	
	Santa Rosa Creek		12.76	
	Santa Rosa Creek		0.34	
	Santa Rosa Creek		13.68	
	Santa Rosa Creek		25.60	
	Santa Rosa Creek		1.20	
	Santa Rosa Creek		17.76	
	Santa Rosa Creek		13.22	
	Santa Rosa Creek		64.74	
	Santa Rosa Creek		5.68	
	Santa Rosa Creek		49.36	
	Santa Rosa Creek		31.73	
			31.73	
	Santa Rosa Creek			
104 105	Santa Rosa Creek Santa Rosa Creek Santa Rosa Creek Santa Rosa Creek		1.03 1.69 12.56 4.68	

Drainage ID	Watershed	Comment	Drainage Acres	Predicted Soil Loss (T/Ac/Yr)
107	Santa Rosa Creek		23.17	50.40
108	Santa Rosa Creek		18.60	35.62
109	Santa Rosa Creek		4.30	8.49
110	Santa Rosa Creek		9.71	11.95
111	Santa Rosa Creek		7.95	25.69
112	Santa Rosa Creek		4.91	22.66
113	Santa Rosa Creek		29.55	40.57
114	Santa Rosa Creek		24.85	15.55
115	Santa Rosa Creek		12.47	8.75
116	Santa Rosa Creek		60.67	42.55
117	Santa Rosa Creek		1.99	1.04
	Santa Rosa Creek		33.19	24.64
119	Santa Rosa Creek		95.07	136.64
	Santa Rosa Creek		218.68	303.22
121	Santa Rosa Creek		438.47	848.23
122	Santa Rosa Creek		58.65	158.15
123	Santa Rosa Creek		106.92	144.99
	Perry Creek		109.15	70.28
	Perry Creek		101.52	104.13
	Perry Creek		10.98	7.05
	Perry Creek		226.57	442.62
	Perry Creek		136.32	169.47
	Perry Creek		142.32	105.15
	Perry Creek		148.32	74.77
	Perry Creek		45.67	7.64
	Perry Creek		142.96	
	Perry Creek		99.95	132.78
	Perry Creek		202.00	33.12
	Perry Creek		41.93	78.35
	Perry Creek		15.37	10.23
	Perry Creek		29.12	9.25
	Perry Creek		10.52	12.62
	Perry Creek		104.70	162.02
	Perry Creek		68.84	131.49
	Perry Creek		59.55	133.89
	Perry Creek		48.97	85.60
	Perry Creek		118.61	146.79
	Perry Creek		361.06	
	Perry Creek		146.90	206.87
	Perry Creek		192.89	
	Perry Creek		184.44	233.89
	Perry Creek		143.92	80.08
	Perry Creek		147.37	168.56
	Perry Creek		71.98	
	Perry Creek		66.65	
	Perry Creek		242.09	
	Perry Creek		252.79	
	Perry Creek		244.86	
	Perry Creek		172.25	
	Perry Creek		29.35	
	Perry Creek		143.06	
	Perry Creek		98.22	161.67

APPENDIX K

PICTURES OF EROSION EXAMPLES OCCURRING THROUGHOUT THE SANTA ROSA CREEK WATERSHED

Pictures of erosion occurring in the Green Valley Creek sub-watershed were taken from State Highway 46; Upper Santa Rosa Creek subwatershed erosion pictures taken from Santa Rosa Creek Road.

Road erosion along State Highway 46 in Perry Creek Watershed.

Road erosion along State Highway 46 in Perry Creek Watershed.

Road erosion along State Highway 46 in Perry Creek Watershed.

Rill and sheet erosion occurring in Perry Creek Watershed.

Rill, sheet, and ephemeral gully erosion occurring in Perry Creek Watershed.

Headcutting in upper portions of Green Valley Creek along State Highway 46.

Ephemeral gullies highly impacted with cattle grazing trails in lower Perry Creek Watershed.

Gullies located near Coast Union High School in Upper Santa Rosa Creek sub-watershed.

Excavated site located in foothills of Upper Santa Rosa Creek sub-watershed.

Bianchi Quarry, located in foothills of Upper Santa Rosa Creek sub-watershed,

along Santa Rosa Creek Road.

Stream bank erosion in oxbow area of Santa Rosa Creek in the upper watershed.

Gullies forming on stream bank of Santa Rosa Creek in the upper watershed.

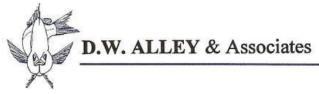
Ephemeral gullies on grazed site in Upper Santa Rosa Creek sub-watershed.

Stream bank erosion on Santa Rosa Creek in upper watershed.

Upslope road erosion in upper watershed along Santa Rosa Creek Road.

Upslope road erosion in upper watershed along Santa Rosa Creek Road. Site underneath tree canopy and would not have been mapped using GIS and aerial imagery.

Landslide or excavated site in headwaters of Upper Santa Rosa Creek sub-watershed.


Sheet erosion and hummocky topography typical of landslides in headwaters of

Upper Santa Rosa Creek sub-watershed.

APPENDIX L

SANTA ROSA CREEK WATERSHED FISHERIES AND HYDROLOGIC ASSESSMENT

Written by Don Alley, Fisheries Biologist

SANTA ROSA CREEK FISHERY SUMMARY, HABITAT CONDITIONS, WATERSHED MANAGEMENT GUIDELINES AND ENHANCEMENT GOALS, 2008

Upper Canyon Sampling Site in October 2006

Prepared For the

Land Conservancy of San Luis Obispo County 743 Pacific Street, San Luis Obispo, CA 93401

Prepared by

D.W. ALLEY & Associates, aquatic biology P.O. Box 200, Brookdale, CA 95007-0200

Project Number 211-01

July 2008

Table of Contents

RECOMMENDATIONS AND ENHANCEMENT GOALS TO PROTECT AND	
IMPROVE HABITAT FOR STEELHEAD AND TIDEWATER GOBY	8
Water Temperature Enhancement Goals	8
Sediment Recommendations and Enhancement Goals	. 10
Instream Wood Recommendations and Enhancement Goals	. 11
Streamflow Recommendations and Enhancement Goals	. 12
Dissolved Oxygen Recommendations and Enhancement Goals for Steelhead in the	
Stream and Lagoon	
STEELHEAD ECOLOGY	
Migration	
Spawning.	
Rearing Habitat	
Overwintering Habitat	
TIDEWATER GOBY ECOLOGY	. 21
CURRENT RESEARCH ON SALMONID HABITAT AND TRENDS IN JUVENILE	22
POPULATION SIZE	
Data Collection Program.	
Key Steelhead Density and Population Trends in Santa Rosa Creek	. 24
Key Results of Habitat Analysis in Santa Rosa Creek, with Recommended Management Guidelines	12
Recommended Water Temperature Enhancement Goals and Previous Success in	.42
Meeting These Goals	. 53
Recommended Oxygen Concentration Enhancement Goals in the Lagoon and Previous	
Success in Meeting These Goals	. 55
Recommended Streamflow to Insure Upstream Adult Steelhead Passage and	
Downstream Kelt Passage to the Estuary	. 57
Recommended Streamflow Guideline to Insure Steelhead Smolt Passage to the	
Monterey Bay	. 58
Recommended Streamflow Guidelines to Maintain Steelhead and Tidewater Goby	
Habitat Through the Dry Season of Sandbar Closure and the Influence of Cambria	
CSD Well Pumping Upon Lagoon Inflow	
Extent of Anadromy	
LIMITING FACTORS ASSESSMENT	
Introduction	
Water Temperature as a Limiting Factor to Juvenile Rearing	
Sediment as a Limiting Factor	
Instream Wood as a Limiting Factor	
Streamflow as a Limiting Factor for Rearing of Juvenile Steelhead	
Streamflow as a Limiting Factor in Adult, Kelt and Smolt Passage	
Benefits of a Properly Functioning Riparian Zone	
GROUNDWATER HYDROLOGY	. //
	00
LAND USES	. 80

NON-AGRICULTURAL WATER CONSERVATION PROGRAMS AND	
RECOMMENDATIONS	82
Information and Incentives Provided by the Cambria Community Services	82
Information and Incentives Provided by the California American Water Company	84
Information and Incentives Provided by the Soquel Creek Water District	86
WATER CONSERVATION AND PROTECTIVE WATER QUALITY	
RECOMMENDATIONS FOR AGRICULTURAL LAND USES	88
Background Information for Water Conservation and Water Quality Measures on	
Grazing Land	
Background Information for Water Conservation Measures for Vineyard Lands	94
Background Information for Water Conservation Measures in Orchards and Other	
Croplands	96
APPENDIX A. MEASURMENT AND TRENDS IN HABIAT CONDITIONS AND	
JUVENILE STEELHEAD DENSITIES, WITH RECOMMENDATIONS	
METHODS	
Determining Reach Boundaries in Santa Rosa Creek	
Classifying Habitat Types and Measuring Habitat Characteristics	
Measuring Habitat Parameters	
Fish Sampling in Lagoon Habitat	
Fish Sampling in Stream Habitat	
Measuring Juvenile Steelhead Densities at Stream Sampling Sites	
Measuring Juvenile Steelhead Densities in Reaches	
Estimating the Adult Index	
RESULTS	
Juvenile Steelhead Site Densities, Juvenile Population Estimates and Adult Indices	110
Trends in Habitat Change Between 1994 and 1998	
Trends in Habitat Change Between 1998 and 2002	
Trends in Habitat Change Between 2002 and 2006	
Comparison of Habitat Conditions in Reaches Between 1994 and 2006	
Changes in Tree Canopy Closure Between 1994 and 2006	147
Water Temperature Monitoring at Stream Sites in 2003–2006 and Management	1 477
Guidelines	
Lagoon Water Temperature Monitoring and Management Guidelines	163
Effects of Stream Inflow Upon Lagoon Size, Depth and Habitat for Steelhead and	100
Tidewater Goby, with Management Guidelines	
Dissolved Oxygen Guidelines and Measurements in Santa Rosa Lagoon	
Adult Steelhead Passage With Streamflow Management Guidelines	
Extent of Anadromy	192
Timing of Lagoon Sandbar Closure and Its Effect on Out-Migration of Steelhead	105
Smolts, with Management Guidelines APPENDIX B. WATER TEMPERATURE AND OXYGEN TOLERANCES FOR	
CENTRAL COAST STEELHEAD	
Water Temperature Considerations	
Supporting Evidence For High Temperature Tolerance in Steelhead	
Oxygen Considerations for Steelhead	
Supporting Evidence for Low Oxygen Tolerance by Steelhead	200

APPENDIX C. HABITAT MAPS FROM THE CDFG BASIN PLANNING AND	
HABITAT MAPPING PROJECT.	. 202
REFERENCES	. 213

LIST OF TABLES AND FIGURES

23
25
26
27
28
. 29
30
31
32
33
34
35
36
37
•
38
•
39
41
43
44
45

Figure 17. Measured Streamflow in Fall at Sampling Sites in Santa Rosa Creek, 1998-
2006
Figure 18. Escape Cover Index for Pool Habitat in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals, 1998-2006
Figure 19. Percent Fines in Pools in Reaches of Santa Rosa Creek at Four-Year Intervals,
1998-2006
Figure 20. Percent Fines in Step-Runs and Runs in Reaches of Santa Rosa Creek at Four- Year Intervals, 1998-2006
Figure 21. Substrate Embeddedness in Step-Runs and Runs in Reaches of Santa Rosa
Creek at Four-Year Intervals, 1998-2006
Figure 22. Substrate Embeddedness in Pools in Reaches of Santa Rosa Creek at Four-
Year Intervals, 1998-2006
Table 5. Assessment of Limiting Factors for Steelhead Salmon in Mainstem Santa Rosa
Creek
Figure 23. Relationship between percent embryo survival and geometric mean diameter
of the spawning substrate
Figure 24. Relationship between average percent fry emergence survival and
percentage of 1-3 mm sand
Table A1. Defined Reaches on Santa Rosa Creek from Channel Mile 0.5 (Windsor
Boulevard) to Channel Mile 13 (Mora Creek Confluence) That Provided Surface
Flow in Fall, 2006
Figure A1. Annual total Juvenile Steelhead Densities at Lower Valley Santa Rosa Creek
Sites, 1994-2006
Figure A2. Annual Young-of-the-Year Steelhead Densities at Lower Valley Santa Rosa
Creek Sites, 1997-2006112
Figure A3. Annual Total Juvenile Steelhead Densities at Upper Canyon Santa Rosa
Creek Sites, 1994-2006113
Figure A4. Annual Young-of-the-Year Steelhead Densities at Upper Canyon Santa Rosa
Creek Sites, 1997-2006114
Figure A5. Annual Size Class II/III Steelhead Densities at Lower Valley Santa Rosa
Creek Sites, 1994-2006116
Figure A6. Annual Size Class II/III Steelhead Densities at Upper Canyon Santa Rosa
Creek Sites, 1994-2006
Figure A7. Average Site Density for Size Class II/III Steelhead Juveniles in the Lower
Valley and Upper Canyon of Santa Rosa Creek, 1995-2006
Figure A8. Annual Rainfall Measured at the Cambria Wastewater Treatment Plant in the
Lower Santa Rosa Creek Watershed, 1986-2007
Figure A9. Average Site Density for Total Juvenile Steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1995-2006
Figure A10. Average Site Density for Young-of-the-Year Steelhead in the Lower Valley
and Upper Canyon of Santa Rosa Creek, 1997-2006
Table A2. Average Juvenile Steelhead Densities in Multiple Watersheds Along the
Central California Coast in 2006 (from Alley 2007a)
Table A3. Santa Rosa Creek Sampling Sites Rated by Fall Density of Smolt-Sized (=>75
mm SL) Steelhead Juveniles in 2004–2006
Table A4. Rating of Steelhead Rearing Habitat For Small Central Coast Streams.* 123

Table A5. Summary Table of Steelhead Size Class Site Densities, Reach Densities,Juvenile Production and Adult Indices in Mainstem Santa Rosa Creek, 1994–2006.	
Figure A11. Annual Population Sizes of Steelhead Young-of-the-Year, Yearling and Size	125
Class II/III Juveniles in Santa Rosa Creek in 1994 and 1998-2006.	126
Figure A12. Annual Index of Adult Steelhead Returns to Santa Rosa Creek, Based on Juvenile Densities in 1994 and 1998-2006.	128
Figure A13. Reaches of Santa Rosa Creek, San Luis Obispo County	130
Figure A14. Measured Streamflow in Fall at Sampling Sites in Santa Rosa Creek, 1998-2006.	131
Figure A15. Average Mean Pool Depth in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals, 1994-2006.	
Figure A16. Average Maximum Pool Depth in Habitat Typed Segments of Reaches in	152
Santa Rosa Creek at Four-Year Intervals, 1994-2006.	133
Figure A17. Escape Cover Index for Pool Habitat in Habitat Typed Segments of Reaches	
in Santa Rosa Creek at Four-Year Intervals (1998-2006).	136
Figure A18. Tree Canopy Closure in Fall in Wetted Reaches of Santa Rosa Creek in	
Habitat Typed Segments at Four-Year Intervals (1994-2006).	137
Figure A19. Substrate Embeddedness in Step-Runs and Runs in Reaches of Santa Rosa Creek at Four-Year Intervals (1998-2006)	120
Figure A20. Percent Fines in Step-Runs and Runs in Reaches of Santa Rosa Creek at	139
Four-Year Intervals (1998-2006).	140
Figure A21. Substrate Embeddedness in Pools in Reaches of Santa Rosa Creek at Four-	
Year Intervals (1998-2006).	143
Figure 22. Percent Fines in Pools in Reaches of Santa Rosa Creek at Four-Year Intervals (1998-2006)	144
Table A6. Comparison of Dry-Season Water Temperatures at Lower Valley and Upper	
Canyon Fish Sampling Sites from 1 July through 10 September 2006 Using,	
Continuous 30-Minute Interval Measurements.	148
Table A7. Comparison of Dry-Season Water Temperatures at Lower Valley and Upper	
Canyon Fish Sampling Sites from 1 July through 10 September 2005 Using,	140
Continuous 30-Minute Interval Measurements Table A8. Comparison of Dry-Season Water Temperatures at Lower Valley and Upper	149
Canyon Fish Sampling Sites from 1 July through 10 September 2004, Using	
Continuous 30-Minute Interval Measurements.	150
Figure A23. Santa Rosa Creek Water Temperature (Degrees C) at Site 0a, May–October 2004.	
Figure A24. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, May–October 2004	
Figure A25. Santa Rosa Creek Water Temperature (Degrees C) at Site 3b, May–October 2004	
Figure A26. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, May–October 2004	
Figure A27. Santa Rosa Creek Water Temperature (Degrees C) at Site 0a, June–October 2005.	
Figure A28. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, June–October 2005	

Figure A29. Santa Rosa Creek Water Temperature (Degrees C) at Site 3b, June–October 2005.	159
Figure A30. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, June–October 2005.	160
Figure A31. Santa Rosa Creek Water Temperature (Degrees C) at Site 0a, June–October 2006.	161
Figure A32. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, June–October 2006.	162
Figure A33. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, June–October 2006.	163
Figure A34. Water Temperature (°C) Above the Trestle in Soquel Lagoon, 0.5 feet from the Bottom, 29 May-30 September 2007.	164
Figure A35. Water Temperature at Dawn at Four Lagoon Stations Near the Bottom and Upstream in Soquel Creek in 2007.	165
Figure A36. Water Temperature in the Afternoon at Four Soquel Lagoon Stations Near the Bottom in 2007	166
Table A9. Daily Water Temperature Fluctuations in Santa Rosa Lagoon Near the Bottom in 2001, 2002, 2005 and 2006.	167
Figure A37. Water Temperature (°C) at Station 1 in Santa Rosa Lagoon in 2001	168
Figure A38. Water Temperature (°C) at Station 2 in Santa Rosa Lagoon in 2001	169
Figure A39. Water Temperature (°C) at Station 1 in Santa Rosa Lagoon in 2002	170
Figure A40. Water Temperature (°C) at Station 2 in Santa Rosa Lagoon in 2002	171
Figure A41. Water Temperature (°C) at Station 1 in Santa Rosa Lagoon in 2005	172
Figure A42. Water Temperature (°C) at Station 2 in Santa Rosa Lagoon in 2005	172
Figure A43. Water Temperature (°C) at Station 1 in Santa Rosa Lagoon in 2006	173
Figure A44. Water Temperature (°C) at Station 2 in Santa Rosa Lagoon in 2006	173
Table A10. Summary of Monitoring Days When Water Temperature Guidelines Near the	
Bottom at Dawn Not Met on Two-Week Intervals in Santa Rosa Lagoon, 1993–	
2004	177
Figure A45. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	
Rosa Lagoon in 1997.	178
Figure A46. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	170
Rosa Lagoon in 1998.	178
Figure A47. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	170
Rosa Lagoon in 1999.	179
Figure A48. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	1/)
Rosa Lagoon in 2000.	179
Figure A49. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	1/)
Rosa Lagoon in 2001.	190
	100
Figure A50. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	100
Rosa Lagoon in 2002.	180
Figure A51. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	101
Rosa Lagoon in 2003.	181
Figure A52. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	101
Rosa Lagoon in 2004.	181
Figure A53. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa	102
Rosa Lagoon in 2005.	182

Table A11. Streamflow Measurements Taken Immediately Upstream of Santa Rosa	
Lagoon (Except 2005–2006) Prior to Rainfall, Including the Minimum Measured for	
the Dry Season	84
Table A12. Record of Days When Oxygen Guidelines in Santa Rosa Lagoon Were Not	
Met During Two-Week Monitorings at Dawn With the Sandbar Closed, 1992–2004,	
and Number of Steelhead and Tidewater Gobies Captured, 1993–20071	86
Figure A54. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa	
Lagoon, 1997–1999	87
Figure A55. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa	
Lagoon, 1997–1999	88
Figure A56. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa	
Lagoon, 2000–2001	88
Figure A57. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa	
Lagoon, 2000–2001	89
Figure A58. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa	
Lagoon, 2002–2003	89
Figure A59. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa	
Lagoon, 2002–2003	90
Figure A60. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa	
Lagoon, 2004–2005	90
Figure A61. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa	
Lagoon, 2004–2005	91
Table A13. Historical Record of Sandbar Closure at Santa Rosa Lagoon (1993–2007) and	
San Simeon Lagoon (1991–1992)1	96

RECOMMENDATIONS AND ENHANCEMENT GOALS TO PROTECT AND IMPROVE HABITAT FOR STEELHEAD AND TIDEWATER GOBY

The following enhancement goals are based on experienced gained from our sampling Santa Rosa Creek and for juvenile steelhead (*Oncorhynchus mykiss*) (until fall 2006) and its lagoon for primarily tidewater goby (*Eucyclogobius newberryi*) (until June 2007) for 15 consecutive years and the sampling of three other central coast watersheds for a similar period. Habitat conditions were also monitored annually to help understand the trends in population size. We also conducted a steelhead passage study on lower Santa Rosa Creek in 1993, using the Instream Flow Incremental Methodology (IFIM) (**Alley 1993**). The degree of success for meeting enhancement goals for temperature, streamflow and oxygen are provided in Appendix A. Explanations for the enhancement goals are provided in Appendices A and B. The trend in the juvenile steelhead population is provided in Appendix A and summarized in the Current Research section of the main body of the report.

Water Temperature Enhancement Goals

- 1. The recommended water temperature enhancement goal during the important growth period of April and May for steelhead in stream of Santa Rosa Creek, upstream of the lagoon, is to maintain stream temperature below 20°C (68°F).
- 2. The recommended water temperature enhancement goal for lower valley reaches of Santa Rosa Creek to protect steelhead habitat should be to maintain the average daily temperature at 20°C (68°F) or less, with a 23°C (73.4°F) daily maximum from June 1 to October 15.
- 3. The recommended water temperature enhancement goal for lower valley reaches of Santa Rosa Creek to protect steelhead habitat should be to maintain the average daily temperature at 20°C (68°F) or less, with a 22°C (71.6°F) maximum daily temperature from June 1 to October 15.
- 4. Regarding Santa Rosa Lagoon for the period of sandbar closure, the water temperature enhancement goals to provide steelhead habitat are as follows:
- The 7-day rolling average water temperature within 0.25 m of the bottom should be 19°C or less.
- Maintain the daily maximum water temperature below 25°C (77°F).
- If the maximum daily water temperature should reach 26.5°C (79.5°F), it may be lethal and should be considered the lethal limit.
- Water temperature at dawn near the bottom for at least one of the two monitoring stations (adjacent Moonstone parking lot or Shamel Park) should be 16.5°C (61.7°F) or less on sunny days without morning fog or overcast and 18.5°C (65.3°F) or less on days with morning fog or overcast.

- 5. Maintain a freshwater lagoon of maximum depth during the dry months of summer and fall.
- 6. Protect and enhance the health and extent of existing trees bordering the lagoon that provide shade.
- 7. After sandbar closure, increase the height of the berm sufficiently high to prevent tidal overwash of salt water during the summer and fall lagoon season.
- 8. Maximize summer baseflow through proper watershed management. Important considerations include maximization of water percolation to supply underground aquifers by minimizing impermeable surfaces. Where new housing developments occur, construct water catchment basins to encourage percolation and slow the runoff into the creek. Minimize surface water diversions and groundwater pumping when it draws from the creek underflow.
- 9. Increase native tree densities and stature on the south side of the riparian corridor by planting where they may offer increased stream shading. The most important areas are 1) Reach 0a along vertically eroded bank adjacent to the East-West Ranch property (now owned by the CCSD), 2) Reach 0b along vertically eroded bank across from the high school, 3) upper Reach 1 along vertically eroded bank, 4) middle Reach 2 along vertically eroded bank adjacent to agricultural field and 5) upper Reach 2 where previous instream project occurred, downstream of the Gap. Streambank stabilization work must occur in combination with tree planting. Vertical banks will likely need to be re-configured from their present state prior to tree planting. Trees must be planted in areas that are not likely to be subject to erosive flood flows that would soon wash them away. If trees must be planted a distance from the low flow channel, then they will need to reach heights that will ultimately provide shade. Sycamores offer shading benefits due to their tall stature, wide branching and overhanging qualities. Cottonwoods also offer tall stature. Cattle exclusion fencing may be necessary to allow riparian restoration.
- 10. In order to allow the riparian corridor to recover, construct cattle exclusion fencing and alternative watering troughs in lower valley reaches where cattle now have access to the stream channel. Reaches 1 and 2 are key areas where riparian recovery has been difficult in the past. Provide incentives to landowners to install livestock exclusion fencing along the perimeters of riparian corridors to preserve riparian vegetation and prevent livestock wastes, sediment and other pollutants from entering the stream. In the upper canyon, cattle grazing at heretofore levels of observed intensity appeared to be compatible with the steelhead fishery.
- 11. Through education, residents should be discouraged from cutting riparian trees.
- 12. Through education, residents should be discouraged from cutting downed wood in and adjacent to the stream channel. Inform them of sources of expert consultation to contact when loss of property is a concern.

- 13. The public agency responsible for flood control should be discouraged from cutting seedlings on gravel bars adjacent to the creek and cutting up large wood that serves to trap sediment, scour pools, provide overwintering fish shelter, provide juvenile escape cover and hastens recovery of riparian vegetation. After large floods, tree seedlings must be allowed to regenerate on exposed bars.
- 14. Encourage the California Department of Fish and Game to continue to protect riparian vegetation and tree canopy, to reduce stream and lagoon sedimentation and turbidities, to prevent removal of large trees within the riparian and stream protection zones that provide tree canopy and a source of large wood for the stream channel.
- 15. Continue to monitor water temperature on an annual basis at historical stations used our previous monitoring program in the lagoon and mainstem Santa Rosa Creek.

Sediment Recommendations and Enhancement Goals

- Reduce embeddedness (the amount that larger particles are buried in fine sediment) of cobbles and boulders greater than 250 mm diameter in the streambed to 25% or less. This would allow for hiding places for more juvenile fish under larger rocks and would provide interstitial cracks and crevices for increased aquatic insect production.
- 2. Land use and road construction should be carried out with extreme caution in landslide-prone areas of the watershed, using best management practices to prevent re-activation of old slides and initiation of new ones.
- 3. Follow the erosion-related recommendations in the water conservation chapter regarding water conservation and Protective Water Quality Recommendations for Range and Agricultural Land Uses
- 4. Identify and repair manageable bank failures or landslide toes that are significant sources of chronic fine sediment loads to the Mainstem and tributaries. Repairs should be completed using bioengineering techniques and material, where appropriate. Changes in water flow patterns should be made if existing flow patterns exacerbate slope failures. Habitat enhancement should be incorporated into the engineering design, where feasible. When using riprap, rocks placed at the toe of the bank should be large enough (at least 2.5 feet diameter) to provide escape cover and scour objects. Significant locations of streambank erosion that have been identified for revegetation are 1) Reach 0a along vertically eroded bank adjacent to the East-West Ranch property (now owned by the CCSD), 2) Reach 0b along vertically eroded bank across from the high school, 3) upper Reach 1 along vertically eroded bank, 4) middle Reach 2 along vertically eroded bank adjacent to agricultural field and 5) upper Reach 2 where previous instream project occurred, downstream of the Gap.

- 5. Locations for sediment catchment basins should be identified and developed, where appropriate. Though a limited number of areas may be suitable for sediment catchment basins, they should be used to retain and remove chronic fine sediment loads, where feasible. To make sediment catchment basins successful, each site must have a maintenance plan along with a reliable source of funding to periodically remove the retained sediment. A likely candidate for basins is in middle Reach 2 across a pasture, south of the stream channel.
- 6. Retain wood clusters throughout the watershed to increase channel complexity (pool formation and increased fish cover) and create more steep, constricting riffles adjacent to the wood clusters that have caused bar formation. This will increase spawning habitat in this sediment-laden watershed.
- 7. Take measures to minimize the flashiness of storm runoff, which increases peak flows and encourages streambank erosion. With new developments, include open space with water catchment basins to pond runoff and increase percolation.
- 8. Implement a sediment reduction program for private roads.
- 9. Reduce erosion from unpaved rural roads.
- 10. Promote educational efforts regarding the watershed benefits of properly functioning riparian buffers along watercourses to control erosion and stream sedimentation, in maintaining cool water temperatures and in providing critical fish habitat through recruitment of durable, coniferous, large wood.
- 11. Include urban runoff infiltration basins in all new housing and other developments approved by the County.

Instream Wood Recommendations and Enhancement Goals

- 1. Promote education of property owners to avoid removing streamside trees, which help to stabilize banks during high flows, sieve out smaller wood further upstream than otherwise, provide shade to maintain cooler water temperatures in summer and are a source of large wood. Focus on areas where the riparian corridor fails to provide adequate stream shading.
- 2. Allow wood to remain in the channel after flood events when major amounts of large wood are recruited. Judiciously modify wood clusters when they pose a threat to property, leaving as much in place as possible without cutting it into shorter pieces. It is crucial that crews working with in-channel wood deposits be supervised by personnel knowledgeable in the fishery benefits and risks of large, in-channel wood.
- 3. Have a fishery biologist survey the mainstem of Santa Rosa Creek each spring to map locations of wood clusters that have formed in the channel over the winter.

Contact adjacent landowners, assess the erosion potential of the wood clusters and inform landowners on the value of leaving uncut, large wood in the channel.

- 4. Replace culverts with free-span bridges on tributaries and on the mainstem at Ferrasci Road to allow the free passage of large wood into the mainstem from tributaries during flood events and downstream toward the lagoon.
- 5. Until existing culverts can be replaced, when crews clear jams on the upstream sides, have them move wood through the culverts into the larger downstream channel.

Streamflow Recommendations and Enhancement Goals

- 1. Continue to monitor the juvenile steelhead population to better understand how the juvenile population size is influenced by winter stormflow patterns, baseflow (spring through fall), and rearing habitat quality (water temperature, habitat depth and escape cover from overhanging vegetation, instream wood and unembedded boulders). Population trends should be followed during drought and afterwards. The previous 15 years of monitoring did not include a drought period because it was discontinued before the dry years of 2007 and 2008.
- 2. Re-establish the streamflow gages above the Main Street Bridge and below the Highway 1 Bridge.
- 3. Until the 1993 steelhead passage study is updated, in order to promote upstream adult steelhead spawning migration during the primary spawning season of January 1 April 15, any water diversion or well extraction capable of reducing surface flow should be interrupted during stormflow episodes when streamflow between Perry Creek and Main Street Bridge is less than 60 cfs and streamflow between Main Street Bridge and the bay is less than 35 cfs.
- 4. In dry fall/ winters in which no storms have occurred by January 1, any water diversion or well extraction capable of reducing surface flow should be interrupted from January 1 until the first stormflow. After that, follow the guideline listed above.
- 5. Until the 1993 steelhead passage study is updated, in order to promote outmigration of post-spawning steelhead kelts, water diversion or well extraction capable of reducing surface flow should not resume after a stormflow until the baseflow between storm events is shown to be greater than 15 cfs at the Highway 1 Bridge until May 1, and water extraction should be discontinued if streamflow declines below 15 cfs between the first storm event and May 1.
- 6. Critical instream flow requirements for steelhead passage should be re-calibrated every few years because of the dynamic nature of streambed morphology, particularly in the lower valley. These flow requirements may vary before and

after large flood flows that widen the channel and flatten its cross-sectional profile with sediment, necessitating periodic re-evaluation of fishery needs.

- In order to insure adequate steelhead smolt passage to the Monterey Bay, reduce well pumping along Santa Rosa Creek in order to maximize inflow to the Santa Rosa Creek estuary up to at least 7 cfs with an open sandbar in spring until at least 15 May.
- 8. Maintain stream inflow to Santa Rosa Lagoon at 0.9 cfs or greater through the period of sandbar closure in summer and fall in order to provide tidewater goby habitat in the lower lagoon, to protect the tidewater goby population from extirpation and to maintain steelhead habitat between Shamel Park and Windsor Bridge. Reduce well pumping along Santa Rosa Creek to maximize lagoon inflow up to at least 0.9 cfs during the period of sandbar closure.
- 9. Protect hydraulic continuity (continuous surface flow) throughout the watershed. Prevent the loss of hydraulic continuity in Reaches 0a and 0b through Cambria by reducing groundwater pumping, if necessary.
- 10. Protect and enhance streamflow in spring. The purpose of this recommendation is to encourage water conservation and alternatives to well pumping during salmonid out-migration and during the critical juvenile spring growth period.
- 11. Maximize summer baseflow through water conservation on agricultural and non-agricultural lands. Maximize streamflow into the summer lagoon. Important considerations include maximization of water percolation to supply underground aquifers by minimizing impermeable surfaces. Where new housing and commercial developments are planned, construct water catchment basins to encourage percolation and to slow runoff into the creek. Minimize surface water diversions and groundwater pumping when it draws from the creek underflow. Use drip irrigation when possible. Protect ground cover on grazing lands to slow winter runoff. Install grade controls and sediment catchment basins to stop gullying on agricultural lands. This will slow runoff and maximize percolation into the aquifer.
- 12. Follow the water conservation recommendations in the water conservation chapter regarding water conservation and protective water quality guidelines for range and agricultural land uses.
- 13. Follow the water conservation recommendations in the water conservation chapter regarding water conservation for non-agricultural land uses
- 14. Perennial flow should be maintained down through Reaches 0a and 0b to the lagoon.
- 15. For instream flow concerns with salmonid rearing, install continuous streamflow monitoring stations for the months of May through October to better understand

the gaining and losing of streamflow. These low-flow gages will be less expensive than a year round continuous stream gage. Specific locations may be worked out during the implementation phase.

- 16. In order to maximize the instream flow benefits to fish, water extraction from the stream channel or its underflow for domestic and commercial uses should occur as low in the watershed as possible, where this action is feasible. Water diversions and well pumping should be consolidated where feasible. By removing the water at the lowest point in the system, the maximum length of stream has the maximum streamflow becomes available to aquatic resources for important rearing and growth. The Cambria CSD should be encouraged to assess their operations and to develop a means of municipal water supply that sustains the aquatic and riparian ecosystem within the influence of their wells and preserves perennial streamflow to the lagoon, even during drought.
- 17. Conduct water supply pumping overnight. Streamflow is often the highest during the nighttime hours as evaporation and vegetative transpiration are reduced. This is also the period when fish are relatively inactive and not feeding. During the low-flow summer months, water that is being stored off-channel for use during peak demand periods should be diverted during the hours of 9 p.m. and 5 a.m. The Cambria CSD should assess their operations during low-flow summer months based on this recommendation.
- 18. A streamflow monitoring system should be established with real-time streamflow measurements available at the Cambria CSD website to inform water diverters and the community when water conservation is of greatest importance. Critical seasonal flow values necessary for steelhead migration and rearing habitat should be included with the real-time measurement to inform people when streamflow is inadequate.
- 19. For educational purposes, perform an instream flow analysis on the mainstem of Santa Rosa Creek. The instream flow incremental methodology (IFIM) is used to model fish habitat as a function of streamflow. As a context for this modeling, install 3 continuous streamflow gages in the vicinity of IFIM transects for at least the months of April through October.
- 20. Protect existing and potential refugia in Reaches 1, 2 and 3b–7 from catastrophic events. Purchase fee titles or conservation easements in these reaches to protect instream flow and the riparian corridor.
- 21. Use appropriate methods, such as the development of exceedence probability curves or a rainfall-runoff curve, to predict late summer flow conditions based on winter and spring rainfall amounts and flow conditions. Exceedence probability curves would be based on historic flow data for wet, average, dry, and drought conditions. This information, specifically the data developed for the former County gages at Main Street and Highway 1, can be used to determine the range of flows that could be expected in the low-flow summer and fall months. If

predicted flows are below the critical level to maintain viable rearing habitat for salmonids, measures to reduce water consumption can be initiated by the Cambria CSD and other primary diverters through conservation programs.

Dissolved Oxygen Recommendations and Enhancement Goals for Steelhead in the Stream and Lagoon

1. Maintain the daily dissolved oxygen concentration near the bottom at 5 milligrams/liter or greater, though it does not become critically low and potentially lethal until it is less than 2 mg/l, with the daily minimum occurring near dawn or soon after.

STEELHEAD ECOLOGY

General Life History

In order to understand the factors that limit steelhead salmon, the life history requirements of the species must be described. Steelhead (Oncorhynchus mykiss) are genetically indistinct from rainbow trout and differ only in their behavior. Steelhead exhibit a life cycle similar to other members of the salmon family known as anadromy, in which they develop into adulthood in the ocean and swim to their natal stream to reproduce. Most adults migrate to their home stream in January through early May after 2 years (range of 1-3 years) of feeding and growth over the continental shelf. However, adult steelhead differ from all other salmon species in that some survive the spawning process, return to the ocean and may spawn again the next spawning season. Adult salmon of other species die after they spawn. The hatched young that emerge from the spawning gravel are known as fry and spend 1-2 years as juveniles in their natal, freshwater streams. Once large enough to survive ocean conditions, most make their way to the ocean in late winter and spring, undergoing physiological and coloration changes, a process known as smolting, which allows them to osmoregulate in the saline ocean environment. The more variable life cycle of steelhead has made them more adaptable to habitat changes and more resilient to increased acuteness of natural events (flood and drought) caused by human development and water usage than the simpler life cycle of coho salmon. In addition, steelhead are the only salmon species that can survive their first spawning to spawn in later years.

Migration

Adult steelhead in small coastal streams tend to migrate upstream from the ocean through an open sandbar after several prolonged storms; the migration seldom begins earlier than December and may extend into May if late spring storms develop. Many of the earliest migrants tend to be smaller than those entering the stream later in the season. Adult fish may be blocked in their upstream migration by barriers such as bedrock falls, wide and shallow riffles and occasionally log-jams. Man-made objects, such as culverts, bridge abutments and dams are often significant barriers. The concrete ford at Ferrasci Road between Reaches 0b and 1 had a denil fish ladder through the drainage culvert but may become a passage barrier when logs jam at the upstream entrance to this drainage culvert. Some barriers may completely block upstream migration, but many barriers in coastal streams are passable at higher streamflows. If the barrier is not absolute, some adult steelhead are usually able to pass in most years, since they can time their upstream movements to match peak flow conditions. However, in drought years and years when storms are delayed, natural and man-made barriers can be serious barriers to steelhead spawning migration. Data indicated that in drier years, juvenile steelhead densities tended to increase in the lower valley reaches of Santa Rosa Creek and decrease in the upper canyon (and vice-versa in wetter years), indicating impeded adult passage through shallow riffles in drier years.

Smolts (young steelhead which have physiologically transformed in preparation for ocean life and initiate their migration to the ocean) in local coastal streams tend to migrate

downstream to the lagoon and ocean in March through early June. In streams with lagoons having adequate water quality, young-of-the-year (first year) and yearling (second year) fish may spend several months in this highly productive lagoon habitat and grow rapidly. Santa Rosa Lagoon provided summer steelhead habitat after the wettest winters but was considerably reduced in size in drier years and/or experienced lethally high water temperatures due to tidal overwash, providing steelhead habitat only in the upper portion between Windsor Bridge and Shamel Park. In some small coastal streams, downstream migration can occasionally be blocked or restricted by low flows due primarily to heavy streambed percolation or early season stream diversions. Flashboard dams or early closure of the stream mouth or lagoon by sandbars after milder winters are additional factors, which adversely affect downstream migration to the Monterey Bay. For example, the Santa Rosa Creek sandbar closed for the summer season on 28 March in 1994 after a mild winter, and numerous juvenile smolts that had been trapped in the lagoon after the sandbar closed were observed and some captured (50+) in early June in the lagoon and immediately upstream. In 2008 with the shortage of March and April stormflows and early sandbar closure, numerous smolts and adult steelhead were trapped in the lagoon behind the closed sandbar in mid-April, unable to reach the Bay.

Spawning

Steelhead require spawning sites with gravels (from 1/4" to 3 1/2" diameter) having a minimum of fine material (sand and silt) and with good flows of clean water moving over and through them. Flow of oxygenated water through the redd (nest) to the fertilized eggs is restricted by increased fine materials from sedimentation and cementing of the gravels with fine materials. These restrictions reduce hatching success. In many Central Coast streams, steelhead appear to successfully utilize spawning substrates with high percentages of coarse sand, which probably reduces hatching success. Steelhead that spawn earlier in the winter are more likely to have their redds washed out or buried by winter storms. Steelhead spawning success may be limited by scour from winter storms in some streams. Unless hatching success has been severely reduced, however, survival of eggs and alevins is usually sufficient to saturate the limited available rearing habitat in most reaches of small coastal streams, such as Santa Rosa Creek. The production of young-of-the-year (YOY) fish is related to spawning success, which is a function of the quality of spawning conditions, the pattern of storm events and ease of spawning access to upper reaches of tributaries, where spawning conditions are generally better.

Rearing Habitat

In the lower valley reaches of lower Santa Rosa Creek, downstream of the Gap, and in the sunny portion of lower Reach 3a (**Figure 1b** below), many steelhead require only one summer of residence before reaching smolt size. Except in streams with high summer flow volumes (generally greater than about 0.2 to 0.4 cubic feet per second (cfs) per foot of stream width), steelhead require two summers of residence before reaching smolt size (**Smith 1984**). Our data indicated that this was likely the case for most juveniles inhabiting the upper canyon of Santa Rosa Creek except in years with high spring flows, such as 1998. Smith (**1982a**) found that juvenile steelhead in small central coast tributaries required 2 years to reach smolt size except in flow augmented streams below reservoirs (Uvas, Llagas and Pacheco creeks in the Pajaro River system). Juvenile steelhead are generally identified as YOY and yearlings. The slow growth and often two-year residence time of most Central

Coast juvenile steelhead indicate that any year class of steelhead can be adversely affected by low streamflows or other problems during either of the two years of freshwater residence. A small percent of yearlings may stay a third growing season to become 2+ year-olds before smolting if they spend much of their residence time in poor habitat that slows growth (usually in cooler headwater reaches) or if they have the genetically determined behavior to grow especially large before smolting. Steelhead are considered juveniles unless they have entered the ocean.

Growth of YOY steelhead appears to be regulated by available insect food, although cover (hiding areas, provided by undercut banks, large rocks which are not buried or "embedded" in finer substrate, surface turbulence, etc.) and pool, run and riffle depth are also important in regulating juvenile numbers, especially for larger fish. Densities of yearling and smolt-sized steelhead in small streams, such as Santa Rosa Creek, are usually regulated by water depth and the amount of escape cover during low-flow periods of the year (July-October). In most small coastal streams, availability of this "maintenance habitat" provided by depth and cover appears to determine the number of smolts produced (Alley 2006a; 2006b). Abundance of food (aquatic insects and terrestrial insects that fall into the stream) and fast-water feeding positions for capture of drifting insects in "growth habitat" (provided mostly in spring and early summer) determine the size of these smolts. Aquatic insect production is maximized in unshaded, high gradient riffles dominated by relatively unembedded substrate larger than about 4 inches in diameter.

It was determined from scale analysis of captured steelhead that in warm mainstem portions of the San Luis Obispo and Santa Rosa creeks) (San Luis Obispo County), San Lorenzo River and Soquel Creek watersheds (Santa Cruz County), YOY juvenile steelhead are capable of growing to smolt size their first growing season (Size Class II =>75 mm Standard Length in fall) (Alley 2008a; 2008b). In the San Lorenzo River mainstem, the density of YOY that obtain this size was positively correlated with the mean monthly streamflow for May–September (Alley et al. 2004). Furthermore, it has been shown that the density of slower growing YOY in tributaries of the San Lorenzo River watershed was positively correlated with the minimum annual streamflow (Alley et al. 2004). In Santa Rosa Creek, as in other central Coast streams, water temperature is primarily a food issue. In the lower valley, water temperature is probably not directly lethal except in the lagoon. But higher temperatures increase food demands and restrict steelhead to faster habitats for feeding, especially above 21°C (70°C) (Smith and Li 1983). The lethal level for steelhead would probably be at temperatures above 24–28°C (75-82°F) for several hours during the day, depending on their acclimation temperature (Charlon (1970); Alabaster (1962); MacAfee (1966)).

Kubicek and Price (**1976**) concluded that although temperatures less than 26.5°C (79.7°F) were not assumed to directly cause steelhead mortality in the Big Sulphur Creek drainage (tributary to the Russian River, Mendocino County), temperatures consistently above 20°C (68°F) were assumed to cause sub-lethal stress that could result in decreased fish production and indirect mortality. They noted that juvenile steelhead disappeared from a section of Big Sulphur Creek when hot springs caused summer temperatures to rise above 26°C. *They assumed their monitoring that stations that had temperatures greater than 20°C* (68°F) for less than 50% of the time in any one month were not expected to cause

significant sub-lethal effects in that month, unless that station reached a marginal or lethal maximum temperature.

Charlon (**1970**) found that steelhead acclimated at 24°C (75.2°F) experienced a lethal temperature of 26.35°C (79.4°F). Alabaster (**1962**) found steelhead acclimated to 20°C (68°F) to experience a lethal temperature of 26.6°C (79.9°F). McAfee (**1966**) found steelhead lethal temperatures in the range of 24-29°C (75.2°- 84.2°F) with unspecified acclimation temperatures.

There are many central coast examples of steelhead surviving and growing well at water temperatures above 21°C. Smith and Li (**1983**) found juvenile steelhead selecting fastwater habitat at temperatures of 16–21°C in Uvas Creek, tributary to the Pajaro River. Many examples of steelhead using warm water habitat above 21°C come from coastal lagoons such as Soquel Lagoon (**Alley 2008c**) and Pescadero Lagoon (as high as 26°C and 24°C on a regular basis) (**Smith 1990**) and lower reaches of less shaded drainages, such as the lower valley of Santa Rosa Creek (**Alley 2007**), lower San Luis Obispo Creek (**Alley 2008c**), but only where food is abundant. When food is abundant, growth is actually better at warmer water temperatures because digestive rate is increased, allowing fish to consume and process more food and grow more quickly.

It has been reported that rainbow trout (same species as steelhead but with a freshwater life history pattern) survive temperatures from 0 to 28°C, provided that they are gradually acclimated to higher temperatures and that saturated oxygen conditions exist (**Moyle 1976**). Rainbow trout in Big Sulphur Creek, tributary to the Russian River, are often exposed to stream temperatures in excess of 20°C (**Price et al. 1978**). This is particularly the case in Big Sulphur Creek below Little Geysers Creek where daily minimum temperatures sometimes exceed 20°C. Daily stream temperatures fluctuate up to, and perhaps greater than 28°C in Big Sulphur Creek in summer rainbow trout habitat (**Price et al. 1978**). Steelhead inhabited the Creek, downstream of where these data were collected. More than 100 rainbow trout/ steelhead were observed during snorkeling in pools, runs and riffles on 24 July 1976 in Deer Creek, Tehama County, where water temperature fluctuated daily between 19 and 24° C (**Alley 1977**).

Yearling steelhead usually show a large growth increment in spring with little growth in late summer (**Smith 1982a; Smith 1993, AFS presentation**). Larger steelhead then may smolt as young yearlings in spring after only one previous summer in freshwater. For reaches where yearling steelhead stay a second summer, growth in summer and fall is slight before leaf drop and fall storms (or even negative in terms of weight) as summer flow reductions eliminate fast-water feeding areas and reduce insect production (**Smith 1982a; Hayes et al. 2008**). Our data indicated that in Santa Rosa Creek, relatively few YOY reached a size enabling them to smolt the following spring except primarily in lower valley reaches. A short growth period may occur in late fall and early winter after leaf-drop from riparian trees, after increased streamflow from early storms, and before water temperatures decline below about 48°F or water clarity becomes too turbid for feeding. This growth spurt occurs after typical late summer and early fall sampling of fish, which is intended to occur before fall stormflows. "Growth habitat" provided by higher flows in spring and late fall (and in summer of higher baseflow years in lower valley reaches) is very important, since ocean survival to adulthood increases exponentially with smolt size (**Shapovalov and Taft 1954; Bond 2006**).

During summer in Santa Rosa Creek, steelhead use primarily pool habitat. Shallower fastwater riffles, runs and step-runs (step-runs present only in the upper canyon) are also used by mostly small YOY and the occasional yearling in deep pockets of step-runs. The shallow (typically 0.2 ft or less average depth and typically 0.4 ft or less maximum depth) fastwater habitat is used almost exclusively by small YOY, although most YOY are in pools. YOY and small yearling steelhead that have moved down into the lower valley from the upper canyon in spring can grow faster, especially if streamflows are high and sustained throughout the summer. Primary feeding habitat is at the heads of pools and in the lower valley where step-runs are absent. The deeper the pools, the more value they have. Higher streamflow enhances food availability, surface turbulence and habitat depth, all factors in increasing steelhead densities and growth rates.

Juvenile steelhead captured during fall sampling were divided into two size classes. The smaller one was Size Class I of juveniles less than (<) 75 mm (3 inches) Standard Length (SL); these fish would almost always require another growing season before smolting. The larger Size Class II included juveniles 75 mm SL or greater (=>) and constituted fish that are called "smolt size" because a majority will likely out-migrate the following spring. Smolt size was based on scale analysis of out-migrant smolts captured in 1987-89 in the lower San Lorenzo River (Smith 1993 (AFS presentation). The smolt size class may include fast growing YOY steelhead inhabiting primarily the lower valley reaches of Santa Rosa Creek and slower growing yearlings and older fish from the entire mainstem.

A basic assumption in relating juvenile densities to habitat conditions where they are captured is that juveniles do not move substantially from the vicinity where they are captured during the growing season. This assumption is supported by observation of sites in close proximity yet with widely different food availability (Don Alley personal **observation**) (e.g. larger mainstem San Lorenzo River sites with nearby smaller tributary sites), where juveniles are consistently larger at the mainstem sites where streamflow is greater and there is more food. This indicates a lack of movement between sites. Otherwise, juvenile steelhead size would standardize as fish moved between feeding areas. In addition, Davis (1995) marked juvenile steelhead in June in Waddell Creek and recaptured the same fish in September in the same (or immediately adjacent) habitats where they were marked during a study of growth rates in various habitat types. Shapovalov and Taft (1954) after 9 consecutive years of fish trapping on Waddell Creek detected very limited upstream juvenile steelhead movements; the relatively limited movement was mostly in the winter, perhaps after the lagoon sandbar opened and lagoon habitat was lost. Recent preliminary data from PIT-tag detectors installed by NOAA Fisheries researchers in upper Scott Creek and its tributary, Big Creek (Santa Cruz County) after PIT-tagging of estuary/lagoon-inhabiting and stream-inhabiting juveniles over a two-year period indicated very little movement of juvenile steelhead during the months of May-November, it being insignificant at the population level (Sean Hayes **2008.** personal communication). They found that some estuary/lagoon juveniles moved upstream from the lagoon in fall prior to sandbar opening, perhaps due to deteriorating water quality, and after sandbar opening with the loss of lagoon habitat.

Overwintering Habitat

Deeper pools, undercut banks, side channels, large unembedded rocks and large wood clusters provide shelter for fish against the high winter flows. In some years, extreme floods may make overwintering habitat the critical factor in steelhead production, especially for Size Class I YOY that must over-winter twice. In years when bankfull or greater stormflows occur, these refuges are critical, and it is unknown how much refuge is actually needed. Cutting of instream wood should be discouraged.

TIDEWATER GOBY ECOLOGY

Tidewater goby populations are restricted to coastal, brackish-water habitats in California (Swift et. al 1989). There is no marine phase, although tidewater gobies are periodically flushed out of lagoons during winter stormflows and must find their way back to estuaries. There is evidence that tidewater goby is capable of repopulating adjacent lagoons after being extirpated because they were apparently lost from Santa Rosa Lagoon in 2004 and were again detected in 2006. Although they tolerate widely varying salinities and oxygen concentration, tidewater goby spawning must occur in freshwater resulting from stream inflow to lagoons, upstream of major tidal fluctuations. Spawning begins mainly in spring (April and May) but continues to a lesser degree into summer and fall. Lagoons should be allowed to seasonally close off from the ocean during the dry season so that tidal fluctuation is absent or minimal. Males excavate a nest burrow 8–12 inches deep into sandy substrate. Fresh, unconsolidated sand is optimal for burrowing. Females court males and aggressively compete to enter the burrow to mate. Males occupy enlarged areas in the burrow where the eggs hang from the ceiling and walls. Males do not feed during the 9–10 day egg incubation period, and mortality is high for these males after hatching due to starvation, especially with multiple clutches that extend the period with minimal feeding. Older female mortality is high over the winter. Tidewater gobies are bottom dwelling, and they escape predators by fleeing in long dashes (1-2 m) into deeper water or aquatic vegetation. They are typically abundant in shallow water (<=1 m deep). They feed commonly on bottom invertebrates, such as ostracods, snails, dipteran fly larvae, amphipods and mayfly larvae. When lagoons are especially saline, tidewater gobies are more abundant at the upper ends where salinity is reduced. During summer, they avoid areas where algal blooms are thick and hydrogen sulfide builds up in the substrate due to decomposition. Major threats to tidewater goby include 1) groundwater pumping and water diversion that drastically reduce freshwater inflow to lagoons, 2) sandbar breaching in summer after streamflow has declined, 3) dredging to maintain a constant estuary opening, and 4) introduction of non-native predators, such as centrarchids (bass family of fishes), bullfrog and possibly cravfish.

CURRENT RESEARCH ON SALMONID HABITAT AND TRENDS IN JUVENILE POPULATION SIZE

Data Collection Program

Juvenile steelhead were sampled annually by D.W. ALLEY & Associates (with funding from the Cambria Community Services District (CCSD)) using electrofishing throughout the mainstem Santa Rosa Creek by electrofishing in 1994-2006, and steelhead habitat was evaluated initially in 1994 (a very low-flow year) in 7 reaches (from the fish ladder at the beginning of Reach 1) and in 1998 (a very high-flow year) onward in 10 reaches (from Windsor Boulevard Bridge upstream) (Figure 1). Electrofishing and habitat data for steelhead were analyzed in annual reports to the Cambria Community Services District (CCSD) (Alley 1995a-2007a). Choice of sampling sites was based on their average habitat quality for each reach in terms of the escape cover and water depth in pool habitat. Juvenile steelhead densities from each site were extrapolated to reach densities, with habitat proportioning from habitat-typing during survey work. Santa Rosa Lagoon was sampled by D.W. ALLEY & Associates in early summer and late fall in 1993–2005, using a fine-meshed beach seine to capture tidewater gobies and occasional steelhead (incidentally). Lagoon monitoring reports were completed every other year for monitored years 1993–2005 (Alley 1995b–2006b). In most years, one electrofishing site was sampled immediately upstream of the lagoon in early summer at the time of lagoon sampling. Refer to Appendix A for a more complete description of sampling methods. CCSD staff assisted in lagoon sampling and also collected lagoon water quality and stream inflow data through this period (Sean Grauel). They also collected data in 2006, but it was not reported on. Bailey (1973) and Nelson (1994) previously sampled Santa Rosa Creek. However, their methods and timing of sampling differed significantly from ours, making their data unusable for trend analysis on a size class, age class or reach basis. Refer to the Literature Review section for a summary of their findings.

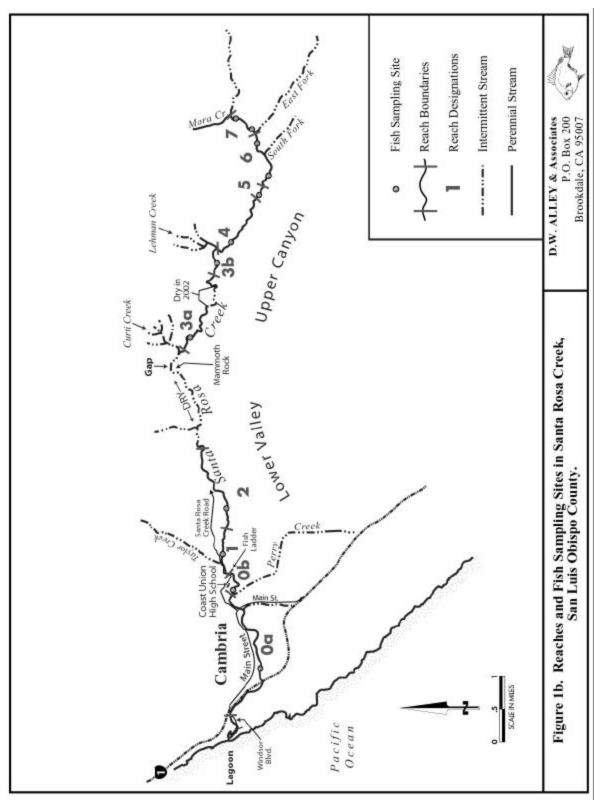


Figure 1. Reaches and Sampling Sites in Santa Rosa Creek.

Key Steelhead Density and Population Trends in Santa Rosa Creek

YOY densities at sampling sites were generally higher in the upper canyon than the lower valley (individually and on average) except in 2002 (Figures 2, 3 and 4). Two wet years, 1998 and 2005, had the lowest YOY densities in the lower valley. In another wet year, 1995, although YOY densities were not determined, total juvenile densities were low in the lower valley, indicating that YOY densities were also low that year (Figure 5). In some drier years (1994, 1997 and 2002–2004), YOY densities were relatively higher in the lower valley than other years, and relatively lower in the upper canyon. These patterns indicated that in wetter years, adults had better passage opportunities through the estuary and lower valley to access the upper canyon to spawn more YOY. It also indicated that more habitat was available in the upper canyon in wetter years due to higher streamflow (especially in spring) and presumed greater insect drift and food supply. Whereas in drier years, spawners likely had a narrower window of spawning opportunity due to earlier sandbar closure (Table A13) and shallower passage conditions related to smaller stormflows. This likely caused more spawning effort in the lower valley with less spawning and YOY production in the upper canyon. In drier years, habitat in the upper canyon likely supported fewer fish, with reduced streamflow and reduced insect drift. In 2002, when YOY densities in the upper canyon were very low, it rained very little in January-May the previous winter/spring in a very mild winter (Figure 6), with only one storm event in January totaling more than one inch in precipitation. The sandbar closed in mid-April with lagoon inflow likely less than 2.5 cubic feet per second (cfs) most of the time from January until then (Table A13).

The earthquake of December 2003 brought cementing of the streambed and likely poor water quality with heavy seepage of hydrogen sulfide into the stream at Sites 7a and 7b in 2004–2005 (Alley 2005a; 2006a). This likely contributed to lower YOY and yearling densities than normal there.

Figure 2. Annual Young-of-the-Year Steelhead Densities at Lower Valley Santa Rosa Creek Sites, 1997-2006.

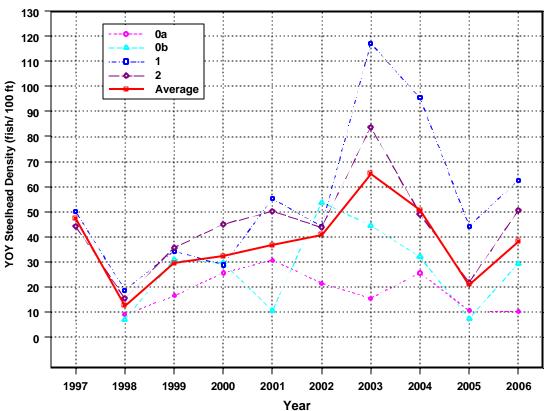


Figure 2. Annual Young-of-the-Year Densities at Lower Valley Santa Rosa Creek Sites, 1997-2006.

Figure 3. Annual Young-of-the-Year Steelhead Densities at Upper Canyon Santa Rosa Creek Sites, 1997-2006.

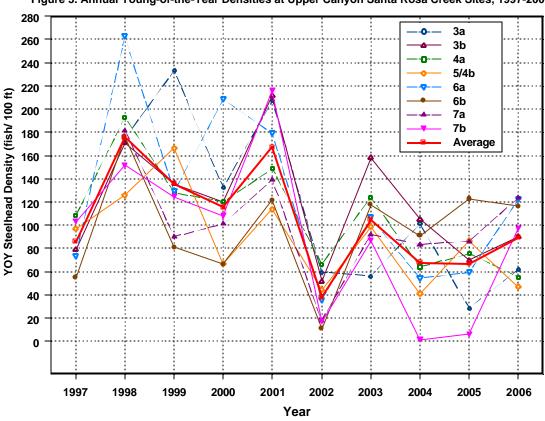
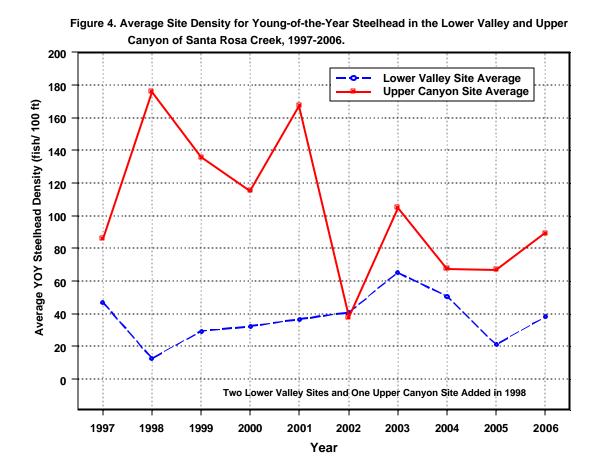
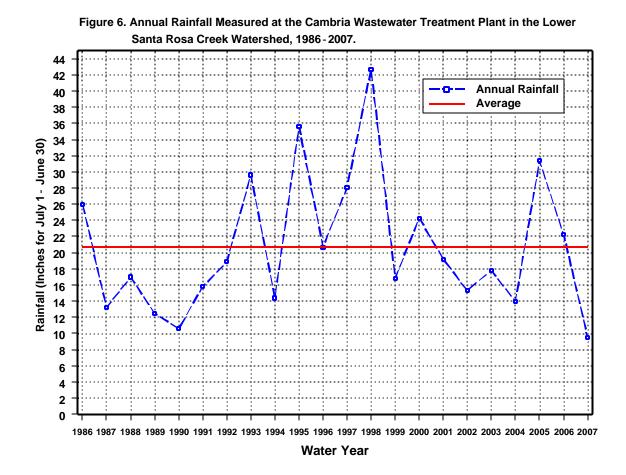



Figure 3. Annual Young-of-the-Year Densities at Upper Canyon Santa Rosa Creek Sites, 1997-2006.

Figure 4. Average Site Density of Young-of-the-Year Steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1997-2006.



D.W. ALLEY & Associates

Figure 5. Annual Total Juvenile Steelhead Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

Figure 5. Annual Total Juvenile Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

Site densities of Size Class II and III (smolt size) juveniles were higher in the lower valley than the upper canyon or similar in many years (**Figures 7, 8 and 9**). In some wet years with large storm events (1995 and 1998) densities of these larger fish were relatively low in the lower valley, likely due to the reduced YOY densities and reduced yearling survival over the winter (**Figure 6**). However, in other above-average rainfall years (1997, 2000 and 2005), Size Class II and III steelhead densities were relatively high in the lower valley, likely because of higher proportions of YOY reaching smolt size their first growing season with the higher spring/ early summer flows when growth is fastest. Then in drier years (or years when few storms came late in the spawning season and the sandbar closed early, like 1997), when more spawning effort likely occurred in the lower valley, densities of these larger fish (with large YOY) were also relatively high (1997, 2000, 2003 and 2004). As a general trend, Size Class II and III densities in the lower valley fluctuated up and down annually in 1994–2002 but increased in 2003 and remained relatively high in 2003–2006.

In the upper canyon, Size Class II and III densities generally increased in 1994–1998 but decreased steadily to lows in 2003 and 2004, with a large increase in 2005 after a wet winter (except at Site 7b with earthquake-related poor water quality). Then they declined in the close to normal rainfall year of 2006 (**Figure 6**).

Figure 7. Annual Size Class II/ III Steelhead Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

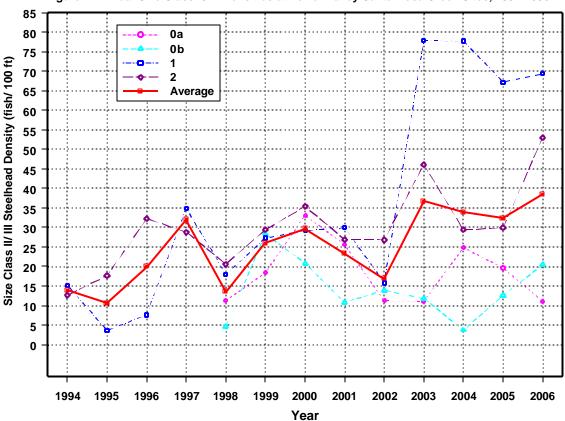


Figure 7. Annual Size Class II/ III Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

Figure 8. Annual Size Class II/ III Steelhead Densities at Upper Canyon Santa Rosa Creek Sites, 1994-2006.

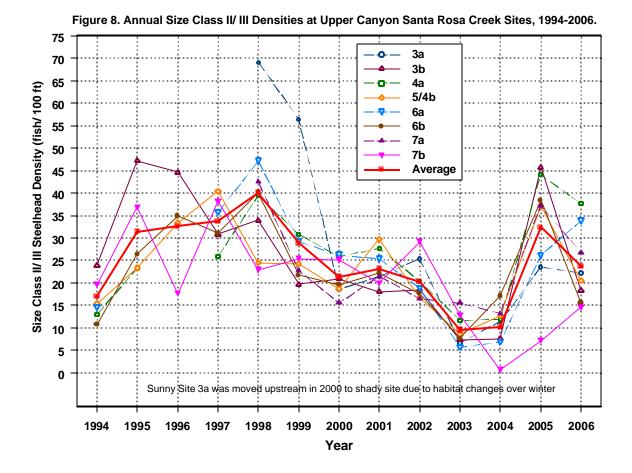
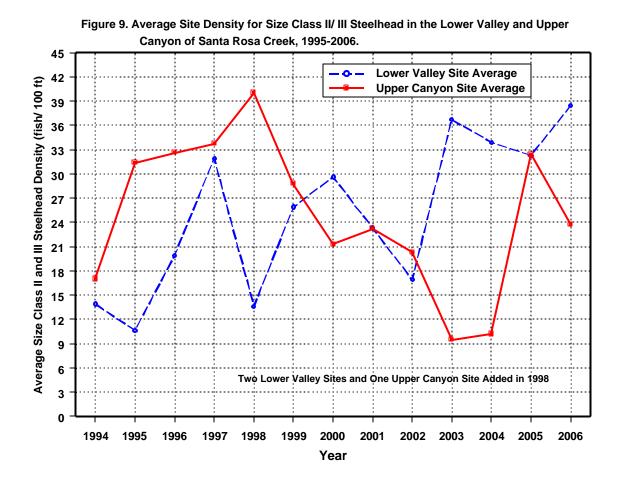
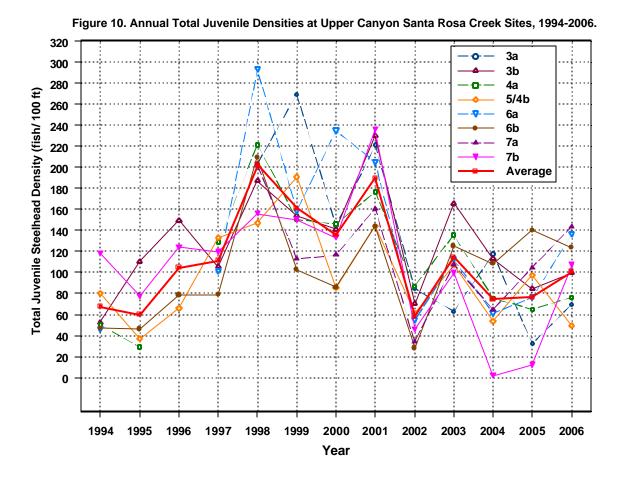



Figure 9. Average Site Density for Size Class II/ III Steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1995-2006.

Santa Rosa Creek juvenile densities in 2006 (a year with moderate total, YOY and Size Class II densities and after a near-average rainfall year in Santa Rosa Creek (**Figures 1–11**) were compared to those in other watersheds along the Central California Coast (**Table 1 from Alley 2007a**). Santa Rosa Creek had the highest average site densities in most age and size classes and for total juveniles.


 Table 1. Average Juvenile Steelhead Densities in Multiple Watersheds Along the

 Central California Coast in 2006.

Watershed (Listed from South to North)**	Number of Sites	Avg. YOY Density*	Avg. Yearling Density*	Avg. Size Class II and III Density*	Avg. Total Density*	
Santa Rosa	14	67	10	26	77	
San Simeon	3	57	6 16		63	
Corralitos	7	44	17	18	61	
Aptos	4	26	6	11	32	
Soquel	6	17	1	5	18	
San Lorenzo	16	26	2	11	28	
Scott	10	48	7	_	55	
Waddell	9	20	2	_	22	
Gazos	8	19	5	_	24	

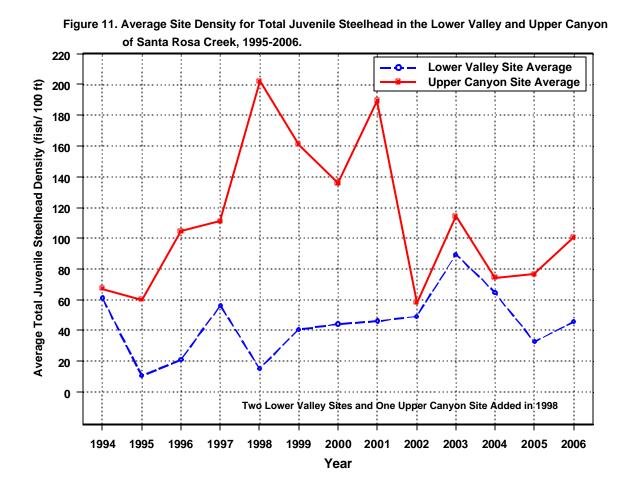
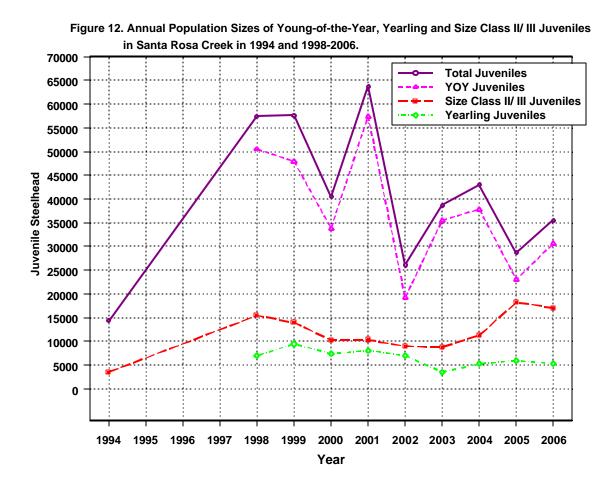

* Density measured in fish/ 100 ft. **From Alley 2004a.

Figure 10. Annual Total Juvenile Steelhead Densities at Upper Canyon Santa Rosa Creek Sites, 1994-2006.

34


Figure 11. Average Site Density for Total Juvenile Steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1995-2006.

Trends in annual population size for age classes, size classes and total juveniles indicated that 1994 represented a low point in the 13-year monitoring period (**Tables 2 and 3**; **Figure 12**). In 1994, Reaches 0a and 3a were dry and Reach 0b was partially dry with very few juvenile steelhead after an especially mild winter that had caused early sandbar closure (**Table 4**) (**Alley 1995a**). The steelhead population had expanded by 1998 and 1999, with relatively large YOY and Size Class II and III populations (**Figure 12**). In 2000, the population dropped due largely to the smaller YOY population. Habitat conditions were poorer in 2000 compared to 1999 with regard to less escape cover and lower baseflow, which also likely resulted in the smaller yearling population (**Alley 2001a**). This 2000 decline in population size corresponded with declines in other monitored central coast watersheds in Santa Cruz and San Mateo Counties (Soquel, San Lorenzo and Gazos). Reduced YOY populations in 2000 may have partially been caused by poor spawning success and/or fewer spawners resulting from events associated with the El Nino period beginning in 1998.

The juvenile population bounced back in 2001, only to plummet in 2002, after a winter that offered few storms with likely poor passage through the sandbar and early final sandbar closure (**Table 4**). This resulted in poor adult passage into the upper watershed, where YOY are usually most abundant. In the continued drier years of 2003 and 2004, the population size was intermediate, relying more heavily on YOY production in the lower valley. The total juvenile population in 2005 was smaller than the 2 previous years, and it was below average. This probably resulted from a smaller adult population spawning the previous winter. Seven of the 8 monitored watersheds along the Central California Coast experienced YOY and total population reductions in 2005.

Figure 12. Annual Steelhead Population Sizes of Young-of-the-Year, Yearling and Size Class II/ III Juveniles in Santa Rosa Creek in 1994 and 1998-2006.

Beneficially, YOY growth rate in 2005 was relatively high with the higher spring flows, and the Size Class II and III population increased substantially from 2004 to 2005 (**Figure 12**). In 2005, an estimated 55% of YOY (12,500) reached Size Class II compared to 16% (6,100) in 2004. This same trend was detected in the San Lorenzo River and Soquel Creek (Alley 2006c; 2006d).

Table 2. Summary Table of Steelhead Size Class Site Densities, Reach Densities,Juvenile Production and Adult Indices in Mainstem Santa Rosa Creek, 1994–2006.

Year	Size	Size	Size	All	Size	Size	Size	All	All	Size Class 1	Size Class	Total	Adult
	Class 1	Class 1	Classes	Sizes	Classes	Classes	Classes	Sizes	Sizes	Production	2 & 3	Juvenile	Index
	(<75 mm		2 & 3		2 & 3	2& 3	2& 3				Production	Production	
	SL)		(=>75										
	Avg Site	Avg.	mm	Avg.	Avg.	Creek-	Upper	Avg.	Creek-				
	Density	Reach	SL)	Site	Reach	Wide	Canyon-	Reach	Wide				
	/ 100 ft	Density	Avg.	Density	Density	Density	Wide	Density	Density				
		/ 100 ft	Site	/ 100 ft	/ 100 ft	/ 100 ft	Density	/ 100 ft	/ 100 ft				
			Density				/ 100 ft						
			/ 100 ft										
1994	51.3		15.8	67.1					47.3	10,800	3,500	14,300	203
1995	28.7*		26.5	45.9					30.8	4,400	4,900	9,300	253
										partial***	partial	partial	partial
1996	48.2		28.4	76.6					52.3	9,800	6,000	15,800	317
										partial	partial	partial	partial
1997	64.1	51.0	33.2	97.3	23.1	25.8		74.1	76.0	15,800	7,800	23,600	409
										partial	partial	partial	partial
1998	111.7	100.6	32.0	143.6	30.1	28.6	47.6	130.7	106.1	42,000	15,400	57,400	836
1999	92.9	102.9	27.8	120.7	26.4	25.8	35.8	129.7	106.4	43,700	14,000	57,600	775
2000	81.3	62.2	24.1	105.3	19.1	18.9	19.8	81.0	74.8	30,300	10,300	40,500	566
2001	118.4**	111.0	23.3	141.6	19.1	19.0	21.9	130.1	117.6	53,400	10,300	63,700	658
2002	35.9	35.3	19.2	55.1	18.4	17.6	21.3	55.9	51.0	17,100	9,000	26,100	462
2003	73.9	72.2	18.6	100.8	15.9	17.1	9.2	88.2	71.9	29,900	8,800	38,700	498
2004	53.1	54.3	18.1	71.1	<i>14.8</i>	17.1	11.3	69.1	65.1	31,700	11,300	43,000	615
2005	29.4	27.1	32.4	61.9	31.5	28.6	33.1	58.6	45.1	10,400	18,200	28,700	886
2006	49.6	41.3	27.5	77.1	25.5	26.8	22.9	66.8	55.9	18,500	17,000	35,500	832
Avg.	64.5	65.8	25.2	89.6	22.7	22.6	24.8	88.4	69.3	24,400	10,500	34,900	562

* Lowest Density/ Population Estimate in 1994-2006.

** Highest Density/ Population Estimate in 1994-2006.

***Reaches in 1995–1997 conformed to wetted reaches in 1994. However, in 1995–1997, downstream reaches (0a and 0b) also had perennial flow to varying degrees but were not entirely wetted throughout the dry season and not sampled until 1998 and afterwards.

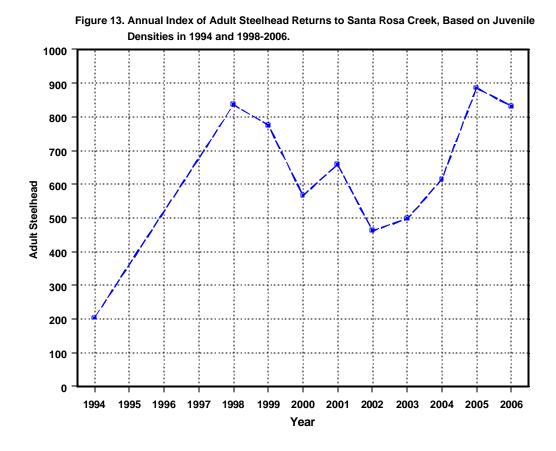
Table 3. Summary Table of Average Steelhead Age Class Site Densities, ReachDensities and Juvenile Production in Santa Rosa Creek, 1997–2006.

Year	YOY Avg Site Density (fish/100 ft)	YOY Avg. Reach Density (fish/100 ft)	YOY Avg, Reach Density- Upper Canyon (fish/100 ft)	YOY Creek- Wide Density (fish/100 ft)	Yearling Avg. Site Density (fish/ 100 ft)	Yearling Avg. Reach Density (fish/100 ft)	Yearling Creek- Wide Density (fish/100 ft)	YOY Pro- duction	Percent YOY's Reaching Smolt- Size In First Year	Yearling Pro- duction	Total Juvenile Pro- duction
1997	76.1				20.8	12.7		19,500 partial***	19	3,800 partial	23,300 partial
1998	123.9*	115.6	168.2	93.1	15.8	14.8	12.7	50,400	17	6,900	57,300
1999	100.4	108.4	151.3	88.5	21.2	20.8	17.5	48,000	9	9,500	57,500
2000	87.7	67.2	98.0	62.4	18.5	14.0	13.6	33,800	10	7,400	41,200
2001	123.6	116.8	178.2	105.9	18.0	14.5	14.8	57,400	7	8,000	65,400
2002	38.8**	40.3	43.8	37.4	16.9	15.3	13.7	19,200	12	7,000	26,200
2003	91.7	87.1	102.4	69.3	8.9	7.7	6.9	35,500	16	3,500	39,000
2004	62.7	59.9	77.3	57.3	10.5	9.3	8.0	37,800	16	5,300	43,100
2005	51.5	48.1	68.9	36.2	11.7	10.3	9.3	23,000	55	5,900	28,900
2006	67.2	56.1	74.4	48.3	10.1	8.6	8.3	30,600	69	5,300	35,900
Avg	82.3	72.5	106.9	66.4	15.2	12.8	11.7	35,500	23	6,300	41,800

* Highest Density/ Population Estimate in 1994-2006.

** Lowest Density/ Population Estimate in 1994-2006.

***Reaches in 1995–1997 conformed to wetted reaches in 1994. However, in 1995–1997, downstream reaches (0a and 0b) also had perennial flow to varying degrees but were not entirely wetted throughout the dry season and not sampled until 1998 and afterwards.


Table 4. Historical Record of Sandbar Closure at Santa Rosa Lagoon (1993–2007) and San Simeon Lagoon (1991–1992).

Year	Date of First Sandbar Closure Detection After Winter/Spring Rainy Season	Evidence of Smolts in the Lagoon or Immediately Upstream After Sandbar Closure	Stream Inflow Cubic feet/ second (cfs)
1991 (San Simeon Lagoon)	Before 2 April 1991	-	—
1992 (San Simeon Lagoon)	10 Jan (opened 8 Feb) 29 April 1992	_	4.35 2.75
1993	24 May 1993 closed (Re-opened after light rain on 25 May 1993) 11 June 1993 (or		7.9
400.4	sooner)	Yes (few)	4.15 on 11 June
<u>1994</u>	28 March 1994	Yes (many)	2.49 on 29 April
1995	28 May 1995	Yes (few upstream only)	-
1996	3 June 1996	Yes (very few upstream only)	5.13 on 29 May 2.98 on 12 June
1997	23 March 1997	Yes (many)	12.60 on 26 March
1998	13 July 1998	Yes (very few upstream only)	4.65 on 15 July
1999	28 May 1999	No (upstream not sampled)	6.18
2000	31 May 2000	No (upstream not sampled)	3.00 on 15 June
2001	14 May 2001	No (upstream not sampled)	4.40 on 23 May
2002	14 April 2002	Yes (many)	2.14 on 28 Feb. 2.11 on 28 March 1.13 on 29 April
2003	9 June 2003	No	1.50 on 3 July
2004	7 May 2004	Yes (few upstream only)	2.69 on 21 May
2005	27 May 2005	Yes (few upstream only)	6.25 on 16 June
2006	Between 24 May and 26 June 2006	No	18.67 on 24 May 3.23 on 12 July
2007	15 March 2007	Yes (many)	21.94 on 1 March

In 2006, the juvenile population increased modestly in Santa Rosa Creek after a nearaverage rainfall winter (**Figure 12**). However, the YOY and yearling population estimates were below average, consistent with other watersheds (San Simeon, San Lorenzo, Soquel) and low YOY densities in Scott, Waddell and Gazos creeks (**Alley 2007a**). This may have been the second year in a row with relatively below average adult returns and the third in the 5-year period of 2002–2006.

The trend in the annual adult steelhead index that was generated from juvenile population sizes. Adult indices were calculated to estimate trends in adult returns and not to estimate actual adult returns. A conservative juvenile-to-adult survival rate in the ocean was estimated from adult return data on a Santa Cruz County stream (Waddell Creek) in the early 1990's and remained constant in calculation of adult indices. See Appendix A for detailed methods regarding the adult index. However, El Niño events likely change survival rate in the ocean. The adult index was most influenced by the Size Class II and III juvenile population. It could increase from one year to the next even if the total juvenile population decreased, if the Size Class II/ III population had increased, as occurred from 2004 to 2005. The Size Class II and III population is more important than the total juvenile population, making it very important to measure steelhead densities by size class. The adult index increased by four times from 1994 to 1998 (Figure 13). Then it declined in 1999 and 2000, coincident with smaller Size Class II/ III populations when lower spring flows reduced the growth rate of YOY compared to 1998 (Figure 12). The adult index increased in 2001 due to a greatly increased YOY population and despite a no larger Size Class II/ III population during a drier year that did not promote very rapid YOY growth in the lower valley.

Figure 13. Annual Index of Adult Steelhead Returns to Santa Rosa Creek, Based on Juvenile Densities in 1994 and 1998-2006.

In 2002 the adult index was the lowest in the 9-year period, 1998–2006, with relatively small YOY and Size Class II/III populations after a mild late winter/ spring that offered poor adult access, low streamflow and poor juvenile growing conditions (**Figure 13**). The next 2 years, 2003 and 2004, afforded limited spawning and growth opportunities, but YOY populations increased over 2002 levels (**Figure 12**). The Size Class II/III population decreased in 2003 and then increased modestly in 2004. Accordingly, the adult index increased in 2003 and 2004.

The juvenile population was relatively small in 2005 (**Figure 12**), but habitat conditions were good and spring flows were likely relatively high after a wet winter. As a result, YOY growth rate was high in the lower valley and resulted in a substantial increase in the Size Class II/ III population, an increase in the yearling population in the upper canyon and the highest adult index during the monitoring period 1994–2006 (**Figure 13**).

In 2006, the YOY population increased during a near-average rainfall year, with adequate growth of YOY in the lower valley to maintain a relatively high Size Class II/ III population and a high adult index, despite the relatively low total juvenile population size (**Figures 12 and 13**).

Key Results of Habitat Analysis in Santa Rosa Creek, with Recommended Management Guidelines

Comparisons of tree canopy closure in fall at four-year intervals was not clear-cut because data in1994 and 2002 were collected approximately a month earlier than in 1998 and 2006. Data in 1994 and 2002 were collected after below average rainfall winters (perhaps hastening earlier leaf drop), and data in 1998 and 2006 were collected after above average rainfall winters (perhaps delaying leaf drop). Despite these ambiguities, tree canopy closure in lower valley reaches and the 2 lower reaches of the upper canyon (Reaches 3a and 3b) was trending in a negative direction since the 1995 flood (**Figure 14**). The upper 4 reaches of the upper canyon had somewhat more tree canopy than prior to the 1995 flood. In 2006, the lower valley and Reach 3a in the upper canyon had relatively lower tree canopy closure (25–45%), while the remainder of the upper canyon had relatively higher closure (55–70%).

Habitat typing was performed in reach segments at four-year intervals in 1994–2006. For a more detailed description of findings, refer to **Appendix A**. Between 1994 and 1998, an extremely large flood event occurred in March 1995 that resulted in massive streambank erosion and loss of riparian forest in the lower valley (**Don Alley personal observation**). A conservative estimate of streamflow on 10 March was 16,000 cfs. Since the gage was installed in 1976, it was more than double the previously highest flow of 7,900 cfs recorded in 1986. After a very wet winter, habitat conditions improved in 1998 compared to 1994 with regard to generally deeper pools in the lower valley and upper canyon and increased perennial surface flow in Reaches 0a, 0b and 3a (**Figures 15 and 16**). However, tree canopy closure in 1998 was reduced in the lower valley and the lower two of six reaches of the upper canyon compared to 1994, presumably due to loss of riparian forest during the 1995 flood (**Figure 14**).

In 2002, fall baseflow was much less than in 1998, leading to overall reduced habitat quality in Santa Rosa Creek in 2002 (**Figure 17**). However, in 2002 the beyond-streamflow related habitat quality generally improved in the lower valley because of more pool escape cover and continued recovery of riparian vegetation with increased tree canopy (**Figure 18**). On the negative side, pool sedimentation was observed with greatly reduced maximum pool depth in all but Reach 2 (**Figure 16**). In 2002, beyond-streamflow related habitat quality in the upper canyon generally declined due to reduced maximum pool depth (except Reach 6) and generally reduced escape cover. These habitat depth changes were beyond what would be expected from differences in baseflow.

Figure 14. Tree Canopy Closure in Fall in Wetted Reaches of Santa Rosa Creek in Habitat Typed Segments at Four-Year Intervals (1994-2006).

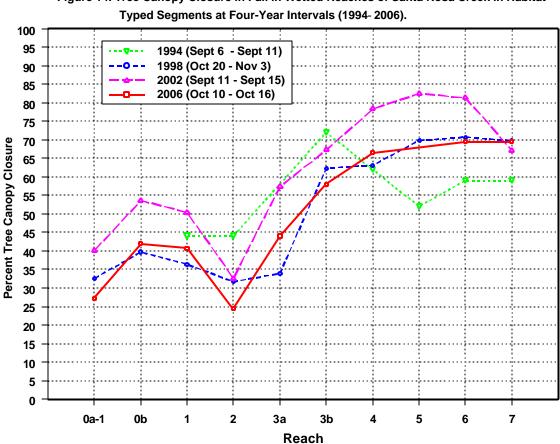
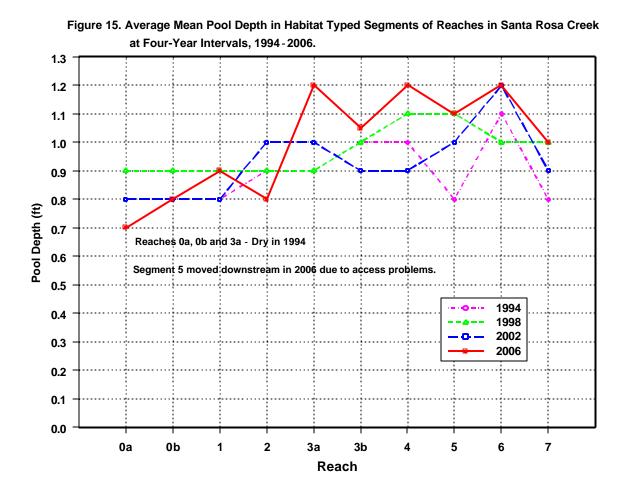



Figure 14. Tree Canopy Closure in Fall in Wetted Reaches of Santa Rosa Creek in Habitat

Figure 15. Average Mean Pool Depth in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals, 1994-2006.

Figure 16. Average Maximum Pool Depth in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals, 1994-2006.

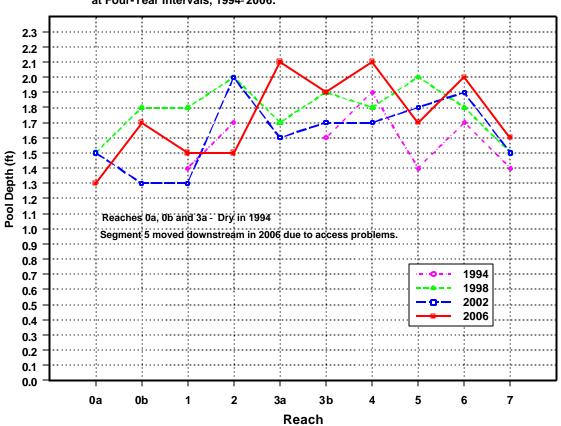


Figure 16. Average Maximum Pool Depth in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals, 1994-2006.

Figure 17. Measured Streamflow in Fall at Sampling Sites in Santa Rosa Creek, 1998-2006.

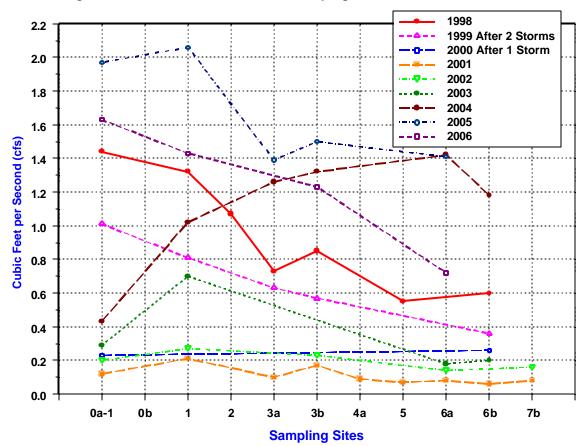


Figure 18. Escape Cover Index for Pool Habitat in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals, 1998-2006.

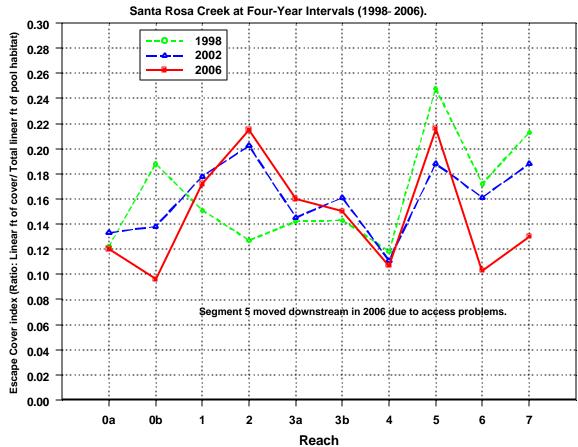
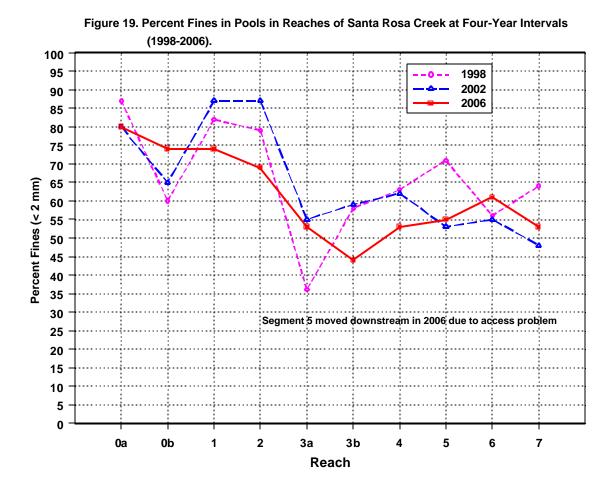



Figure 18. Escape Cover Index for Pool Habitat in Habitat Typed Segments of Reaches in

In 2006, baseflow was much more than in 2002, primarily due to earthquake-caused enhancement. Increased baseflow created overall habitat improvement in 2006. Regarding beyond-streamflow related habitat conditions, they declined overall in the lower valley in 2006 due to sedimentation that reduced average and maximum pool depth in Reaches 0a and 2 (Figure 16), with reduced tree canopy and no improvement in escape cover compared to 2002 conditions (Figures 14 and 18). However, pools deepened in the middle Reaches 0b and 1 of the lower valley, and percent fines were reduced in pools of Reaches 1 and 2 and in runs throughout the lower valley (Figures 15, 16, 19 and 20). In 2006, beyond-streamflow related habitat conditions generally improved in the lower portion of the upper canyon (Reaches 3a-5) due to scouring that increased average and maximum pool depth, reduced embeddedness in step-runs/ runs (Figure 21) and reduced percent fines in pools (Figure 19). Beyond-streamflow related habitat conditions in 2006 were similar to 2002 conditions in the upper portion of the upper canyon (Reaches 6 and 7) with regard to average pool depth, embeddedness in step-runs, pool embeddedness (Figure 22) and percent fines in pools and step-runs. Maximum pool depth increased slightly, but escape cover declined by a third to make overall habitat quality less in 2006 for non-streamflow related conditions.

Figure 19. Percent Fines in Pools in Reaches of Santa Rosa Creek at Four-Year Intervals, 1998-2006.

Figure 20. Percent Fines in Step-Runs and Runs in Reaches of Santa Rosa Creek at Four-Year Intervals, 1998-2006.

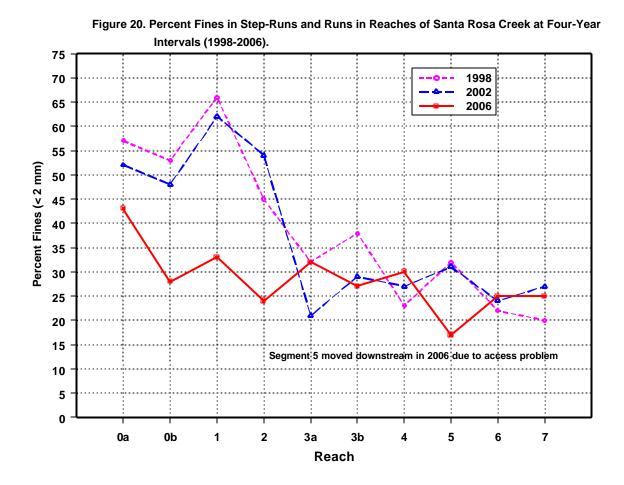


Figure 21. Substrate Embeddedness in Step-Runs and Runs in Reaches of Santa Rosa Creek at Four-Year Intervals, 1998-2006.

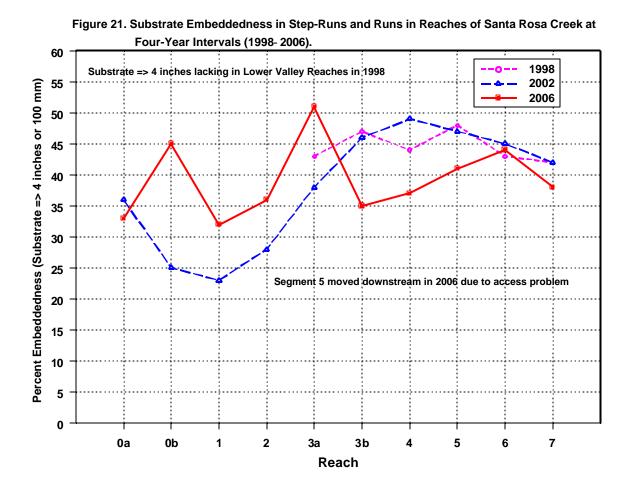
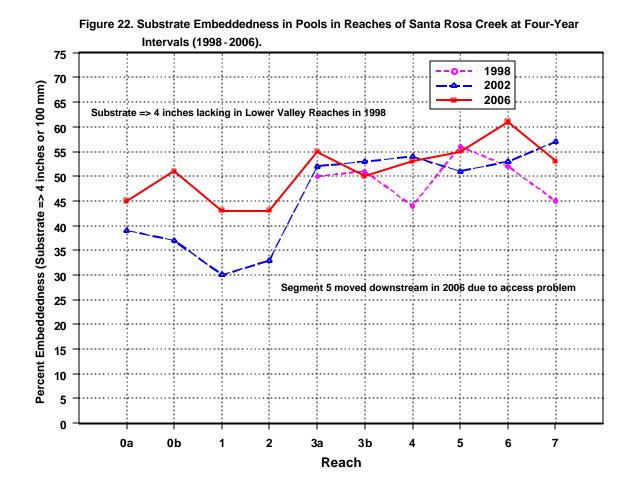



Figure 22. Substrate Embeddedness in Pools in Reaches of Santa Rosa Creek at Four-Year Intervals, 1998-2006.

In comparing habitat conditions in 2006 to those in 1994 in the lower valley, Reach 1 had similar conditions with slightly deeper pools (mean and maximum) in 2006 (**Figures 15 and 16**), which may have been partially due to higher baseflow in 2006 (**Figure 17**), and similar tree canopy closure (**Figure 14**). Reach 2 conditions had worsened by 2006, with shallower pools (mean and maximum) in 2006 despite higher baseflow. Tree canopy closure in Reach 2 was the lowest in the 13-year period and had not recovered to 1994 levels after the 1995 flood. In comparing 2006 to 1994 in the upper canyon, habitat conditions had improved in 2006 with deeper pools (mean and maximum depth) in all reaches (3b, 4, 5, 6 and 7). Tree canopy was very similar in 1994 and 2006 in the upper canyon. Escape cover could not be compared due to the change to better methods in 1998 that were used thereafter.

Mapped results of CDFG habitat evaluation from a stream survey of mainstem Santa Rosa Creek conducted in 2005 (according to the accompanying report, although the map descriptions say summer 1996) are available at the link, http://ccows.csumb.edu/scdp/data.htm

The level of detail on these maps was low, thus limiting their value in describing habitat conditions in Santa Rosa Creek. The plotted statistics had no connection to the specific habitat conditions of our defined reaches. Reach boundaries were unclear, indicating that many plotted statistics may have been stream-wide values in cases where the entire mainstem was given the same rating. When the stream is not divided into reaches based on distinct changes in stream characteristics (gradient, geomorphology, relative proportion of habitat types, streamflow due to tributary confluences, or tree canopy), trends in habitat quality and their connection to fish densities are very difficult to detect. Mapping of habitat types lacked clear definition on the maps. In some segments, it appeared that long stretches were either run or step-run, which is inaccurate based on our experience. There was no mapping of escape cover, although it is of great importance in assessing habitat quality and determining Size Class II juvenile steelhead density. Apparent stream-wide ratings of tree canopy on the CDFG maps did not detect the increased tree canopy in the upper canyon that our monitoring indicated. The maps of streambank erosion do not indicate whether the mapped sites are actively eroding or not. Much of the streambank erosion occurred during the March 1995 flood, and some sites are no longer active. In our judgment, future streambank stabilization work should focus on active sites in the lower valley, especially in Reach 2. Some of the maps from this CDFG Basin Planning and Habitat Mapping Project have been included in Appendix C. However, the magnification must be increased to read them, using the zoom function on the tool bar in Microsoft Word. No actual habitat data were forthcoming from CDFG at the time of this writing.

Recommended Water Temperature Enhancement Goals and Previous Success in Meeting These Goals

The recommended water temperature guidelines to protect steelhead habitat in the lower valley reaches of Santa Rosa Creek should be upper limits of $20^{\circ}C$ ($68^{\circ}F$) average daily temperature with a $23^{\circ}C$ ($73.4^{\circ}F$) daily maximum.

In 2004–2006, our recommended temperature guidelines regarding average daily water temperature were likely met at lower valley sites regarding average daily temperature except for a 10-day period in July 2006, based on the 7-day rolling average. The 7-day rolling average was less than 20°C in all three years. In 2004, the temperature guidelines regarding daily maximum temperature were met at Site 0a except for a small number of days but less so at Site 1. In 2005, the guidelines were approached less at Site 0a for maximum daily temperature than at Site 1, with exceedence about a third of the days at each site. In 2006, the maximum daily temperature guideline was not met much of July and half of August at Site 0a and for a warm 10-day period in July at Site 1. The increased baseflow effects from the December 2003 earthquake may have promoted cooler water temperatures in the lower valley than under pre-earthquake baseflow conditions. Refer to **Appendix A** for more detailed information on water temperature.

To protect steelhead habitat in the upper canyon, the average daily water temperature should have upper limits of $20^{\circ}C$ ($68^{\circ}F$) and the maximum daily temperature should not rise above $22^{\circ}C$ ($71.6^{\circ}F$).

In the upper canyon, where baseflow was less than in the lower valley except in 2003 and 2004 (**Figure 17**), more restrictive guidelines than in the lower valley should be followed. Since the December 2003 earthquake that increased summer baseflow, our recommended temperature guidelines were met at upper canyon temperature monitoring sites in 2004–2006 except for short periods. Once summer baseflows return to pre-earthquake levels, more water temperature monitoring will indicate if the guidelines are still being met. More detailed discussion of water temperature data and the basis for management guidelines is contained in **Appendix A**.

Prior to the baseflow-augmenting effects of the December 2003 earthquake, Santa Rosa Creek water temperature was monitored at stream sites for only the latter part of the summer/fall in 2003. However, for the month of September in 2003 vs. 2004, daily maximum water temperatures were very similar at lower valley Sites 0a and 1 and within 1°F at the upper Site 6a (slightly cooler in 2004), despite the increased baseflow in 2004 resulting from the 2003 earthquake (**Alley 2004a and 2005a**). Monitoring of water temperature in 2003 and the post-December 2003 earthquake era (2004–2006) at stream sites indicated that the upper canyon was cooler than in the lower valley (about 5 °F cooler in 2006 for the maximum daily water temperature). However, the maximum 7-day rolling average at Site 6a in 2006 was equal to that at Site 0a (20.4 °C (68.8 °F); 19 July to 28 July) between 1 July and 10 September. In all years, the daily water temperature varied more between days in the upper canyon but the diurnal (daily) variation in water temperature was greatest in the lower valley. It is significant to note that although the

baseflow in 2004 was much less at Site 0a than in 2005 and 2006 (**Figure 17**), water temperature was cooler there in 2004 than in the two succeeding years. Therefore, the degree of persistence of fog and overcast nearer the coast during the summer (and their effect on air temperature) may be more important in maintaining cooler water temperature than higher streamflow (within the ranges of streamflow in 2004–2006).

Regarding Santa Rosa Lagoon for the period of sandbar closure, the water temperature guidelines to provide steelhead habitat include maintenance of the 7-day rolling average water temperature within 0.25 m of the bottom at 19°C or less. Maintain the daily maximum water temperature below 25°C (77°F).

If the maximum daily water temperature should reach 26.5° C (79.5°F), it may be lethal and should be considered the lethal limit. Water temperature at dawn near the bottom for at least one of three monitoring stations (1) adjacent Moonstone parking lot or 2) adjacent Shamel Park or 3) between Shamel Park and Windsor Bridge) should be 16.5° C (61.7° F) or less on sunny mornings without fog or overcast and 18.5° C (65.3° F) or less on days with morning fog or overcast. Refer to **Appendices A and B** for the explanation for these temperature goals.

In the four years when continuous water temperature data were available (2001, 2002, 2005 and 2006) Santa Rosa Lagoon did not meet temperature guidelines regarding maximum daily temperature (25°C) at either Station 1 (adjacent the Moonstone Drive parking lot) or Station 2 (adjacent Shamel Park) in any year for the annual period of monitoring. Water temperature probes malfunctioned in 2003, and Stations 1 and 2 went dry in 2004 (there was a small, stagnant pool remaining near Shamel Park at Site 2, with the probe not remaining submerged). The lethal limit (26.5°C) was reached at Station 1 in every year and at Station 2 in 2006. With the 7-day rolling average calculated in 2005 and 2006, the temperature guideline for 7-day rolling average (19°C) was exceeded in both years at both sites.

In 2005, a year with the maximum stream inflow to the lagoon in the nine-year period 1998–2006, as indicated by streamflow measured near the Highway 1 bridge, none of the lagoon temperature guidelines were met for the entire period of sandbar closure. The lethal limit (26.5°C) was reached on 5 days at Site 1. The 7-day rolling average guideline (19°C) was exceeded at Site 1 until approximately 26 September 2005 (95% of the days between 23 June and 1 October), after which it was met. At Site 2 the guideline for the 7day rolling average (19°C) was not met until approximately 1 September 2005 (70% of the days between 23 June and - October) (after which it was met). Daily maxima at Station 2 exceeded the guideline for daily maxima (25°C) on 4 days (4%) and exceeded 24°C) on 12 days (12%). Water temperatures at Stations 1 and 2 likely caused sub-lethal stress, reduced scope for activity leading to indirect mortality from higher vulnerability to predation and higher susceptibility to disease for Central Coast steelhead during the periods in which the 7-day rolling average was 20°C or greater (75% of days at Station 1 and 25% of days at Station 2 between 23 June and 1 October). Thus, the 2005 lagoon was a difficult location for steelhead to survive the period of sandbar closure. No juvenile steelhead were observed or captured in the fall of 2005 in the lagoon, after a wet winter when spawning near the lagoon was unlikely.

The lagoon was even warmer in 2006 than 2005. None of the lagoon temperature guidelines were met for the entire period of sandbar closure. The lethal limit of 26.5°C was reached near the bottom on 7 days at Station 1 and 9 days at Station 2, resulting from tidal overwash on most days. The daily maximum temperature guideline (25°C) was exceeded on 20 days at Station 1 and 30 days at Station 2. The 7-day rolling average guideline (19°C) was exceeded at Site 1 until approximately 23 September 2006 (91% of the days between 29 June and 1 October), after which it was met. The 7-day rolling average guideline (19°C) was exceeded at Site 2 until approximately 27 August 2006 (64% of the days between 29 June and 1 October), after which it was met. The water temperatures at Stations 1 and 2 likely caused sub-lethal stress, leading to indirect mortality from higher vulnerability to predation and higher susceptibility to disease for Central Coast steelhead during the periods in which the 7-day rolling average was 20°C or greater (66% of days at Station 1 and 46% of days at Station 2 between 29 June and 1 October). Thus, the 2006 lagoon was a difficult, if not impossible location for steelhead to survive the period of sandbar closure. Even so, 3 juvenile steelhead were captured and approximately 20 more were observed (all likely large YOY) in the upper lagoon between Shamel Park and the Windsor Bridge.

In the years 1993–2004 when water temperature was monitored at dawn at stations at two-week intervals during sandbar closure, the sunny morning temperature guideline was not met between 1 and 10 monitorings per year at one of the stations. The foggy or overcast morning temperature guideline was met in 6 of the 13 years at one of the stations. Stations 1 and 2 went dry (the lower lagoon) in 2000, 2003, 2004 and 2007, with Station 3 used in 2004 after Station 2 went dry. Refer to **Appendix A** for details.

Recommended Oxygen Concentration Enhancement Goals in the Lagoon and Previous Success in Meeting These Goals

The recommended lagoon guideline for oxygen concentration within 0.25 m of the lagoon bottom and in stream habitat is to maintain dissolved oxygen concentration at 5 mg/l or higher at one of the monitoring stations. Dissolved oxygen levels less than 2 mg/l should be considered critically low, it being close to the lethal limit and prevented if possible.

Refer to **Appendix B** for the explanation for these guidelines. Oxygen levels were not monitored in stream habitat because they are typically close to full saturation for any given temperature and seldom go below 5 mg/l, based on our experience.

Oxygen levels are typically at their lowest at dawn or shortly after. Oxygen levels at dawn may be increased if tidal overwash can be minimized or prevented. Water circulation with the air can raise oxygen concentrations and cool water temperature at night. Lagoon depth may be maintained to prevent complete filamentous algae growth throughout the water column that prevents water circulation if lagoon inflow is maximized to ideally 0.9 cfs or more. Filamentous algae may be reduced if lagoon shading is increased.

For the monitoring years 1992–2005, the 5mg/l oxygen guideline was met at one of the monitoring stations for the entire lagoon season in 3 of 14 years (1995, 1996 and 2001). The near lethal limit of 2 mg/l oxygen was avoided at one station for the entire lagoon season in 8 of 14 years. Although oxygen levels frequently failed to meet guidelines and were likely restrictive on scope of activity, they were likely less limiting than temperature to steelhead survival in the lagoon.

The recommended lagoon guideline for salinity within 0.25 m of the bottom is to avoid sudden increases in salinity to 10-12 parts per thousand associated with tidal overwash. These increased salinities should be considered stressful to non-smolting, freshwater-acclimated steelhead and should be prevented if possible. Refer to **Appendix A** for the explanation for these guidelines.

During the 4 years of continuous water temperature monitoring in the lagoon (2001, 2002, 2005 and 2006), there was evidence of 2 tidal washes in 2001, 3 tidal overwashes in 2002, 4 tidal overwashes in 2005 and 3 tidal overwashes in 2006. These tidal overwashes may cause osmoregulatory stress to steelhead, as well as raise water temperature near the bottom, forcing juveniles higher in the water column to seek cooler water and making them more vulnerable to predation. Tidal overwashes were responsible for water temperature exceeding the lethal limit near on many occasions. If the saltwater lens remains on the bottom for days, it becomes a solar collector that warms the entire lagoon. Unless the incidence of tidal overwash can be prevented, particularly after milder winters and later in the dry season when stream inflow is reduced, there will be at least short periods when lagoon water temperature guidelines for daily maximum and lethal limit will not be met, even at times other than when tidal overwash occurs. In addition, if steelhead must move out of deep areas to avoid warm saltwater lenses, they are more vulnerable to bird predation. At Soquel Lagoon in Santa Cruz County, the sandbar is artificially raised around the lagoon to help prevent tidal overwash. Usually, the sandbar is lowest where the stream exited prior to sandbar closure.

Steelhead surface hits were observed between Shamel Park and Windsor Bridge in Santa Rosa Lagoon throughout the summer of 2004, and juveniles were captured there in the fall by seining. This was the only viable steelhead habitat in the 2004 lagoon. Tidewater gobies were detected only in very low numbers in the lagoon in fall 2003 after the lower lagoon dried up, and they appeared absent in 2004 and 2005 during both the early summer and late fall sampling and in early summer 2006. (They were detected in fall 2006 and June 2007 before the lagoon mostly dried up again by October 2007.) Thus, dewatering of the lower lagoon below Shamel Park had a very negative impact on the tidewater goby population, although steelhead habitat was available upstream of Shamel Park. Based on monitoring of streamflows as the lower portions of Santa Rosa Lagoon dried up in 2003 and 2004, the recommended streamflow guideline is to maintain stream inflow to Santa Rosa Lagoon at 0.9 cfs or more through the period of sandbar closure in order to provide tidewater goby habitat in the lower lagoon, protect the tidewater goby population from extirpation and maintain steelhead habitat between Shamel Park and Windsor Bridge. Table A7 provides information on minimum stream inflow in fall to Santa Rosa Lagoon in 1993–2007. This inflow guideline has been satisfied in only 4 years of that 15-year period. Therefore, it unlikely to be met unless a new source of water is provided to the summer/ fall lagoon from treated effluent and/or less water is pumped from wells that reduce stream inflow to the lagoon.

Recommended Streamflow to Insure Upstream Adult Steelhead Passage and Downstream Kelt Passage to the Estuary

Since passage over many riffles in the mainstem is flow dependent, steelhead are more vulnerable to shallow passage conditions in drier years. If winter storms are delayed or drought conditions exist, flows may be inadequate to allow adult steelhead migration over certain critically wide riffles. Judging by the pattern of higher YOY production in the lower valley in drier years and higher YOY production in wetter years (see pervious section on juvenile densities), shallow riffles impede adult passage into the upper canyon in some years. The opening and closing of the sandbar at the creek mouth determines the spawning period during the wet season. If storms are delayed, the sandbar remains closed longer. If storms come early and are largely absent in the spring, then the sandbar closes early, thus preventing adults from entering the creek afterwards and stranding kelts trying to return to the ocean after spawning.

Regarding minimum bypass flows downstream of the Perry Creek confluence and until 1993 IFIM data are updated, the following management guidelines are recommended:

- In order to promote upstream adult steelhead spawning migration during the primary spawning season of January 1 April 15, any water diversion or well extraction capable of reducing surface flow should be interrupted during stormflow episodes when streamflow between Perry Creek confluence and Main Street Bridge is less than 60 cfs and streamflow between Main Street Bridge and the bay is less than 35 cfs.
- In dry fall/ winters in which no storms have occurred by January 1, any water diversion or well extraction capable of reducing surface flow should be interrupted from January 1 until the first stormflow. After that, follow the guideline listed above.
- In order to promote out-migration of post-spawning steelhead kelts, water diversion or well extraction capable of reducing surface flow should not resume after a stormflow until the baseflow between storm events is shown to be greater than 15 cfs at the Highway 1 Bridge until May 1, and water extraction should be discontinued until May 1 if streamflow declines below 15 cfs between the first storm event and May 1.

D.W. ALLEY & Associates performed a steelhead passage study in Reach 0a in lower Santa Rosa Creek in 1993 (**Alley 1993b**). With limited data at that time, it was estimated that a minimum bypass flow of 7 cfs would be necessary at the Windsor Bridge to prevent sandbar closure and to insure sandbar passage for kelts and smolts to the ocean. Later data on lagoon closure times and streamflow confirmed this initial estimate to be correct. Regarding upstream spawning migration, it was determined that a minimum bypass of 60 cfs was required at the critical riffle # 1upstream of Main Street (channel

mile 2.80) and 35 cfs downstream through Cambria to negotiate the critical riffle # 2 at the concrete apron under the Burton Street Bridge (channel mile 2.16) (now removed), critical riffle # 3 a short distance downstream of Highway 1 (channel mile 1.19) and critical riffle # 4 just downstream of the CCSD lift station (channel mile 1.0). The Thompson rule was used, requiring 25% of the top (surface) width of the stream channel or 10% of continuous (contiguous and unbroken) top stream width be at least 0.6 feet deep. An additional condition placed on the passage criteria was that a minimum of 5 continuous feet of channel width most be at least 0.6 feet deep if the channel width was narrowed to less than 50 feet. It was determined that 25 cfs was required to maintain a minimum depth of 0.4 feet over a width of 4 feet for kelt (post-spawner) downstream passage at critical riffle # 1 and 13-15 cfs for critical riffles downstream. It was determined that 17 cfs was required to maintain a minimum depth of 0.3 feet over a width of at least 5 feet for downstream passage of juvenile smolts over critical riffle # 1 and 5.8 to 8 cfs for critical riffles downstream. However, probably a more realistic minimum of 6 cfs was required to maintain a minimum depth of 0.2 feet over a width of at least 5 feet at critical riffle # 1 and 0.2-0.3 feet depth over the other critical riffles for downstream passage of juvenile smolts, yearlings and YOY.

Recommended Streamflow Guideline to Insure Steelhead Smolt Passage to the Monterey Bay

Based on data regarding streamflow at the time of sandbar closure and data of stranded smolts after sandbar closure, the recommended guideline for insuring sufficient steelhead smolt passage to the Monterey Bay is to maintain stream inflow to the estuary at 7 cfs or greater until at least 15 May. Refer to data contained in **Table A13 in Appendix A**, which led to this recommendation.

Smolt out-migration by steelhead occurs primarily from March through May. The primary limiting factor for smolt out-migration from Santa Rosa Creek to the Monterey Bay is the early closure of the sandbar at the mouth before the migration is complete. Early sandbar closure occurs when spring stormflows are limited and low streamflow into the estuary allows closure. If smolts and kelts (adults trying to return to the Bay after spawning) are stranded in the lagoon due to early sandbar closure (in a dry year), they will most likely not survive the summer because much of the lagoon will either dry up or become too inhospitable for survival. Another limiting factor could be the dewatering of the stream channel that creates very shallow riffles or dry sections, which would be physical barriers to migration to the lagoon. From March through May, complete dewatering of the channel could occur under drought conditions with heavy well pumping.

Recommended Streamflow Guidelines to Maintain Steelhead and Tidewater Goby Habitat Through the Dry Season of Sandbar Closure and the Influence of Cambria CSD Well Pumping Upon Lagoon Inflow

Based on monitoring of streamflows as the lower portions of Santa Rosa Lagoon dried up in 2003 and 2004, the recommended streamflow guideline is to maintain stream inflow to Santa Rosa Lagoon at 0.9 cfs or greater through the period of sandbar closure in order to provide tidewater goby habitat in the lower lagoon, protect the tidewater goby population from extirpation and maintain steelhead habitat between Shamel Park and Windsor Bridge.

This inflow guideline was satisfied in only 4 of 15 years, 1993–2007. Therefore, the likelihood of this guideline being met in the future is unlikely unless additional water supplies are developed, such as seawater desalination and recycled water as described in the Draft Program-Level Environmental Impact Report for the CCSD Water Master Plan (**Robert Bein, William Frost & Associates 2008**), that would reduce the demand for Santa Rosa Creek well water from wells that reduce inflow to the lagoon. According the draft EIR, under one build-out scenario, approximately 602 acre-feet of supplemental water will be needed above current usage for 4,650 residences with a 50% quality of life increase over existing water consumption.

Yates and Van Konyenburg (**1998**) modeled groundwater in the drought years of 1988-89. At that time, two CCSD wells existed along Santa Rosa Creek- 27S/8E-2C5 and 26D1). They were up and downstream of the Burton Street Bridge. The San Simeon Creek wells generally were used in preference to the Santa Rosa wells due to their higher water quality, so pumpage from the Santa Rosa wells typically varied depending on streamflow patterns and groundwater levels in the San Simeon Basin. Unfortunately, the Yates model did not relate groundwater pumpage to the presence/ absence of surface flow in Santa Rosa Creek. He considered no-flow in the creek to be flows less than 0.5 cfs. Although the previous wells were replaced by one well adjacent the high school, due to petro-chemical contamination, the results of the 1988-89 model regarding groundwater drawdown and surface flow reductions may generally hold true in 2008.

Our fall streamflow measurements taken prior to any fall storms indicated that surface flow lost approximately 0.4 cfs in 2003 and 0.6 cfs in 2004 between the bridge crossing in Reach 1 and a point downstream in Reach 0a near the Highway 1 Bridge (**Figure 17**). This losing stream may have been caused by well pumping at the new CCSD P3 well adjacent to the high school after it came on line to replace the downstream wells that had been taken off line due to petro-chemical contamination. The winters of 2002-2003 and 2003-2004 had below average rainfall, although baseflow was augmented in the upper watershed in 2004 due to the December 2003 earthquake (**Figure 6**). In 2005 and 2006, when rainfall was above average, the stream was slightly losing in 2005 and gaining in 2006.

Agricultural pumpage caused as much as 25 ft of dry-season water-level decline downstream of the high school even though there was little agricultural pumpage in that area, according to the model simulation for 1988-89 (**Yates and Van Konyenburg 1998**). This drawdown resulted because agricultural pumpage in the upstream areas intercepted groundwater that would have flowed down-valley. Most of this down-valley flow would have occurred as streamflow. Municipal pumpage had no effect on water levels upstream of well 27S/8E-24L1, but contributed a maximum of about 33 ft of dry-season water-level decline near well 27S/8E-26D1 for the 1988-89 simulation.

Yates and Van Konyenburg (**1998**) stated that if streamflow is insufficient during winter, groundwater recharge will be incomplete and water levels will not return to the levels of the preceding winter. Recharge of the groundwater basin will be incomplete if stream discharge during winter is less than the cumulative storage deficit of the preceding dry season. Even if total stream discharge exceeded the deficit, recharge could be incomplete if the daily distribution of streamflow were such that some of it flowed out to the ocean. They noted that dry season storage deficits have been increasing in recent years because of increases in dry season pumpage. For example, the deficit from April 1 through December 20, 1988 was 660 acre-ft. The deficit equaled the minimum quantity of stream discharge needed for complete basin recharge and is the threshold at which detrimental effects of drought conditions will begin to appear.

According to Yates and Van Konyenburg (**1998**), a year with less than the minimum amount of stream discharge necessary to completely recharge the groundwater basin is likely to occur once every 18 years in the Santa Rosa Creek basin. The recurrence interval for a year with zero discharge is 32 years for Santa Rosa Creek. They added that, given that the consequences of even a single winter with incomplete recharge can be fairly severe, the consequences of two successive winters with incomplete recharge could be devastating. The likelihood of this occurrence would be an important factor in motivating the Cambria CSD to develop new water supplies, efficiently use recycled water and reduce municipal water demand.

In 2003, the lower lagoon in the vicinity of Station 1 went dry by 24 July with a stream inflow of 0.83 cfs, and the portion of the lagoon as far upstream as Shamel Park was dry by 18 September with a stream inflow of 0.3 cfs. There had been considerable sedimentation over the winter of 2002/2003, with the lagoon bed aggrading 2.4 feet at Station 1 and likely as much at Station 2. In 2004, lower portions of the lagoon began to dry up when stream inflow declined to about 0.8 cfs, with the lagoon bed at Station 1, 1.2 feet lower than 2003 conditions. The water surface elevation of the lagoon between Shamel Park and the Windsor Bridge started to decline when streamflow declined below 0.9 cfs in 2004. By 9 August 2004, when the stream inflow had declined to 0.64 cfs, Station 1 adjacent the Moonstone parking lot had completely dried up. As the lagoon shrank, tidewater goby and steelhead habitat were lost. Steelhead surface hits were observed between Shamel Park and Windsor Bridge throughout the summer of 2004, and juveniles were captured there in the fall by seining. This was the only viable steelhead habitat in the 2004 lagoon.

Tidewater gobies were detected only in very low numbers in the lagoon in fall 2003 after the lower lagoon dried up, and they appeared absent in 2004 and 2005 during both the early summer and late fall sampling and in early 2006. (They were detected in fall 2006 and June 2007 before the lagoon mostly dried up again by October 2007.) Thus, dewatering of the lower lagoon below Shamel Park had a very negative impact on the tidewater goby population, although steelhead habitat was available upstream of Shamel Park. **Table A11** provides information on minimum stream inflow to Santa Rosa Lagoon in 1993–2007.

Extent of Anadromy

Updated survey work for barriers to steelhead anadromy was beyond the scope of this report. Road crossings and potential steelhead barriers were mapped by CDFG in 2005 (refer to **Appendix C**; http://ccows.csumb.edu/scdp/data.htm). When the mainstem Santa Rosa Creek was surveyed to the Mora Creek confluence in fall 1994, no passage impediments were observed other than wide transverse riffles in Reach 0a. However, sometime after the 1995 flood, a potential passage impediment was observed in upper Reach 2. This was a stretch where an instream project had been completed, and the streambed had been graded into a wide, flat configuration between vertical, unvegetated streambanks. The stream thalweg had been destroyed, causing a critically shallow cross section during winter stormflows until a thalweg was re-established. This location was not re-visited, and the thalweg likely reformed during the wet winter of 1998. The concrete ford with laddered culvert at Ferracsi Road between Reaches 0b and 1 in the lower valley is a potential steelhead passage impediment if instream wood collects on the upstream entrance to the culvert and inside during stormflows. Sean Grauel, formerly of the Cambria CSD, Don Alley and Dave Highland of CDFG have cleared wood multiple times that has collected at the culvert through the years. However, Don Alley has no observations of this culvert being completely impassable to steelhead, and sampling data for juvenile densities upstream of the culvert has indicated that the culvert was passable for the entire period of sampling (1993–2006). However, the denil ladder through the Ferrasci Road culvert was impassable to sculpins except in rare instances, based on fish sampling through the years.

Although perennial flow exists in Mora Creek (**Figure 1**), judging from the topography, the gradient rapidly increases and passage impediments likely exist. There may be as much as ¹/₄ -mile of spawning and rearing habitat on lower Mora Creek. A resident on the East Fork (**Figure 1**) reported observations of adults and juveniles in that tributary at times. However, this tributary was dry at its mainstem confluence in every year of fish sampling 1994–2006 and the gradient steepens quickly not far from the confluence. There may be ¹/₄-mile of spawning habitat on the East Fork. It is unknown if perennial habitat exists in the East Fork. Lehman Creek has perennial flow at its mouth and is accessible to adult steelhead (**Figure 1**). Judging by the topography, Lehman Creek may have ¹/₄-mile of spawning and rearing habitat. Curti Creek (**Figure 1**) likely is inaccessible to adult steelhead due to a perched culvert at its mouth under Santa Rosa Creek Road. It has been ephemeral at its mouth during past sampling and likely has no rearing habitat. Taylor Creek in the lower valley (**Figure 1**) is likely inaccessible to adult steelhead culvert.

LIMITING FACTORS ASSESSMENT

Introduction

Several factors appear to limit distribution, survival and growth rate of juvenile steelhead (both small young-of-the-year fish and larger yearlings/ smolt sized YOY). These factors include passage impediments as shallow riffles, spawning habitat quality (proportion of fine sediment), spring and summer baseflow, amount of escape cover (provided by instream wood, undercut banks, unembedded boulders, water depth itself), water temperature and habitat depth. In this assessment the limiting factors have been identified for the Santa Rosa Creek mainstem and lagoon (**Table 5**).

Two wet years, 1998 and 2005, had the lowest YOY densities in the lower valley. In another wet year, 1995, although YOY densities were not determined, total juvenile densities were low in the lower valley, indicating that YOY densities were also low that year (**Figure 5**). In some drier years (1994, 1997 and 2002–2004), YOY densities were relatively higher in the lower valley than other years, and relatively lower in the upper canyon. These patterns indicated that in wetter years, adults had better passage opportunities through the estuary and lower valley to access the upper canyon to spawn more YOY. It also indicated that more habitat was available in the upper canyon in wetter years due to higher streamflow (especially in spring) and presumed greater insect drift and food supply. Whereas in drier years, spawners likely had a narrower window of spawning opportunity due to earlier sandbar closure (**Table 4**) and shallower passage conditions related to smaller stormflows.

The proportion of young-of-the-year (YOY) fish reaching smolt size in one growing season has been shown to increase with higher baseflow through regression analysis in the middle mainstem of the San Lorenzo River (Alley et al. 2004). Though no formal analysis has been done for Santa Rosa Creek, the same relationship between fish growth and streamflow exists in Santa Rosa Creek, especially in the lower valley.

Scale analysis of juvenile steelhead captured in fall 2006 in the lower valley verified that YOY commonly grew into Size Class II there (**Smith 2008; Appendix D**). All but one of the 15 scale samples of juveniles with standard lengths of 108 to 152 mm SL from Sites 0a-1 and 0a-2 in the lower valley were YOY. Scales from the 175 mm SL fish indicated that it was a yearling. In 2006, all except one of 49 steelhead captured up to 156 mm SL at Sites 0a-1 and 0a-2 were larger than 75 mm SL, indicating that nearly all YOY (98%) likely reached Size Class II at these sites in 2006.

For Sites 1 and 2 in the lower valley, all but 1 of 15 scale samples from steelhead between 108 and 131 mm SL long indicated they were YOY. All 10 scale samples of fish with lengths 132–156 mm SL were yearlings. The 175 mm SL fish from Site 2 was probably a yearling, also, but may have been a 2-year old with negligible growth in 2006. A 267 mm SL fish from Site 1 was at least 3 years old (all scales were regenerated to some degree). It may have been a resident (male) fish. Only 57 of the 314 captured juveniles (18%) up to 129 mm SL in length (all likely YOY) were less than 75 mm SL

(Size Class I). Likely more than 80% of the YOY reached Size Class II at these sites in 2006.

In 1995, 1996, 1998 and 2005–2006, most YOY fish at the lower 4 sites (lower valley) grew into the larger Size Class 2 by fall, thus leading to the small Size Class 1 number in those years. However, in the years with less baseflow, 1994, 1997, 1999 and 2000–2004, fewer did (Alley 2006a). For example, in 2005 in lower valley Reaches 0a through 2, approximately 99% of YOY's reached Size Class 2 compared to 44% in 2004 and 47% in 2003. In 2005 in upper canyon Reaches 3a through 7, approximately 38% of the YOY's grew into Size Class 2 compared 1% in 2004 and none in 2003. For the entire mainstem, an estimated 55% of YOY (12,500) reached Size Class II compared to 16% (6,100) in 2004. This same trend was detected in the San Lorenzo River and Soquel Creek (Alley 2006c; 2006d). In the upper canyon of Santa Rosa Creek, the growth rate of YOY's was less than that in the lower valley in all years, even in particularly high-baseflow years like earthquake-influenced 2004 and 2005. This underscored the importance of higher spring flows in wetter years that influenced growth much more than higher baseflows through the summer and fall.

Table 5. Assessment of Limiting Factors for Steelhead Salmon in Mainstem SantaRosa Creek.

Location	Sediment-			Spring and	Summer	Large
	Spawning	Rearing	Passage Impediments	Summer Streamflow	Water Temperature	Woody Material
Lagoon	No	Yes	Yes- Drier	Yes	Yes	Yes
			Years			
Mainstem-	Yes	Yes	Yes- Drier	Yes	Yes	Yes
Lower Valley			Years			
			Yes- Drier			
Mainstem –	Yes	Yes	Years	Yes	Yes- Short	Yes
Upper					periods	
Canyon						

Water Temperature as a Limiting Factor to Juvenile Rearing

Brett (1956) defined lethal temperature theoretically as that temperature at which 50% of a fish population could withstand for an infinite time. At the lethal temperature and beyond, the is a period of tolerance before death known as the resistance time (Fry 1947) Because of the resistance time, fish are able to tolerate diurnal fluctuations exceeding lethal temperatures (Fry et al. 1946). Between the upper and lower lethal temperatures is found the preferred temperature for each species. Fry (1947) defined the preferred temperature range in which a given fish population will congregate when given the choice of an infinite range of temperatures. Optimal temperature is considered that which is most beneficial to the species. Tolerable temperature is that which the species can survive at.

Lethal temperature limits and the preferred temperature of a species can be altered through acclimation to changing environmental temperatures. As the acclimation temperature increases, the lethal and preferred temperatures progressively increase (**Brett 1956**). If a fish is allowed to acclimate (adjust) to a warmer temperature, it can survive at higher temperatures. This process allows a species to survive over an extended temperature range. However, the fish's food requirements increase with temperature because its metabolic rate increases. A review of the literature concerning the effects of high temperature on steelhead-rainbow trout shows considerable variation in results between different researchers. This was partially due to differences in laboratory conditions under which the studies were conducted. Uncontrolled variables such as water chemistry, season, day length, acclimation level, physiological condition, size, age, sex, reproductive condition, nutritional state and genetic history of tested fish may influence their response to water temperature levels.

Sub-lethal effects of high temperatures on salmonids include increased metabolic rates and decreased scope for activity, decreased food utilization and growth rates, reduced resistance to disease and parasites, increased sensitivity to some toxic materials, interference with migration, reduced ability to compete with more temperature resistant species and reduced ability to avoid predation.

In Santa Rosa Creek, as in other central Coast streams, water temperature is primarily a food issue. In the lower valley, water temperature is probably not directly lethal. But higher temperatures increase food demands and restrict steelhead to faster habitats for feeding, especially above 21°C (70°C) (**Smith and Li 1983**). The lethal level for steelhead would probably be above 26-28°C (79-82°F) for several hours during the day. But this is rarely, if ever reached. Even so, warmer temperatures could result in slow growth or starvation in steelhead if food supply becomes very limited. Summer water temperatures were measured in the lagoon in 1993–2005 (**Alley 1995b-2006b**) and further upstream in 2003–2006 (**Alley 2004a-2007a**). Daily maximum water temperature often rose above 21°C (70°F) in the lagoon and upstream. Daily temperature maxima commonly rose into the 23-24°C (73-75°F) range in the lower valley. These lower mainstem reaches often provide habitat for large yearling steelhead and fast-growing YOY. The high growth rate in the lower valley mainstem leads to relatively high

densities of smolt-sized juveniles in some years and a substantial proportion of the smolt-sized (=>75 mm SL) steelhead in the watershed.

Water temperature is partially controlled by air temperature and stream shading. Stream shading is affected by topography (canyon versus valley), sun angle (daily and seasonal), stream orientation (east-west or north-south), streamflow (less water heats up quicker than more water), tree canopy (over the stream and on surrounding slopes), tree species (deciduous or evergreen, broadleaf or needle leaf) and seasonality of leaf production and leaf-drop by deciduous riparian trees. The volume of streamflow determines the amount of heat from solar radiation and air contact that is required to increase water temperature. The more flow, the slower the increase in daily temperature and the lower the maximum daily temperature for any given amount of sunlight and shading. The creek will warm up faster in unshaded reaches on a hot summer day during a drought compared to the creek in summer after a wetter winter, given the same amount of shading and air temperature.

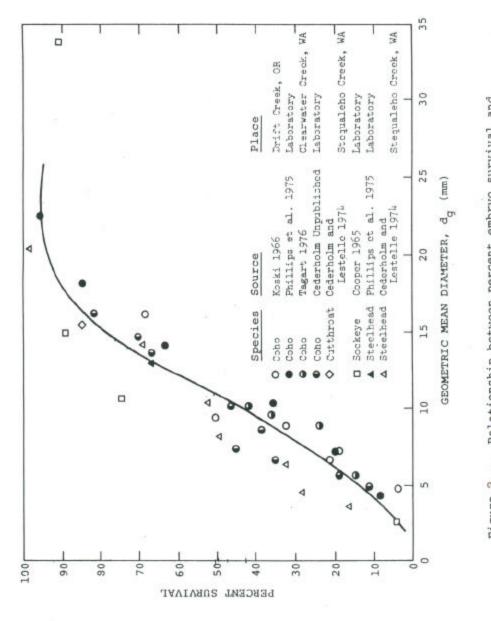
Fishes are poikilotherms, meaning their body temperatures conform to the temperature of the water they inhabit. As water temperature increases, fishes' bodies warm up, chemical reactions (metabolism) go faster inside their bodies, their ability for activity increases to a point, they consume more oxygen and they must consume more food to support higher metabolic rates. But higher water temperatures that occur in the lower valley of Santa Rosa Creek and lagoon speed up primary (plant life) and secondary (aquatic insects) productivity that result in more food available to fish. Juvenile steelhead can digest food faster at warmer temperatures, allowing them to process more food and grow faster to reach smolt size the first year, so long as they can find enough food.

Sediment as a Limiting Factor

Input of fine sediment to the stream channel degrades salmonid spawning and rearing habitat. Adult steelhead salmon bury their eggs in the streambed gravels in nests (redds) in winter and spring, where they incubate for weeks before fry emerge as much as 2 months after the eggs were spawned. Excessive fine sediment in the absence of coarse gravel fills the interstitial spaces and prevents water from move through the gravel to provide adequate oxygen to the eggs and sac-fry. As percent fine material increases, egg survival declines. Also, with spawning areas dominated by fine material, scour of redds by later storms is highly likely. Water depth and hiding places (under wood, boulders, undercut banks) are important for juvenile salmonids to avoid predators. High sediment inputs degrade rearing habitat because it shallows pools and embeds larger cobbles and boulders to reduce escape cover. Suspended sediment also creates high turbidity that prevents juvenile salmonids from efficiently feeding on drifting insects, thus reducing growth rate.

The Santa Rosa Creek drainage is subject to episodically high inputs of fine sediment during large flood events, such as occurred on 10 March 1995. Sediment enters the stream primarily from streambank erosion and landslides.

Sedimentation during large floods tends to create wide riffles that become critically shallow passage areas for migrating adult steelhead. Therefore, sedimentation can increase the minimum streamflow required for successful migrational passage of


steelhead adults and juvenile smolts. D.W. ALLEY & Associates performed a steelhead passage study in Reach 0a in lower Santa Rosa Creek in 1993 (Alley 1993b). Refer to the summary of results in the adult passage section below.

When embeddedness (the amount that larger particles are buried in fine sediment) of cobbles and boulders in the streambed to greater than 25%, it limits the escape cover available under larger substrate. The upper canyon reaches were the only ones that contained cobbles greater than 250 mm (10 inches) in diameter that could provide escape cover. Embeddedness in upper canyon step-runs and runs was 35% or greater (**Figure 21**). Embeddedness in upper canyon pools was 50% or greater in 2006 (**Figure 22**). Therefore, embeddedness was limiting.

Stream sedimentation from erosion destroys spawning and rearing habitat. **Figures 23 and 24** show the relationships between particle size and survival of embryos in the spawning redd and between percent sand in the spawning redd and fry emergence survival. Survival of both life stages is increased with larger particle size and less sand. Sediment also fills pools and buries objects of cover. Juvenile steelhead do best where deep pools exist that possess overhanging tree branches, boulders and large wood for them to hide under.

Figure 23. Relationship between percent embryo survival and geometric mean diameter of the spawning substrate.

(from Shirazi et al. 1981).

Figure 24. Relationship between average percent fry emergence survival and percentage of 1-3 mm sand.

(adapted from Hall and Lantz 1969)

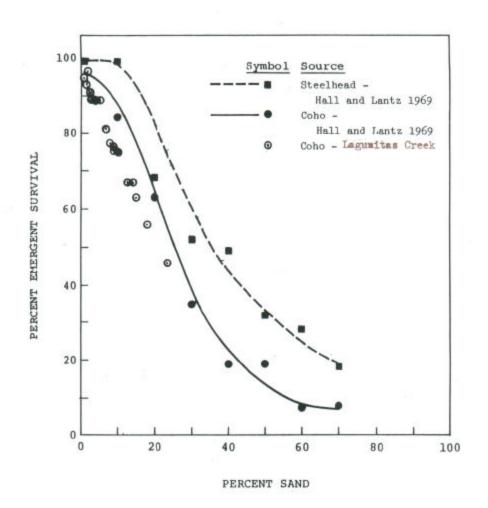


Figure 3. Relationship between average percent fry emergence survival and percentage of 1-3 mm sand (adapted from Hall and Lantz 1969). Values for this study were estimated from the relationship developed by Phillips et al. (1975) and were based upon the percentage of all materials less than 3 mm diameter in the mounds of 17 coho salmon redds in Lagunitas Creek, 1983/84. Presented im Bratovich and Kelley, 1988.

69

Instream Wood as a Limiting Factor

Large instream wood (previously called large woody debris- LWD) in the active channel is important for providing structure necessary for development of pools and backwaters, which are vital summer and overwintering habitat for juvenile steelhead (Oncorhynchus *mykiss*) (Smith 2000). It serves important habitat functions for other species, such as California red-legged frog (Rana aurora draytonii). Large wood (1-foot in diameter and 20 feet or more in length) and smaller wood that accumulate in pools are extremely important sources of escape cover for juvenile salmonids. The highest quality large wood includes downed trees or logs with their rootwads attached, whose lengths are about 1.5 times the bankfull width of the channel or more and positioned with a sufficient proportion of their lengths on the streambank, or otherwise well-anchored, so as to provide stability during high flows as well as scour of the channel bed. The quality of pools formed by large instream wood can vary considerably with the size (length, diameter), type of wood (single or multiple trunks or rootwads) and its position within the channel. Complex pools formed from large logs or rootwads, which extend out into the channel, can provide a variety of water velocities in summer and excellent escape cover. These complex pools are the preferred summer habitat for vearling-sized steelhead. Wood clusters also provide extremely important summer foraging habitat for California red-legged frogs and western pond turtles (Clemmys marmorata).

The backwaters and pockets formed by large, current-obstructing wood can also provide refuges during stormflows, and may provide much of the crucial overwintering habitat necessary to prevent heavy loss of juvenile steelhead in wet winters during high stormflows (**Smith 2000**). These winter backwater areas may actually be stagnant, shallow or even dry in summer. However, they may provide important habitat for overwintering fish and recently emerged steelhead fry in spring. They may also provide important reproductive habitat for amphibians, including newts (*Taricha* spp.), Pacific tree frogs (*Hyla regilla*) and California red-legged frogs.

Wood clusters can produce impediments or complete barriers to fish movement, but the majority of clusters are not significant impediments (**Smith 2000**). In weakly entrenched channels, the stream can usually cut around wood clusters. In sandy channels, scour under the cluster usually provides passage. In addition, during high flows a portion of the wood cluster may float. In steeper, entrenched gravel/cobble channels the wood cluster may plug with coarse sediment, producing a pronounced step (grade control) or falls. Even in those cases, removing only a few key pieces may provide passage around the cluster at regular winter flows. In headwater reaches, these grade control clusters may store significant sediment behind, which may prevent sedimentation downstream and outweigh the passage benefit of rearranging or removing the wood cluster. However, if wood clusters are causing lateral (sideways) scour into streambanks with significant bank erosion or landsliding, their modification may be warranted, particularly if the toe of the eroding bank or slide can be protected with rearrangement of the wood and fish cover can be maintained.

Steeper, narrow, entrenched channels have high velocities during floods, resulting in poorer wood retention and less complex configurations of the wood that remains (**Smith 2000**).

Alders provide a more continuous supply of in-channel wood, but they are relatively small and have relatively short-term benefits because of their small size and low durability (**Smith 2000**). They break up during flood flows and rot quickly. Other broadleaf trees, including bigleaf maple, cottonwood, sycamore, California bay and oak also have small trunk diameters and short longevity in the stream. Alders may create much of the pool habitat in wood-scoured pools and much of the wood clusters.

Santa Rosa Creek has a history of massive influxes of wood during large flood events, such as the March 1995 flood. This is typical of coastal watersheds, where recruitment of wood into the channel may be sporadic and occurs mainly during large flood events. At any one time, the majority of the wood within the channel may provide little or transitory habitat benefit, and individual pieces may shift locations, orientation and clustering. However, the total amount of wood available is important in order to maintain the number of beneficial habitat features. The habitat value of new, naturally recruited wood and much of the old wood can be increased relatively cheaply by repositioning it in the channel and flood plain. Since much of the cost of habitat improvements is from transporting wood to the site and into the channel, it makes sense to treat episodic flood-year wood as a "windfall" where nature has done most of the work.

Streamflow as a Limiting Factor for Rearing of Juvenile Steelhead

Streamflow as a limiting factor is the primary element that defines total available habitat for salmonids. It is a limiting factor affecting the migratory success of adults reaching spawning habitat and smolts reaching the Monterey Bay. Streamflow determines the ability of the stream to move sediment and the force to scour pools and spawning beds, thus affecting habitat quality and microhabitat features. These microhabitat features include habitat width, water depth, water velocity, surface turbulence (affects the amount of cover), rate of insect drift as food for drift-feeding salmonids and, to some degree, water temperature and oxygen concentration.

Streamflow plays an important role in the balance between food availability and growth for steelhead. The quantity of streamflow not only dictates the amount of habitat available to fish and aquatic insects (juvenile steelhead's preferred food) but also acts as a "conveyor belt" for delivery of food to feeding steelhead. The more streamflow that is available in spring and summer, the more food that is available to be delivered to the fish. As summer flows recede and less habitat becomes available to fish and aquatic insects, the conveyor belt of food slows down. Water temperatures also rise as flows recede in the summer months, causing higher metabolic rates for fish and increased food requirements.

The result of interactions between streamflow, habitat availability, and the conveyor belt of food is higher growth rates for fish in the spring months and maintenance or reductions in fish size in the summer and fall months. The size of smolts reaching the ocean plays an important role in ocean survival and probability of them returning as adults. Larger smolts tend to have higher survival rates in the ocean because they can swim faster and avoid predators more easily than smaller ones. Also, YOY fish that can smolt after one growing season need only to over-winter once instead of twice in freshwater, greatly reducing their mortality rate prior to smolting. Therefore, growth rate is very important.

In addition to requiring adequate food for growth, juvenile steelhead have specific habitat requirements, essential for survival. These include fastwater feeding areas to take advantage of food moving along the "conveyor belt" and locations to hide from predators (referred to as escape cover) and find refuge from high winter flows. Salmonids feed on drifting insects that have either dropped into the stream as adults from streamside vegetation or have been produced in riffles and runs as larvae. Generally, the faster the water velocity, the more insect drift that may be fed upon. Juvenile densities become reduced if fastwater areas become too shallow due to reduced streamflow or sedimentation that has filled in deeper pocket water. Escape cover can include deep pools, undercut banks, side channels, large unembedded cobbles and boulders, rootwads, large wood, and overhanging vegetation. Streams that lack adequate escape cover may have low fish densities, regardless of the amount of food available.

Many other factors besides streamflow affect microhabitat quality. Streamflow in combination with the stream's geomorphic features affect spawning habitat and rearing habitat in different ways. Scour objects (wood, large boulders, bedrock outcrops) affect pool depth and escape cover. Other geomorphic features that influence microhabitat include steepness of the streambank, degree of channel entrenchment, undercut streambanks, amount of fine sediment deposition, substrate size composition, substrate embeddedness, stream gradient, frequency and length of shallow fastwater habitat versus slower deepwater habitat and the hydraulic features of transitional breaks between habitat types. Still other factors are riparian tree composition (species and size), proximity of riparian trees to the streambank (affecting frequency of undercut streambanks) and tree canopy (affecting visual clarity for feeding, food productivity and water temperature). These microhabitat features impact each phase of fish life history.

With seasonal rainfall, streamflow is often a scarce resource for human systems where there are water demands for municipal, agricultural, and industrial uses, as well as fire protection and recreation. Human demands for water compete with the need to maintain streamflow for biological systems. Human water demand also peaks during summer and early fall when streams are experiencing their lowest flows of the year. Due to the low summer streamflow in most streams, streamflow is a limiting factor for steelhead production even in the absence of human use of this valuable resource. When water extractions are added, streamflow becomes a more severe limiting factor.

In Santa Rosa Creek, the seasonal water supply and demand have resulted in the need for groundwater pumping. According to Yates and Van Konyenburg (**1998**), the water supply for the Cambria area is vulnerable to drought because the groundwater basins of San Simeon and Santa Rosa creeks provide the only supply of water during the dry season and because groundwater storage capacity is small relative to the demand for water. The amount of usable ground-water storage capacity above sea level is about

3,800 acre-ft in the Santa Rosa Basin. Total annual pumpage during 1988-89 was about 30 percent of the storage capacity of the basin (**Yates and Van Konyenburg 1998**). Water storage in the aquifer at the beginning of the dry season is similar each year, but the length of the dry season varies. If the dry season were exceptionally long and pumping continued undiminished, wells could go dry or subsidence or seawater intrusion could occur before recharge begins the following winter. Land subsidence and ground deformation occurred in Cambria in the summer of 1976 and could occur again if the minimum dry-season water level is close to or less than the record low level reached that year (**Yates and Van Konyenburg 1998**). Partly for these reasons, there are legal limitations on annual and seasonal quantities of municipal pumpage for the basin.

The impact of water extraction on fish populations depends on timing, magnitude, and location of the surface diversion/ well. The timing of water extraction is important in determining which salmonid life stage is impacted. The magnitude is important in terms of amount being extracted and what remains for bypass.

In looking at streamflow measurements down the mainstem through the various reaches in fall of multiple years, the stream appears to gain streamflow from Reach 6 down to Reach 3b (except in 2004 after the 2003 earthquake) (**Figures 1 and 17**). The stream loses streamflow from Reach 3b to 3a (except in 1999 after 2 storms). Prior to the earthquake, there was an approximate 2-mile stretch of dry stream channel in upper Reach 2. In 2004, this normally dry stretch had streamflow. In 2005 and 2005, it had approximately 0.5 miles of dry streambed. In 1998, the stream gained streamflow from Reach 1 to 0a in 1998, 1999 (after 2 storms) and 2006. It lost streamflow from Reach 1 to 0a in 2001–2005. The large decrease in streamflow from Reach 1 to Reach 0a in 2003 and 2004 indicated that groundwater pumping had a significant impact on surface flow. In October 2007 prior to rainfall, streamflow upstream of the Ferrasci Road ford in lower Reach 1 was visually estimated at 0.5 cfs, and streamflow was absent in upper Reach 0a at the Main Street Bridge and downstream.

Yates and Van Konyenburg (**1998**) modeled the Santa Rosa Creek groundwater basin for summer 1988 (a drier year), producing a calibration simulation that predicted that the stream between the high school (Reach 0b) and the Highway 1 Bridge downstream (Reach 0a) was dry from July through mid-December when agricultural and municipal pumping were included in the model. Without agricultural pumpage, but with municipal pumpage retained in the model for 1988, the simulation predicted that a trickle of baseflow emerged near well 27S/9E-19H2 and flowed continuously in all months except October when a short reach near well 27S/8E-27H1 (near Highway 1) went dry. Since 1998, surface flows continued year round through Reaches 0a and 0b until fall 2007, when the stream channel went dry.

The location is important in understanding the cumulative effect of multiple diversions on downstream habitat conditions and population numbers. In a very dry year, well pumping may reduce streamflow enough to dry up most of Reach 0a except a few isolated pools and may reduce the lagoon to small, stagnant, warm pools, eliminating all steelhead habitat and nearly all tidewater goby habitat. This dewatering occurred in 2007 and was

likely hastened and increased by well pumping. Though stream inflow continued through the dry season, in 2003 and 2004, the lower lagoon went dry at Stations 1 and 2, with only the upper lagoon between Shamel Park and Windsor Bridge providing habitat. The lower lagoon had become more sedimented in 2003, making it more prone to dewatering in both years. The tidewater goby population was very low in fall 2003 and not detected in fall 2004 or summer and fall 2005. It was next detected in fall 2006 and early summer 2007. The loss of lagoon habitat in 2003 and 2004 and was likely caused by well pumping. The dewatering of the lagoon in 2007, except for 2 small pools at Stations 1 and 2, was likely hastened and was at least partially caused by well pumping.

Water diversion, particularly in drier springs, may hasten the timing of sandbar closure at the creek mouth. The sandbar at the mouth of Santa Rosa Creek closes each year in the spring/ early summer when stream outflow is insufficient to maintain a channel through the beach. The minimum streamflow to maintain an open channel varies with the year, with records of the sandbar closing at streamflows between approximately 2 and 12 cfs. It typically closes at streamflows less than approximately 7 cfs. Steelhead smolts and spawned kelts are out-migrating to the Monterey Bay in the spring. If the sandbar closes too early, smolts and kelts are trapped in the lagoon, which in most years does not provide adequate habitat for survival until the next rainy season. Years in which many trapped smolts and kelts have been observed in the lagoon were 1994, 1997, 2002, 2007 and 2008.

Streamflow as a Limiting Factor in Adult, Kelt and Smolt Passage

As mentioned in the life history description, most adult steelhead migrate up their natal streams from January through early May. Adult salmonids typically migrate as stormflow begins to subside from any storm event. Migration occurs primarily at night, though light is required to negotiate obstacles. The likelihood of spawning redds (nests) being scoured or smothered in sediment declines and percent egg survival generally increases in an upstream direction in any watershed. Usually quality of spawning gravel increases upstream. Therefore, spawning success is generally highest in the upper reaches of the watershed. A spawning obstacle may be a partial impediment that is passable if the fish reaches it at a time when streamflow is high enough to allow passage but not too high to create a velocity barrier. Fish may congregate below impediments until stormflows are right, increasing their risk to predation and angling and delaying their egg laying. When adult salmonids are impeded or entirely blocked by obstacles to upper stream reaches, the number of young-of-the-year fish annually produced may be significantly curtailed. The cheapest way to increase the juvenile salmonid population is often by improving passage over obstacles when significant spawning and rearing habitat exists upstream.

Benefits of a Properly Functioning Riparian Zone

A properly functioning riparian corridor will reduce limiting factors, such as warm water temperature, excessive stream sedimentation and the shortage of large wood recruitment to the stream channel. There is a growing body of evidence that buffers along streams are necessary to protect aquatic ecosystems from potential disruption and degradation. The purpose of riparian buffer strips is to allow natural interactions between riparian and aquatic systems to be sustained so that appropriate instream ecosystems, sediment regimes and channel forms can be maintained. Reid and Hilton (**1998**) enumerated specific roles of riparian zones in relation to the instream environment as follows:

- Maintenance of the aquatic food web through provision of leaves, branches and insects
- Maintenance of appropriate levels of predation and competition through support of appropriate riparian ecosystems
- Maintenance of water quality through filtering of sediment, chemicals and nutrients from upslope sources
- Maintenance of an appropriate water temperature regime through provision of shade and regulation of air temperature and humidity
- Maintenance of bank stability through provision of root cohesion on banks and floodplains
- Maintenance of channel form and instream habitat through provision of wood and restriction of sediment input
- Moderation of downstream flood peaks through temporary upstream storage of water
- Maintenance of downstream channel form and instream habitat through maintenance of an appropriate sediment regime

According to Reid and Hilton (**1998**), riparian zones are important to adjacent instream ecosystems because the strongly control the availability of food, distribution of predators, form of channels and distribution of temperatures (**Murphy and Hall 1981, Naiman and Sedell 1979, Theurer and others 1985, Zimmerman and others 1967**).

Riparian buffer strips in timber harvest zones have been recommended in the past because they have been demonstrated to protect instream habitat (**Erman and others 1977, Murphy and others 1986, USDA 1994**). Riparian buffer strips have become a widely accepted way to help protect aquatic ecosystems and water quality from the effects of upslope activities. According to Reid and Hilton (**1998**), the Forest Ecosystem Management Assessment Team (FEMAT) recommended the establishment of riparian reserves to help sustain the proper functioning of processes that influence habitat, and thus to provide for habitat requirements for coho salmon and aquatic species. Because steelhead habitat requirements are similar to those of coho salmon, riparian reserves would offer them the same protection. Such buffer zones were recommended for Federal lands in the Pacific Northwest (Femat 1993). The National Marine Fisheries Service (Spence and others 1996; in the ManTech report) made similar recommendations for the design of Habitat Conservation Plans on non-federal lands in the same region. Under the Northwest Forest Plan, prescribed buffer widths for fish-bearing streams are a minimum of two tree heights' width, and the ManTech report concluded that buffers equal to or greater than one tree height's width were necessary, depending on which riparian functions were to be maintained. The Nevada Ecosystem Project recommended a minimum of a one-tree-height buffer (Kondolf and others 1996). According to Reid and Hilton (1998), all of these recommendations specify that management activities be avoided within riparian zones unless they are compatible with the restoration and preservation of appropriate riparian and aquatic function.

The National Marine Fisheries Service considered riparian habitat to be critical habitat for the federally Threatened steelhead. Removal of riparian canopy over a stream is considered an adverse modification and is subject to review by the National Marine Fisheries Service (NMFS) under the Endangered Species Act for projects requiring Army Corps 404 permits for modifications to stream channels. The National Marine Fisheries Service typically recommends in short-term Habitat Conservation Plans that an Aquatic Protection Zone (APZ) be established from the outer edge of the bankfull channel a distance horizontally equivalent to the site potential tree height on Class I and II watercourses in order "to protect the functions and processes of the riparian zone." Within this APZ the National Marine Fisheries Service typically recommends that, other than road related activities, no management operations be allowed within the APZ or adjacent bankfull channel. For Class III watercourses, the National Marine Fisheries Service typically recommends 50-foot Aquatic Management Zones (AMZ) for slopes <30% and a 100-foot AMZ for slopes >30% where conifer tree size distributions will be left representative of the pre-management stand, with no management operations within 30 feet of the outer edge of the AMZ or adjacent bankfull channel.

Brown (**1991**) stated that the mass soil movement in forest watersheds is often triggered by road construction. He stated that one landslide or slump can place several times more sediment into a stream than is normally carried during a year. Roads made by cut and fill operations on slopes create roadbeds of potentially unstable fill material. These roads may change drainage patterns and sometimes focus runoff onto unstable slopes below, especially if the roads are not out-sloped.

Erosion, sedimentation and habitat degradation may be expected to increase in association with increased road building in suburban areas, with increased impermeable surfaces that lead to higher stormflow from increased runoff and less percolation, with continued land-use management without adequate protection of the riparian corridor and lack of maintenance of erosion control measures, with increased clearing of forested areas for human development and increased use of unpaved road surfaces, with continued clearing of streamside vegetation by streamside residents and with continued removal or cutting of instream large woody material.

GROUNDWATER HYDROLOGY

The Santa Rosa Valley Groundwater Basin lies under the Santa Rosa Valley. Its surface area is 4,480 acres (7.0 square miles). The groundwater storage capacity of the basin was estimated at 24,700 acre-feet by the California Department of Water Resources (1975). The groundwater basin is bounded on all sides by impermeable rocks of the Jurassic to Cretaceous age Franciscan Group except for the Pacific Ocean to the west. The valley is drained primarily by Santa Rosa Creek, with Green Valley and Perry creeks to the south. The groundwater contains concentrations of dissolved solids, chloride, iron and manganese in some locations that exceed drinking water standards (Yates and Van Konvenburg 1998). Annual rainfall averages from approximately 20 inches near the coast to approximately 26 inches at the eastern end of the valley floor to more than 40 inches at the headwaters (Yates and Van Konvenburg 1998). Groundwater exists in alluvial deposits with an average specific yield of 17% (California Department of Water Resources 1975). It is confined and generally flows westward to the ocean. The alluvial deposits are about 100 feet thick under the center of the valley and more than 120 feet thick at the coast (Yates and Van Konyenburg 1998). These deposits are made up of gravel, unconsolidated sand, silt and clay. Basin recharge is primarily by percolation of streamflow with some infiltration of rainfall and excess irrigation flow (California **Department of Water Resources 1958**).

There is likely seasonal fluctuation in groundwater level, as indicated in 1988 when it declined 1 to 7 feet/ month from February through August and slowed or even reversed the decline at most wells during November and early December (**Yates and Van Konyenburg 1998**).

Yates and Konyenburg (**1998**) simulated a groundwater budget from their model for April 1988 through March 1989 during a dry period. They estimated 140 acre-feet/year recharge from rainfall, 470 acre-feet/year from creek flow, 370 acre-feet/year from subsurface inflow, with 60 acre-feet/year subsurface outflow to the ocean. Agricultural pumpage was estimated at 890 acre-feet/year, with recharge to the basin of 330 acrefeet/year from irrigation-return flow. Municipal and rural pumpage at the time was estimated to be 260 acre-feet/year, while phreatophyte (vegetation) transpiration (evaporation through the leaves) was estimated at 160 acre-feet. Some cropland has been converted to drip irrigation, and new orchards and vineyards have appeared since 1988 (**Alley personal observation**).

In summer, Santa Rosa Creek acts locally as a drain for groundwater. Yates and Konyenburg (**1998**) were able to follow subsurface flow by noting changes in groundwater level in their study with numerous test wells during a drought. They noted that because of subsurface flow obstructions, the water table intersected the streambed near a certain well (27S/9E-19H2) and emerged as streamflow in the creek. During the summer of 1988, this flow was several cubic feet per second and continued downstream as far as another well (27S/8E-24N2). During the summer of 1989, flow eventually receded to the vicinity of another well 27S/8E-24J4.

It seems likely to conclude that well pumping was influencing groundwater level and surface flow during their work. The first reach of the creek to dry up during streamflow recession is important from a fisheries management perspective. After each of two streamflow peaks in December 1988 (presumably resulting from storm events), one of the first reaches of Santa Rosa Creek to go dry was the reach adjacent to well 27S/8E-27H1 (**Yates and Van Konyenburg 1998**).

Agricultural pumpage caused as much as 25 ft of dry-season water-level decline downstream of the high school even though there was little agricultural pumpage in that area, according to the model simulation for 1988-89 (**Yates and Van Konyenburg 1998**). This drawdown resulted because agricultural pumpage in the upstream areas intercepted groundwater that would have flowed down-valley. Most of this down-valley flow would have occurred as streamflow. Municipal pumpage had no effect on water levels upstream of well 27S/8E-24L1, but contributed a maximum of about 33 ft of dry-season water-level decline near well 27S/8E-26D1 for the 1988-89 simulation.

Yates and Konyenburg (**1998**) noted that the water supply for the Cambria area is vulnerable to drought because the groundwater basins provide the only supply of water during the dry season and because groundwater storage capacity is small relative to the demand for water. They stated that the amount of usable groundwater storage capacity above sea level is about 3,800 acre-ft in the Santa Rosa Basin. According to them, there had been a fourfold increase in municipal pumpage between 1960 and 1988 due to the rapid growth in population in Cambria. Total annual pumpage (agricultural and municipal) during 1988-89 was about 30 percent of the storage capacity of the basin.

Yates and Van Konyenburg (**1998**) stated that if streamflow is insufficient during winter, groundwater recharge will be incomplete, and water levels will not return to those of the preceding winter. Recharge of the groundwater basin will be incomplete if stream discharge during winter is less than the cumulative storage deficit of the preceding dry season. Even if total stream discharge exceeded the deficit, recharge could be incomplete if the daily distribution of streamflow were such that some of it flowed out to the ocean. They noted that dry season storage deficits have been increasing in recent years because of increases in dry season pumpage. For example, the deficit from April 1 through December 20, 1988 was 660 acre-feet. This deficit equaled the minimum quantity of stream discharge needed for complete basin recharge and is the threshold at which detrimental effects of drought conditions will begin to appear.

Yates and Van Konyenburg (**1998**) stated that land subsidence and ground deformation occurred in Cambria in the summer of 1976 during drought and could occur again if the minimum dry-season water level is close to or less than the record low level reached that year. Ground fractures developed on the north side of Santa Rosa Creek in the commercial district near Burton Avenue. The building formerly used by the Cambria CSD on the north side of Santa Rosa Creek had to be abandoned due to foundation instability (**Alley personal observation**). Cleveland (**1980**) attributed the subsidence to a trend of increasing water use and below-average recharge in the early 1970's, combined with the short-term effects of the drought of 1975-76. An additional factor was that in late 1972, individual septic systems in Cambria were replaced with a central sewer system,

which decreased the quantity of local groundwater recharge. By decreasing the quantity of local recharge, sewering caused water levels to decrease faster in response to pumping than they would have otherwise.

According to Yates and Van Konyenburg (**1998**), a year with less than the minimum amount of stream discharge necessary to completely recharge the groundwater basin is likely to occur once every 18 years in the Santa Rosa Creek basin. The recurrence interval for a year with zero discharge is 32 years for Santa Rosa Creek. They added that, given that the consequences of even a single winter with incomplete recharge can be fairly severe, the consequences of two successive winters with incomplete recharge could be devastating. The likelihood of this occurrence would be an important factor in motivating the Cambria CSD to develop new water supplies, efficiently use recycled water and reduce municipal water demand.

Yates and Van Konyenburg (**1998**) noted that streamflow in Santa Rosa Creek at the Windsor Boulevard Bridge (just above the lagoon) was greater than the flow at the upstream Highway 1 Bridge, on several occasions during low-flow conditions. This gain was less than 1 cfs, but could make a significant difference to inflow to the lagoon and the viability of habitat there. They surmised that this gain in flow was probably caused by groundwater that was forced to the surface by a bedrock constriction in the aquifer.

WATER CONSERVATION RECOMMENDATIONS FOR NON-AGRICULTURAL LAND USES

The following list of water conservation recommendations is based on information provided at Internet links (listed below) of the Cambria Community Services District, California American Water Company (Monterey County) and the Soquel Creek Water District (Santa Cruz County). More detailed information and links are provided in the sections following the list.

- 1. Provides a free water-wise house call to customers. The water district representative should survey the customer's existing water use equipment and suggest improvements to decrease water usage.
- 2. Install low-flush toilets (1.5 gallon-per-minute or less).
- 3. Install self-regenerating water softeners.
- 4. Install hot water recirculating systems.
- 5. Install pressure regulators on the incoming water supply (set at a maximum of 50 pounds per square inch gage and locate close to water meter).
- 6. Install 70-gallon maximum capacity bathtubs, Jacuzzi and Whirlpool spas for units designed to be drained after use
- 7. Install showerheads with maximum flow of 2 gallons-per-minute at 50 pounds of pressure, equipped with shut-off valve near showerhead.
- 8. Install kitchen faucets with aerator that allows a maximum flow of 2 gallons-perminute at 50 pounds of pressure.
- 9. Install lavatory faucets that allow 0.5 gallons-per-minute at 50 pounds of pressure.
- 10. Limit showers to 5 minutes. Turn off shower while lathering up. Take quick showers instead of baths.
- 11. Do not leave water running while shaving or brushing your teeth.
- 12. Run dishwashers and clothes washers only when full. Use water saver cycles when possible.
- 13. Substitute alternatives to turf lawns, such as drought-tolerant trees, shrubs, boulders, mulched areas, pathways and other materials.
- 14. If possible, choose native plants that thrive without irrigation, or plants with needs that match the climate and soil conditions. Natives are easy to grow and have adapted to the local climate and pests.

- 15. Install drip irrigation systems for shrubs and trees and always locate turf (preferably minimal or non-existent) on a separate valve.
- 16. Add organic matter to the soil before you plant to increase water retention and penetration.
- 17. Plant in the fall or winter, or early in spring after the last frost. Dig the hole large enough for the plant's roots. Prepare the soil by loosening and adding compost and mulch to keep roots moist.
- 18. Water drought-tolerant plants for their first two or three seasons. Drip irrigation and water soaker hoses are preferable to sprinklers.
- 19. Spread two to three inches of mulch around trees and shrubs to keep soil cool, enhance water retention and retard weed growth. Mulch can include rocks, wood chips, bark, or shredded wood.
- 20. Group plants according to their water and sun needs so that each area receives the proper amount.
- 21. Set your irrigation system to match the permeability of the soil. If soils are clay, reduce irrigation amounts and intervals to prevent standing water and runoff. Keep watering intervals on slopes short to prevent water waste from runoff.
- 22. Make seasonal irrigation adjustments and efficiency checks to save water. As air temperatures and day length change, so do irrigation requirements.
- 23. Do not allow water to run off onto other properties or the street.
- 24. Do not leave watering/irrigation of landscaping unattended.
- 25. Do not irrigate landscape between 10:00 a.m. and 6:00 p.m. Water landscaping during the coolest part of the day to reduce evaporation.
- 26. Irrigate the minimal amount to maintain landscaping.
- 27. Do not wash down sidewalks, driveways, parking lots, etc. Use a broom.
- 28. Repair leaks in plumbing or your water distribution system within 8 hours of discovery.
- 29. Wash cars with a bucket and only rinse with a hose that has a shutoff nozzle.
- 30. Restaurants should not serve water to customers unless requested.

- 31. Provide to businesses restroom mirror decals that ask guests to contact the management if they notice water leaking and remind them to use water wisely.
- 32. Provide to restaurants table tents and menu decals that explain to guests the businesses' interests in conserving water. The materials ask customers to choose for themselves as to whether they would like water or not.
- 33. Provide to hotels/ motels linen choice cards that go on the vanity and bedside tables that let the guest choose to use the towels and linens again on multiple day visits.
- 34. Make available water-wise garden mini-grants to non-profit organizations and schools to help fund innovative projects designed to encourage public participation in water conservation.
- 35. Do not use potable water for dust control or construction activities.

NON-AGRICULTURAL WATER CONSERVATION PROGRAMS AND RECOMMENDATIONS

Information and Incentives Provided by the Cambria Community Services

Source Cambria Community Services District Internet link http://www.cambriacsd.org/Library/Publications/PDF/CCSD_Nov02_FINAL.pdf.

As of 2002, the District continued to offer \$150 rebates on installation of Energy Star washing machines and 1.0 gallon-per-flush toilets. A \$100 rebate was offered on 1.5 gallon-per-flush toilets.

The following are key guidelines governing the retrofit rebate program in Cambria:

- Only one rebate per service address per type of fixture will be allowed in any five-year period.
- Washing machine locations will be tracked if applicants move from one address to another within the Cambria Community Services District.
- Only new fixtures purchased after 1/24/02 are eligible for rebate.
- Original purchase receipts must be provided to CCSD for copying.
- Toilet retrofits must be pre-inspected to verify size and number of toilets to be replaced, and final-inspected after installation.
- Toilets for retrofit due to home resale do not qualify for rebates.
- Applicant is responsible for timely disposal of removed fixtures

Install the following water-saving fixtures (optional for existing structures and mandatory for new structures):

1. Low-flush toilet (1.5 gallon-per-minute)

- 2. Self-regenerating water softener
- 3. Hot water recirculating system
- 4. Pressure regulator on incoming water supply (set at a maximum of 50 pounds per square inch gage and locate close to water meter)
- 5. 70-gallon maximum capacity bathtubs, Jacuzzi and Whirlpool spas for units designed to be drained after use.
- 6. Showerheads with maximum flow of 2 gallons-per-minute at 50 pounds of pressure, equipped with shut-off valve near showerhead
- 7. Kitchen faucets with aerator that allows a maximum flow of 2 gallons-per-minute at 50 pounds of pressure.
- 8. Lavatory faucets that allow 0.5 gallons-per-minute at 50 pounds of pressure.

The Cambria Community Services District also recommends use of native vegetation and provides guidelines on water-conserving landscaping. They recommend the planting drought-tolerant plants, minimizing or avoiding turf, and landscaping with rocks, bricks, gravel, wood and other materials that do not require water.

The Cambria Community Services District provided design basics for landscaping:

1. Planning and design. Taking the time to plan your garden for water efficiency and aesthetics is important. Using the services of a professional often saves time and money in the long run.

2. Turf. Turf is the thirstiest of all landscape components. Alternatives include drought-tolerant trees, shrubs, boulders, mulched areas, pathways and other materials.

3. Efficient irrigation. Many recent innovations in irrigation technology enable slow and selected water application. In selecting an irrigation system, look for words like "low gallonage" or "low application rate." Consider drip systems for shrubs and trees and always locate turf (preferably minimal or non-existent) on a separate valve.

4. Soil analysis. The addition of organic matter to the soil before you plant increases water retention and penetration.

5. Mulching. Two to three inches of mulch will keep soil cool, enhance water retention and retard weed growth. Mulch can include rocks, wood chips, bark, or shredded wood.

6. Drought tolerant plants. There are numerous native and Mediterranean-climate plants that thrive in the Cambria area. Replace high-water, high-maintenance plant/lawn areas

with drought-resistant shrubs and groundcovers. Group plants according to their water and sun needs.

7. Ongoing Maintenance. Seasonal irrigation adjustments and efficiency checks are practices that save water. Organic fertilizers and composting will improve texture and maintain vigorous growth.

Water conservation rules are included in Cambria and water saving tips at another Internet link <u>www.cambriacsd.org/cm/Services/Water/water%20conservation.html</u>

RULES-

Do not allow water to run off onto other properties or the street. Unattended watering/irrigation of landscaping is prohibited.

- Do not irrigate landscape between 10:00 a.m. and 6:00 p.m.
- Irrigation should only provide sufficient water to maintain minimal landscaping needs.
- Do not wash down sidewalks, driveways, parking lots, etc. Use a broom.
- Repair leaks in plumbing or your water distribution system within 8 hours of discovery.
- Wash cars with a bucket and only rinse with a hose that has a shutoff nozzle.
- Restaurants may not serve water to customers unless requested.
- Do not use potable water for dust control or construction activities.

WATER SAVING TIPS-

Limit showers to 5 minutes and install a 2.0 gallon-per-minute showerhead. Install water efficient fixtures, i.e. replace 3.5 or 5-gallon toilets with 1.6 gallon-per-flush toilets.

Run only full loads in your washing machine and dishwasher.

Don't leave water running while shaving or brushing your teeth.

Use drought-tolerant plants.

Adjust watering schedule seasonally and with changes in weather.

Use Drip (micro) irrigation systems.

Periodically check your sprinkler system to ensure it is operating properly. (Frequent power outages in Cambria can wreak havoc with timers).

Replace lawns with ground cover requiring minimal water.

Information and Incentives Provided by the California American Water Company

Water conservation tips provided by the California American Water Company Internet link <u>www.montereywaterfacts.com/</u> include recommendations on water conservation in Monterey:

• Consider purchasing an ultra low-flush toilet (can save 60% with each flush) and a high-efficiency clothes washer (uses 40% less water than standard top-loading machines).

- Install a low-flow showerhead and reduce water use by an average of 8 gallonsper-shower. Showers account for approximately 20% of indoor water use.
- Run dishwashers and clothes washers only when full. Use water saver cycles when possible.
- Take quick showers instead of baths.
- Regularly check your faucets, pipes and toilet for leaks. Fix leaks as soon as possible.
- Water you lawn during the coolest part of the day to reduce evaporation.
- Use a broom instead of a hose to clean sidewalks, driveways and other paved areas.
- Check your sprinkler settings and adjust for wetter weather or seasonal changes.
- Use a low-flow hose nozzle to water your lawn or car. Using a standard watering hose to wash your car can waste as much as 300 gallons of water.

The California-American Water Company also instructs on how to create a water-wise garden. Important aspects include:

PLAN AND DESIGN. Assess site conditions for light, soil, drainage and moisture to determine what plants will thrive. Plan to put higher water-use plants near the house and/or where natural water drainage flows while planting a wildlife garden in a less-traveled area.

PREPARE THE SITE. Add the right amount of organic matter and other amendments to the soil prior to planting. Create raised beds (if desired), remove weeds and add rock or water features (if desired).

PICK THE RIGHT PLANTS. If possible, choose native plants that thrive without irrigation, or plants with needs that match the climate and soil conditions. Natives are easy to grow and have adapted to the local climate and pests.

PLANT PROPERLY. Plant in the fall or winter, or early in spring after the last frost. Dig the hole large enough for the plant's roots. Prepare the soil by loosening and adding compost and mulch to keep roots moist.

BE WATER SMART. Water drought-tolerant plants for their first two or three seasons. Group plants by water needs so that each area receives the proper amount. Drip irrigation and water soaker hoses are preferable to sprinklers.

PREVENT WATER WASTE. Set your irrigation system to match the permeability of the soil. If soils are clay, reduce irrigation amounts and intervals to prevent standing water and runoff. Keep watering intervals on slopes short to prevent water waste from runoff.

MAINTAIN THE MOMENTUM. Regularly check the effectiveness of irrigation systems. Adjust them seasonally and as plants become established. Install a weatherbased timer that adjusts to changes in climate and provides the right amount of watering.

Prune, weed and annually add mulch to control weeds, save water and enhance the beauty of your landscape.

Information and Incentives Provided by the Soquel Creek Water District

The Soquel Creek Water District in Santa Cruz County provides water conservation guidelines, information and incentives that include free surveys, free devices and recommendations at the Internet link <u>www.soquelcreekwater.com/Cons_Main.htm</u>

The Soquel Creek Water District provides a free water-wise house call. A water district representative will survey the customer's existing water use equipment and suggest improvements to decrease water usage. During the survey, the District representative will

- Measure showerhead flow rates and install free showerheads, if requested.
- Measure faucet flow rates and provide faucet aerators for kitchens and bathrooms.
- Check toilets for leaks and install tank displacement devices, if needed.
- Evaluate the efficiency of the irrigation system.
- Provide a personalized irrigation schedule, if appropriate.
- Identify irrigation leaks, broken or mismatched sprinkler heads, high pressure and other common problems.
- Provide water conservation materials and water-wise landscaping tips.
- See if the customer qualifies for a free toilet or a synthetic turf rebate through the Water Demand Offset Program.

Toilet water can be cut by 10-15% with a toilet tank fill cycle diverter and displacement bag. Faucet water use can be cut by up to 50% with a low-flow faucet aerator. Shower water use can be cut by up to 50% with a low-flow showerhead.

The Soquel Creek Water District provides free water saving devices to their customers that include:

- Low-flow showerheads
- Low-flow faucet aerators
- Automatic shutoff hose nozzles
- Leak detection tablets
- Toilet displacement bags
- Five-minute shower timers
- Toilet tank fill diverters
- Toilet flappers
- Water conserving brochures
- Free toilet program

The Soquel Creek Water District provides the steps for obtaining a free low-flow toilet (1.28 gallons per flush or less), including free installation, with faucet aerators installed free of charge. There is cost to the customer only if special design specifications require

toilet and installation fees exceeding \$660 for residents and \$1,000 for businesses. However, a waiting list exists. If the toilet is needed more quickly, a \$250 rebate is available instead if the resident makes the purchase. A list of local retailers is provided that sell these toilets, with brands, addresses and telephone numbers provided.

The Soquel Creek Water District provides a list of water-wise turf substitutes. Each alternative grass is described according its characteristics (appearance, color and height), water requirements, appropriate geographic locations and application conditions (degree of maintenance required and compatibility with animal use). Common names for these substitute grasses are blue grama, dune sedge, tufted hairgrass, California fescue, Idaho fescue, red fescue, junegrass, California oniongrass and pine bluegrass. A list of local nurseries that sell water-wise grasses and plants is provided with addresses and phone numbers.

The Soquel Creek Water District has developed a water-wise business program. Under this program, free water awareness materials are provided to businesses to conserve water. They include:

- Restroom mirror decals that ask guests to contact the management if they notice water leaking and remind them to use water wisely.
- Table tents and menu decals that explain to guests the businesses' interests in conserving water. The materials ask customers to choose for themselves as to whether they would like water.
- Linen choice cards that go on the vanity and bedside table of hotels/ motels that let the guest choose to use the towels and linens again on multiple day visits.

The Soquel Creek Water District also provides educational material related to water-wise landscaping, similar to those recommended by the Cambria CSD and Cal-Am Water Company in Monterey. A super efficient sprinkler is recommended that puts out a multi-stream spray that has high uniformity with low precipitation rates to allow the water to more effectively enter the soil.

The Soquel Creek Water District makes available water-wise garden mini-grants to nonprofit organizations and schools to help fund innovative projects designed to encourage public participation in water conservation.

WATER CONSERVATION AND PROTECTIVE WATER QUALITY RECOMMENDATIONS FOR AGRICULTURAL LAND USES

The following list of water conservation recommendations is based on information and publications provided at Internet links by the University of California Cooperative Extension, the USDA Natural Resources Conservation Service (NRCS), CalMAX (California Materials Exchange) and the Avocado Grower's Handbook. More detailed information and links are provided in the sections following the list.

- 1. Each landowner who grazes livestock should develop a ranch plan with the goal of maintaining or improving water quality and retention of runoff through management of livestock operations. The plan should describe the environmental setting, livestock and grazing operation, water quality goals, water quality problems (including erosion problems), management measures and practices, and monitoring and evaluation methods (Fact Sheet #9 from U.C. Cooperative Extension and the USDA Natural Resources Conservation Service (NRCS)).
- 2. Develop grazing practices that control the season, intensity, frequency and distribution of grazing. The objective should be to improve or maintain the health and vigor of selected plants and to maintain stability of desired plant communities. The goal is to improve or maintain animal health and productivity while maintaining or improving water quality and quantity. Soil erosion must be reduced and soil condition must be maintained or improved (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 3. Periodically exclude animals, people or vehicles from areas to protect, maintain or improve quantity and quality of plant, animal, soil, air, water and aesthetic resources, as well as human health and safety (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 4. Facilitate grazing practices by constructing structural improvements, including access roads, permanent fencing to protect riparian areas, grade structures to control erosion in natural or artificial channels to prevent gully formation and gully deepening, pipelines to convey water to livestock as water sources other than streams and lakes, and ponds to provide alternate water sources away from streams in conjunction with construction of pipelines, troughs and tanks (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 5. Construct sediment basins to collect and store sediment and debris (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 6. Develop springs excavating, cleaning, capping or providing collection and storage facilities (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).

- 7. Construct stock trails to improve grazing distribution and access to forage and water so as to reduce livestock concentrations (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 8. Protect and stabilize streambanks of streams, lakes or excavated channels against scour and erosion by using vegetation and/or structures. Vegetation and/or structures may also be used to prevent or stabilize landslides (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 9. Construct or improve wells to provide stock-water away from streams. As a new water source, it will improve livestock distribution (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 10. Stream crossings by livestock and farm machinery and water access points should be restricted to stabilized areas (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 11. Manage brush to increase ground cover, reduce fire hazard, improve water quality (long-term), improve forage production and quality, and increase groundwater recharge (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 12. Plant vegetation such as trees, shrubs, vines, grasses or legumes on highly erodible or critically eroding areas. The range may be seeded to establish adaptive plants.
- 13. Periodically renovate grazing land with contour furrowing, pitting or chiseling to improve plant cover and water quality by aerating the soil, increasing water infiltration and available moisture, reducing erosion and protecting low lying land and streams from siltation (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 14. Restore the damaged stream corridor with bioengineering to protect stream banks and to re-establish riparian vegetation. Exclusionary fencing may be necessary to allow recovery of riparian vegetation (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 15. Institute livestock management practices that include methods of disease control. Minimize livestock concentration near streams and facilitate more uniform livestock distribution. Arrange feeding and salting locations away from streams to protect water quality by reducing internal parasites and pathogens that may be excreted in manure or urine that may enter surface streams (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).
- 16. Facilities designed for feeding, watering, working, holding, chemical storage and shipping should be placed in proper proximity to water bodies (far enough away) to protect water quality (Fact Sheet #9 from U.C. Cooperative Extension and the NRCS).

- 17. Establish and maintain riparian buffer adjacent to and up gradient from streams or other water bodies to 1) create shade to lower or maintain water temperatures to improve habitat for aquatic organisms, 2) provide a source of detritus and large instream wood to improve aquatic habitat, 3) reduce excess amounts of sediment, organic material, nutrients and pesticides in surface runoff and in shallow groundwater flow, 4) reduce pesticide drift entering the stream or other water bodies and 5) increase carbon storage in plant biomass and soils (from NRCS, January 2006).
- 18. Livestock should be controlled or excluded as necessary to establish and maintain the riparian buffer. Harmful plant and animal pests present on the site must be controlled or eliminated as necessary (from NRCS, January 2006).
- 19. Manage grape vineyards organically and sustainably without the use of chemicals (CalMAX 2005).
- 20. Use dry farming in vineyards where possible and drip irrigation elsewhere (CalMAX 2005).
- 21. Carefully monitor plants in the vineyard so that diseases or pests can be treated early on (CalMAX 2005).
- 22. Promote biodiversity by having other plants besides just grapevines in the vineyards. Biodiversity insures habitat available for beneficial insects and birds that inhibit the spread of pests and disease (CalMAX 2005).
- 23. On sloped vineyards, use cover cropping because it protects soil against erosion and retains moisture. Thus, less watering is necessary. It improves soil structure, adds organic matter, increases microorganism diversity, creates habitat for beneficial insects and adds fertility. The cover crop may be tilled in if the soil needs more organic material or is weak in nitrogen. Legumes are good cover crops because they fix nitrogen (CalMAX 2005).
- 24. Vary irrigation rate of the vineyard according to the soil type, the climate and the health and age of the vines. Excess water can lead to rot and mildew (CalMAX 2005).
- 25. Use overhead sprinklers sparingly for frost protection in vineyards and during occasional hot spells in summer to cool the grapes and prevent sunburn (CalMAX 2005).
- 26. In grape wineries, put meters on every well and in every building to track where the water is going and to detect any spikes in use in order to detect water leaks (CalMAX 2005).

- 27. In grape wineries, put nozzles on all water hoses for easy shut off when they were set down (CalMAX 2005).
- 28. For barrel washing in grape wineries, install water line heads with intensive jet sprays to put the water under greater pressure so that a minimum of less water is used (CalMAX 2005).
- 29. In the grape winery, use ozone to treat the barrels, as well as sulfur sticks, to kill mold and bacteria rather than soap and water (CalMAX 2005).
- 30. In the grape winery, minimize the sterilization time of the bottle filler bowls during the wine bottling process. The flushing time may be reduced to 25 minutes with a constant flush of clean, 190° F water (CalMAX 2005).
- 31. In the grape winery, use ultraviolet light rather than toxic chlorine to treat the well water supplying the winery so that the water does not get contaminated with anything (CalMAX 2005).
- 32. Construct a wastewater treatment plant at the grape winery, which includes a reed bed to filter the water (CalMAX 2005).
- 33. To conserve well water, recycle the treated wastewater from the winery by using it on the vineyard before fruit appears on the vine. When the grapes have set, use the treated wastewater for landscaping or watering the hillsides (CalMAX 2005).
- 34. Discharge no treated wastewater from wineries into waterways (CalMAX 2005).
- 35. Use drip irrigation to water orchards (avocado, citrus, etc.) and other crops because it is the best method to conserve groundwater, avoid runoff and maximize stream baseflow. According to the Avocado Grower's Handbook, drip irrigating of young trees may save 75% on water compared to sprinkler irrigation, while drip irrigating of older trees will save perhaps 25% compared to sprinkler irrigation (Avocado Grower's Handbook 1983).
- 36. If sprinkler irrigation is used to water orchards and other crops, ideally, water from sprinklers should infiltrate the soil where it lands in order to minimize runoff and maintain uniform irrigation (University of California Extension Publication 8216).
- 37. On orchard floors or other cropland with low intake rates (more clayey and less sandy), growers should irrigate more frequently with shorter set times to minimize water runoff (University of California Extension Publication 8216).
- 38. Avoid soil compaction in orchards and other croplands because when soils become compacted, they have reduced uptake rate. Soil compaction may result from machinery traffic, especially when the soil is wet, or even from water droplets (University of California Extension Publication 8216).

- 39. To significantly increase the water intake rate, periodically work the soils. However, this effect may not remain after one or two irrigations (University of California Extension Publication 8216).
- 40. Plant a cover crop in orchards to increase water intake rate to the soil by protecting the soil from compaction due to water droplets and by keeping the soil permeable. The cover crop slows water runoff from a sloped orchard, giving more time for water infiltration. However, a cover crop may increase water use up to 30% in some situations (University of California Extension Publication 8216).
- 41. If furrow irrigation or border irrigation is used in orchards or other croplands, prevent runoff from the orchard property by using early shut off before the water reaches the lower end of the orchard or by blocking the end and sides of the orchard with a berm, having an associated tailwater return system installed to collect tailwater in a storage pond for reuse on another orchard section or other irrigated land (University of California Extension Publication 8214).
- 42. Excavate stormwater catchment basins on orchard lands or other croplands to retain stormwater and prevent high runoff when rainfall rates overwhelm soil intake rates during the rainy season (University of California Extension Publication 8214).
- 43. Determine the proper irrigation amount to prevent runoff from an orchard by estimating the amount of water the trees used since the last irrigation, which is known as the evapotranspiration (ET) through their leaves (University of California Extension Publication 8212).

Background Information for Water Conservation and Water Quality Measures on Grazing Land

Loss of ground cover and soil erosion leading to gullying and rapid water runoff, reduce water quality and water recharge and ultimately reduce stream baseflows. Therefore, best management practices that maintain or promote improved water quality by reducing erosion will also promote water conservation in the watershed.

Fact Sheet #9 provided by the U.C. Cooperative Extension and the USDA Natural Resources Conservation Service (NRCS) describes a Rangeland Watershed Program. This fact sheet may be found at the Internet link <u>www.danr.ucop.edu/uccelr/htoc.htm</u>

Water quality and water conservation will be better achieved in Santa Rosa Creek if ranchers develop ranch plans. The rancher may seek assistance from the UC Cooperative Extension, NRCS, Resource Conservation District (RCD) or other agencies to help identify water quality problems, develop management measures and choose appropriate management practices for his/her land.

A ranch plan may be developed with the goal of maintaining or improving water quality and retention of runoff through management of livestock operations. The plan should describe the environmental setting, livestock and grazing operation, water quality goals, water quality problems (including erosion problems), management measures and practices, and monitoring and evaluation methods.

Grazing practices include prescribed grazing that controls the season, intensity, frequency and distribution of grazing. The objective should be to improve or maintain the health and vigor of selected plants and to maintain stability of desired plant communities. The goal is to improve or maintain animal health and productivity while maintaining or improving water quality and quantity. Soil erosion must be reduced and soil condition must be maintained or improved. Periodic exclusion of animals, people or vehicles from areas will be necessary to protect, maintain or improve quantity and quality of plant, animal, soil, air, water and aesthetic resources, as well as human health and safety.

Proper grazing practices may be facilitated with structural improvements. These include access roads, permanent fencing to protect riparian areas, grade structures to control erosion in natural or artificial channels to prevent gully formation and gully deepening, pipelines to convey water to livestock as water sources other than streams and lakes, and ponds to provide alternate water sources away from streams in conjunction with construction of pipelines, troughs and tanks. Sediment basins may be constructed to collect and store sediment and debris. Springs may be developed and improved by excavating, cleaning, capping or providing collection and storage facilities. Construction of stock trails can improve grazing distribution and access to forage and water so as to reduce livestock concentrations. Streambanks of streams, lakes or excavated channels should be protected and stabilized against scour and erosion by using vegetation and/or structures. Vegetation and/or structures may be used to prevent or stabilize landslides. A well may be constructed or improved to provide stock-water away from streams. As a new water source, it will improve livestock distribution. Stream crossings by livestock and farm machinery and water access points should be restricted to stabilized areas.

Several land treatments may be used to improve ground cover and reduce erosion. Practices include brush management to increase ground cover, reduce fire hazard, improve water quality (long-term), improve forage production and quality, and increase groundwater recharge. Vegetation such as trees, shrubs, vines, grasses or legumes may be planted on highly erodible or critically eroding areas. The range may be seeded to establish adaptive plants. The grazing land may be renovated with contour furrowing, pitting or chiseling to improve plant cover and water quality by aerating the soil, increasing water infiltration and available moisture, reducing erosion and protecting low lying land and streams from siltation. The damaged stream corridor may be restored to a more natural, stable state with bioengineering to protect stream banks and to re-establish riparian vegetation. Exclusionary fencing may be necessary to allow recovery of riparian vegetation. Finally, livestock management practices, such as methods of disease control, feeding and salting may be instituted to protect water quality by reducing internal parasites and pathogens that may be excreted in manure or urine that enter surface streams and by minimizing livestock concentration near streams and facilitating more uniform livestock distribution. Facilities designed for feeding, watering, working,

holding, chemical storage and shipping should be placed in proper proximity to water bodies (far enough away) to protect water quality.

The NRCS provided information in January 2006 to create or improve riparian habitat in the riparian forest buffer at the Internet link www.efotg.nrcs.usda.gov/references/public/MN/391mn.pdf

The beneficial purposes of creating and protecting the riparian buffer adjacent to and up gradient from streams or other water bodies are to:

- Create shade to lower or maintain water temperatures to improve habitat for aquatic organisms.
- Provide a source of detritus and large instream wood to improve aquatic habitat.
- Reduce excess amounts of sediment, organic material, nutrients and pesticides in surface runoff and in shallow groundwater flow.
- Reduce pesticide drift entering the stream or other water bodies.
- Increase carbon storage in plant biomass and soils.

According to the NRCS, establishment or maintenance of a riparian buffer is insufficient, however, to stabilize streambanks that are already failing.

In order to create or improve riparian habitat, planting should be done at a time and manner to insure survival and growth of riparian species. Livestock should be controlled or excluded as necessary to achieve the intended purpose. Harmful plant and animal pests present on the site must be controlled or eliminated as necessary.

According to the NRCS, the minimum width of the riparian buffer should be at least 35 feet measured horizontally on a line perpendicular to the water body beginning at the normal water line, bank-full elevation, or the top of the bank as determined locally. The width should be extended in areas of high nutrient, sediment and animal waste application where the area is inadequately treated or where an additional level of protection is needed. Existing underground drains through the riparian area should be plugged, removed or replaced with perforated pipe/end plugs to allow drain water to pass and filter through the riparian forest root zone before entering the stream. This will allow filtration of pollutants instead of direct outlet into streams.

Background Information for Water Conservation Measures for Vineyard Lands

Grape vineyards exist in the lower valley and upper canyon of Santa Rosa Creek. A winery, with expanded vineyard, is in under environmental review for the lower valley. A CalMAX (California Materials Exchange) feature article in 2005 on the Fetzer Vineyards located in the Russian River watershed provided valuable information on growing grapes organically and sustainably, while minimizing water use in growing the grapes and making wine. CalMAX is connected to the California Waste Management Board. The Fetzer article may be found at the Internet link www.ciwmb.ca.gov/Calmax/Inserts/2005/Summer/Fetzer.htm

According to Ann Thrupp in the article, "Fetzer annually produces about 9.25 million gallons of wine (44.4 million bottles). Of this, about 11 percent is produced from the organically grown grapes on their 1,600 acres. They buy the rest of the grapes from about 150 California growers, whose grapes are produced on a total of 12,850 acres." Thrupp is the manager of organic development for the Fetzer vineyards, with the job of providing information about organic practices and encouraging the conversion to organic production when it is possible. Thrupp is also the managing director of the California Sustainable Winegrowing Alliance (Internet link www.sustainablewinegrowing.org). To promote sustainable winegrowing practices among California's wineries and vineyards, the Alliance provides a self-assessment workbook. It helps wineries look at their current level of sustainability and suggests ways they can improve it.

According to the Fetzer environmental manager, Patrick Healy, there must be a systematic approach to sustainability in which relationships between soil, insects and plants are understood. It does not rely on the use of chemicals. Soil building is the goal, with careful monitoring of plants so that diseases or pests can be treated early on, and through promoting biodiversity by having other plants besides just grapevines in the vineyards. Biodiversity insures habitat available for beneficial insects and birds that inhibit the spread of pests and disease. Chickens and sheep are allowed among the vines in some circumstances and at certain times in Fetzer vineyards. Some other vineyards grow vegetables between the vines. Cows are grazed among vines in one vineyard.

At Fetzer vineyards, they use cover cropping because it protects soil against erosion and retains moisture. Thus, less watering is necessary. It improves soil structure, adds organic matter, increases microorganism diversity, creates habitat for beneficial insects and adds fertility. The cover crop may be tilled in if the soil needs more organic material or is weak in nitrogen. Legumes are good cover crops because they fix nitrogen.

Water use in Fetzer vineyards is varied according to the soil type, the climate and the health and age of the vines. Excess water can lead to rot and mildew. They dry farm with no irrigation in some vineyards, but may use up to 80 gallons per vine per year in others. Water from overhead sprinklers must also be used occasionally for frost protection in all vineyards. The overhead sprinklers are also used during occasional hot spells in summer to cool the grapes and prevent sunburn. Along the Russian River, they use an estimated average of 72,000 gallons per acre or about 0.22 acre-feet per acre. This is relatively low. According to the Irrigation Training and Research Center at Cal Poly State University, "premium wine grapes in California require 0–1.5 acre-feet of irrigation water depending on management, location and precipitation."

The Fetzer Winery has significantly reduced water usage in the processing of grapes to make wine. In 1999, they were using 24 million gallons from onsite wells for the winemaking process. By implementing water conservation measures, they have reduced water usage to the 2005 level of 18 million gallons per year. This translates to 2.1 gallons of water used for every gallon of wine. According to the article, the industry standard is 6–8 gallons of water per gallon of wine.

The Fetzer Winery put meters on every well in every building to track where the water was going and to detect any spikes in use. They initially found big water leaks that, when repaired, resulted in huge water savings. They put nozzles on all of their water hoses for easy shut off when they were set down. For barrel washing, they installed new heads with more intensive jet sprays to put the water under greater pressure so that less water would be used. They used ozone to treat the barrels, as well as sulfur sticks, to kill mold and bacteria rather than soap and water. They saved about 1.5 million gallons of water per year and used significantly less natural gas by reducing the sterilization time of the bottle filler bowls during the wine bottling process. They have reduced the flushing time from 45 minutes to 25 minutes with a constant flush of clean, 190° F water. They use ultraviolet light rather than toxic chlorine to treat the well water supplying the winery so that the water does not get contaminated with anything.

Very importantly, Fetzer Winery has its own wastewater treatment plant, which includes a reed bed to filter the water. To conserve well water by recycling wastewater, the treated wastewater is used on the vineyard before fruit appears on the vine. When the grapes have set, they use the treated wastewater for landscaping or watering the hillsides. None of this treated wastewater is discharged into the Russian River.

Contact information for the Fetzer Vineyard:

Patrick Healy- (707) 744-7469, <u>Patrick_healy@b-f.com</u> (underscore between Patrick and healy)

Ann Thrupp- (707) 744-7558, <u>Ann_thrupp@b-f.com</u> (underscore between Ann and thrupp)

Fetzer Vineyards, 13601 East Side Road, Hopland, CA 95449 (1-800-846-8637)

Background Information for Water Conservation Measures in Orchards and Other Croplands

The Avocado Grower's Handbook was consulted for information regarding water conservation in avocado orchards. This handbook is available from the Internet link www.avocadosource.com/books/Koch_1983/Koch_TOC.htm

The handbook stated that water waste by runoff from a sprinkler system could be sizeable. This reality, combined with ever-increasing water costs, lead to the recommendation that irrigation planning should be directed toward the most efficient and beneficial use of water. In comparing drip irrigation to sprinkler irrigation, it was pointed out that drip irrigation used less water. Therefore, drip irrigation is the best method to conserve groundwater and maximize stream baseflow. According to the handbook, drip irrigating of young trees may save 75% on water compared to sprinkler irrigation, while drip irrigating of older trees will save perhaps 25% compared to sprinkler irrigation. Other advantages over sprinkler irrigation include dry barriers between trees with drip irrigation that will slow root rot fungus movement if this problem develops. With drip irrigation it is possible to irrigate more acres at one time with the available water pressure

and volume compared to sprinkler irrigation. Drip irrigation systems are also cheaper to install with savings in pipe size and wall thickness. A fertilizer injector is required with drip irrigation that saves labor and material because there is little waste of either. With drip irrigation, the tree root zone goes deeper in the soil to better protect the tree from wind throw. This is compared to the increased danger of wind throw resulting from shallow root systems that are encouraged by sprinkler irrigation. Routine maintenance of drip irrigation systems is less, also. There is less moisture for weed competition in areas surrounding the tree, requiring less weed control with drip irrigation. However, there are some disadvantages to drip irrigation.

Disadvantages of drip irrigation include no chance to fight fire or cold and higher frequency of irrigating (every other day during the irrigation season as opposed to once a week with sprinklers). With drip irrigation, water must be well filtered (expensive filtration equipment) to prevent high labor costs in checking emitter operations, and animals chew on soft plastic parts and hoses to cause leaks.

One may assume that drip irrigation systems are more beneficial than sprinkler irrigation systems in conserving water for citrus orchards, as well as avocado orchards.

Additional information related to water conservation in orchards was obtained from the University of California Extension Publication 8216 under the heading, Reducing Runoff from Irrigated Lands, entitled- "Soil Intake Rates and Application Rates in Sprinkler-Irrigated Orchards." It is provided by the University of California Division of Agriculture and Natural Resources at the Internet link http://cesonoma.ucdavis.edu/Watershed Management923/Water Use & Conservation.htm

Publication 8216 states that California State Water Code requires that anyone who discharges waste that could affect waters of the state must obtain a permit or coverage under a waiver. Furthermore, agricultural runoff from either irrigation or rainfall that leaves a property has been determined to likely contain waste (sediment, nutrients, chemicals, etc.).

Ideally, water from sprinklers should infiltrate the soil where it lands in order to minimize runoff and maintain uniform irrigation. This allows efficient irrigation and adequate irrigation to the entire crop. If the sprinkler application rate exceeds the soil infiltration rate, water will pond on the soil surface and eventually runoff. Generally speaking, soil intake rate of water is higher for lighter-textured soil (sandy) than for heavier textured soil (clay). Intake rate varies with time. It is greatest initially and decreases with time during the irrigation episode. Runoff is prevented when the sprinkler application rate matches the final, or basic, intake rate. On soils with low intake rates, growers must often irrigate more frequently with shorter set times to minimize water runoff.

Orchard floor management affects the soil's water uptake rate. Soils that become compacted have reduced uptake rate. Soil compaction may result from machinery traffic, especially when the soil is wet, or even from water droplets. To significantly increase the water intake rate, soils may be worked. However, this effect may not remain after one or two irrigations. A cover crop in the orchard may also increase water intake rate by protecting the soil from compaction due to water droplets and keeping the soil permeable. The cover crop slows water runoff from the field, giving more time for water infiltration. However, a cover crop may increase water use up to 30% more than without it.

The University of California Extension Publication 8214, entitled-"Causes and Management of Runoff from Surface-Irrigated Orchards" (same link as above), provides additional information in preventing surface runoff as part of the discussion of reducing runoff from surface-irrigated lands. It states that many orchards in California are irrigated with the use of furrow irrigation or border irrigation (also called flood irrigation). In both methods, water is introduced at the top of the orchard. It is applied in excess of infiltration rate so that excess water flows across the orchard floor. When the water reaches the lowest part of the orchard, tailwater runoff occurs unless the water is shut off or the end of the orchard is blocked with berms. In order to prevent runoff in border irrigation, the water should be shut off before it reaches the end of the orchard. This early shut off is not as commonly used in furrow irrigation as it is in flood irrigation, with good distribution of infiltrated water in furrows typically associated with a 10-15% loss of water as runoff. The difficulty with using early shut off is that water will not advance far after the furrow irrigation system is shut off, causing trees at the end of the row to be under-irrigated.

Runoff may be kept on the orchard by blocking the end and sides of the orchard with a berm. The blocked water may either be ponded in the furrows or borders being irrigated or be diverted into adjacent dry furrows or borders. Still, the lower end of the orchard tends to be over-irrigated, reducing irrigation efficiency and possibly leading to root disease. Tailwater return systems may be installed to collect tailwater in a storage pond for reuse on another orchard section or other irrigated land. Reusing the collected water maintains high irrigation efficiency, conserves water and makes room in the pond for additional runoff.

Retaining all stormwater on an orchard is difficult because the soil intake rate may be easily overwhelmed by high rainfall rates, resulting in high runoff amounts unless stormwater catchment basins are present to retain the overland flow.

The University of California Extension Publication 8212 entitled- "Understanding Your Orchard's Water Requirements" (same link as above) stated that a potential cause of irrigation water runoff from an orchard is over-irrigation or irrigation in excess of that required to refill the trees' root zone. The way to determine the proper irrigation amount and prevent runoff is to estimate the amount of water the trees used since the last irrigation, which is known as the evapotranspiration (ET) through their leaves. There are tables available that provide historical average evapotranspiration estimates for selected California locations during approximate 2-week periods for various crops. A sum of the daily crop evapotranspiration since the last irrigation is calculated from these tables or can be estimated from specific equipment stationed at the orchard. This is the amount of soil water that must be replaced by irrigation. Additional water must also be applied to offset irrigation inefficiencies.

APPENDIX A. MEASURMENT AND TRENDS IN HABIAT CONDITIONS AND JUVENILE STEELHEAD DENSITIES, WITH RECOMMENDATIONS

METHODS

Determining Reach Boundaries in Santa Rosa Creek

Dividing a watershed into reaches is critical to analysis of watershed characteristics and directing enhancement. Santa Rosa Creek was originally divided into 7 reaches, based on a stream survey and habitat typing in fall, 1994. A short portion of Reach 4 was dry in 1994. With more surface flow in 1998, reaches and sampling sites were added. Three new reaches were added (0a, 0b and 3a), with a sampling site established in each (**Table A1; Figure A13**). An additional site was added to Reach 7 at Site 7a. Therefore, 10 reaches were identified. In 2006, an additional habitat typing segment and sampling site were added upstream of Burton Street Bridge in Reach 0a. In 1998–2003 and 2005–2006, a 2.2-mile dry section existed in upper Reach 2. In 2004, the first summer after the December 2003 earthquake, this normally dry stretch remained perennial. In 2002 and 2003 there was a dry section in upper Reach 3a. In 2005, upper Reach 2 had a dry section that was 2,625 feet long (pre-earthquake it was 2.2 miles long) while Reach 3a was perennial. In 2006, the same dry section in Reach 2 was assumed to exist, while Reach 3a was perennial.

Reaches were primarily demarcated by 1) changes in stream gradient that created differences in the proportion of habitat types, 2) differences in streamflow caused by tributary confluences or locations of stretches prone to going dry, 3) differences in shading and 4) the potential passage impediment at Ferrasci Road ford. The denil ladder through the Ferrasci Road culvert was impassable to sculpins except in rare instances, based on fish sampling.

Table A1. Defined Reaches on Santa Rosa Creek from Channel Mile 0.5 (Windsor Boulevard) to Channel Mile 13 (Mora Creek Confluence) That Provided Surface Flow in Fall, 2006.

Reach	# Reach Boundaries	Reach Length (ft)
0a	Windsor Drive Bridge to Perry Creek Channel Mile (CM) 0.5 - CM2.92	12,777
0b	Perry Creek to Fish Ladder; CM2.92-CM3.38	2,437
1	Fish Ladder to Bedrock Outcrop CM3.38 - CM4.19	4,257
2*	Bedrock Outcrop to Just Above Curti Creek Confluence CM4.19-CM7.94 (2,625 ft dry)	17,175 (36,646 ft Lower Valley)
3a	Above Curti Creek Confluence to Point Below Soto House CM7.94 - CM9.6	8,765
3b	Below Soto House to First Tributary (Lehman Cr.) CM9.6 - CM10.1	2,567
4	From Tributary to Eroding Hillside CM10.1 - CM11.24	6,101
5	Eroding Hillside to Bank Erosion 6-8 Feet High and Gradient Change CM11.24 - CM11.45	1,134
6	Bank Erosion to Tributary Confluence and Bridge Crossing (East Fork) CM11.45 - CM12.42	5,152
7	East Fork Confluence to Northern Tributary Branch (Mora Creek) Confluence CM12.42 - CM13.0**	3,058
	TOT	AL 63,423 (26,777 ft (12.0 mi) up.canyon)

* Dry section usually existed between Reaches 2 and 3: 3.9 miles in 1994 and 2.2 miles long in 2000, 2002 and 2003 except for short stretch at the Gap. High baseflow after the earthquake watered this entire segment in 2004 and all but 2,625 ft in 2005 and 2006.

**Slightly more habitat was beyond this point but inaccessible.

100

Classifying Habitat Types and Measuring Habitat Characteristics

In 1994, all watered steelhead habitat in the mainstem of Santa Rosa Creek [upstream of the fish ladder on Santa Rosa Creek at the Ferrasci Road ford at channel mile (CM) 3.38] was surveyed and habitat typed. In Santa Rosa Creek, the surveyed habitat began at CM3.38 and ended at the Mora Creek confluence at CM13.0. The reach downstream of the fish ladder was not included because much of it was dry. The proportion of habitat types was determined for each stream reach. Habitat types were classified according to the categories outlined in the *California Salmonid Stream Habitat Restoration Manual* (Flosi et al. 1998). Survey sheets provided in the manual were used during stream surveys. In 1994, some habitat characteristics were estimated according to the manual's guidelines, including length, width, mean depth, maximum depth, shelter rating, substrate composition, and tree canopy. The habitat proportions and stream lengths with surface flow found in 1994 were used in subsequent estimations of juvenile steelhead production through 1997.

In 1998, habitat typing was repeated with the same methods as those used in 1994 and by the same biologist, Don Alley, except for shelter rating. In 1998, shelter rating that was visually estimated in 1994 was actually measured as linear distance of escape cover in habitats in order to better quantify this important habitat parameter, and an escape cover index was calculated. This prevented comparison of escape cover in 1994 with later results. In 1998, habitat typing was repeated to update habitat conditions and obtain accurate habitat proportions after the two wet winters since 1994. However, Reaches 0a, 0b and 3a were added in 1998 because these parts of the watershed had newly occurring perennial surface flow due to the higher baseflow in 1998. In 1998, approximately 0.5mile segments of each reach that encompassed former sampling sites were habitat typed. In 2002, approximately the same 0.5-mile segments were habitat typed by Don Alley. In 2003, nearly all of Reach 2 and all of Reach 6 were habitat typed before Alley chose random habitats to sample, in addition to regular, average habitat quality sites. In 2006, approximately the same 0.5-mile segments were habitat typed by Don Alley as in 2002. In 2006, an additional 0.5-mile segment was added to upper Reach 0a between the Burton Street and Main Street bridges. Habitat typing for Reach 5 had to be moved downstream into upper Reach 4 due to access problems, where 1,114 feet were habitat typed.

Measuring Habitat Parameters

Habitat parameters were measured at four-year intervals at a reach level beginning in 1994 and annually at each fish-sampling site through 2006. In 1994, substrate composition regarding percentage fines and embeddedness were visually estimated in each habitat type in some reaches. Embeddedness was estimated as the percentage that cobbles and boulders larger than 100 mm (4 inches) in diameter were buried in finer substrate in some reaches. Percent fines and embeddedness estimates were made at the reach level from 1998 onward. Data collection was not biased by a review of previous years' data before the latest data collection. Cobbles and boulders larger than approximately 150 mm in diameter provide good, heterogeneous habitat for aquatic

101

insects in riffles and runs if embedded less than 25%. Cobbles and boulders larger than 225 mm provide potential fish cover if embedded less than 25%.

Quantitative estimates of tree canopy closure were made using a densiometer. Included in this measurement were trees growing on slopes a considerable distance from the stream when streamside vegetation was limited. In the upper reaches of the watershed, where the canopy was more immediately close to the stream, the riparian corridor provided most of the shading. In addition, the tree canopy estimates were based on the shade provided by the trees on the day of the measurements, which was probably between 5 and 10% lower than summer conditions because leaf-drop had begun by the time of fall sampling and during habitat typing in 1998 and 2006. Riparian tree canopy reduces water temperature and protects steelhead habitat in coastal streams. Elevated water temperature greatly increases food requirements and reduces steelhead swimming ability. However, heavy shading reduces food abundance and hinders visual feeding for salmonids. When less tree canopy closure stimulates food production due to greater light penetration, fish growth rate can be faster despite increased water temperature, such as in the lower valley of Santa Rosa Creek.

Escape cover is important because the more that is present in a habitat, the higher the production of steelhead there, particularly for the important Size Class II and II steelhead (=>75 mm SL). Water depth is excellent escape cover when it is 3 feet (1 meter) or deeper and of some benefit when 2 feet or deeper. Objects of cover included unembedded boulders, submerged woody debris, undercut banks, soft, submerged tree roots extending out from the streambank and overhanging tree branches and vines. Unnatural objects provided cover, as well. Man-made litter objects should not be removed if large enough to provide cover, except during high flow conditions in the winter. Removing them otherwise will destroy valuable rearing habitat.

In 1994, escape cover was visually estimated as the percent of area of the habitat that contained escape cover. However, this method was insufficiently quantitative to detect annual trends. Therefore, from 1998 onward, an escape cover index was quantified for each habitat type on the reach level and at sampling sites. The index was measured as the ratio of the linear distance under submerged objects within the habitat type under which fish of at least 75 mm (3 inches) SL could hide, divided by the length of the habitat type at the sampling site or for the reach segment being habitat typed. The cover index was calculated for individual habitats and for combined habitats of the same habitat type in a sampling site or reach. The total escape cover of each habitat type was divided by the total length of that habitat type at the sampling site. All pools in a sampling site were combined, for example, to obtain a cover index for the pool habitat type at the site. All pools in a reach segment were combined to obtain a reach cover index.

Water depth was important to measure because deeper habitat is used more by steelhead. Mean depth and maximum depth were determined with a dip net handle graduated in half-foot increments for the first foot and foot increments for the remainder of the handle. Soundings throughout the habitat type were made to estimate minimum, maximum and mean depth. Minimum depth was determined approximately 1 foot from the stream margin. Stream length was measured with a hip chain. Stream width was measured with the graduated dip net. Deeper pools had scour objects that often provided substantial escape cover.

Streamflow has usually been measured immediately after fish sampling in the fall. However, in 1999–2001, rainfall occurred during sampling and prevented the measurement of summer baseflow. Consequently, in 2000–2004 Sean Grauel of the Cambria CSD measured streamflow earlier in the fall to obtain baseflow measurements prior to any storm events. Don Alley measured streamflow prior to fall storms in 2005 and 2006. A Marsh–McBirney Model 2000 electronic flowmeter was used since 1998 to measure the mean column velocity at 0.6 the column depth from the surface along points (verticals) on a transect across the stream. The streambed was modified where necessary to obtain more uniform depth and to minimize turbulence across transects used for streamflow measurement.

In 1994–1997, Don Alley visually estimated the streamflow by measuring the stream cross-sectional area in portions of uniform velocity and estimating the channel velocity for the uniform portions of the cross-sections. The channel velocity was estimated at several locations across the stream channel by measuring the speed of floating objects and multiplying that quantity by 0.6. The flow volumes of all of the portions of the cross-section were then added to obtain a streamflow estimate. Estimates were likely within +/-10–20% of actual streamflow, based on experience.

The fourth year of dry-season water temperature monitoring occurred in 2006. HOBO water temperature probes were launched at 2 lower valley fish sampling sites (0a and 1) and 1 upper canyon site (6a) in late June. They were retrieved in late October. Temperature was recorded in Farenheit and Celsius at 30-minute intervals.

Fish Sampling in Lagoon Habitat

Multiple beach seine hauls were used to sample fish at different locations throughout the lagoons. A 30-foot long by 4-foot high by 1/8-inch meshed seine was used because it was suitable for smaller fish such as tidewater gobies. The purpose of lagoon sampling was to monitor the tidewater goby population. The sampling method was inadequate to effectively capture juvenile steelhead, and they were captured only incidentally. The deepest part of the lagoon at Station 1 was too deep to seine, though juvenile steelhead commonly inhabited this location. Visual observations of juvenile steelhead were recorded to confirm their presence. The lagoon was sampled in early summer only in 1993–1996 and 2007. In 1997–2006, it was sampled in both the early summer and in fall. A total count of each species caught was taken for each seine haul and then these totals were combined for a total at each lagoon. Size ranges were determined for tidewater goby and steelhead. A population index was determined for tidewater goby from each sampling, with approximately equal effort expended each time in the fall (8-10 seine)hauls) through the years 1997–2006. Prior to 1996, tidewater goby sampling was less with 6 seine hauls in 1993 and 3 seine hauls in 1995 in the early summer only. In 1994, this species had become listed and our permit had not been secured. The reach adjacent to Shamel Park was stream-like in early June 1994 and was electrofished with the

expectation that no tidewater goby would be present. However, tidewater goby were detected there and sampling was discontinued without seining in the lower lagoon.

Fish Sampling in Stream Habitat

Juvenile steelhead were sampled annually by D.W. ALLEY & Associates (with funding from the Cambria Community Services District (CCSD)) using electrofishing throughout the mainstem Santa Rosa Creek by electrofishing in 1994–2006, and steelhead habitat was evaluated (Figure A13) (Alley 1995a-2007a). In the dry year of 1994, fish sampling began at Reach 1 above the fish ladder at Ferrasci Road and included 7 reaches (9 sampling sites). The stream channel in fall was dry downstream of the fish ladder. The fall stream channel was also dry for 3.9 miles from upper Reach 2 to Reach 3b. In 1995– 1997, the same reaches were sampled with 6–8 sampling sites. In the wet year of 1998 and the eight succeeding years, 3 additional reaches that had become wetted were added and sampled to make a total of 10 reaches (12 sampling sites) for approximately 12.5-13miles of wetted mainstem channel upstream to the Mora Creek confluence. Choice of sampling sites was based on their average habitat quality for each reach in terms of the amount of escape cover and water depth in pool habitat. Juvenile steelhead densities from each site were extrapolated to reach densities (Figure A13), with habitat proportioning from habitat-typing during survey work. One electrofishing site was sampled immediately upstream of the lagoon in early summer. CCSD staff assisted in lagoon sampling and also collected lagoon water quality and stream inflow data through this period (mostly Sean Grauel (1993–2004) and later Robert Reason and Jason Buhl). Lagoon monitoring reports were completed every other year for monitoring years 1993-2005 (Alley 1995b-2006b).

The assumption was that young-of-the-year steelhead would disperse downstream into less crowded habitat soon after emergence, but would spend the remainder of the growing season in the same stream/ lagoon habitat. This has been confirmed by tagging of juveniles (Davis 1995) and studies in Redwood Creek that indicated no movement between July and October (Smith 1994a) and differences in growth rate between nearby mainstem sites and tributary sites on the San Lorenzo River (Alley 2002c) and in Scott and Waddell creeks (Smith 2002). Shapovalov and Taft (1954) after 9 consecutive years of fish trapping on Waddell Creek detected very limited upstream juvenile steelhead movements; the relatively limited movement was mostly in the winter, perhaps after the lagoon sandbar opened and lagoon habitat was lost. Recent preliminary data from PIT-tag detectors installed by NOAA Fisheries researchers in upper Scott Creek and its tributary, Big Creek (Santa Cruz County) after PIT-tagging of estuary/lagoon- and stream-inhabiting juveniles indicated very little movement of juvenile steelhead during the months of May-November, it being insignificant at the population level (Sean Hayes personal communication). Hayes found that some estuary/lagoon juveniles moved upstream from the lagoon past a PIT-tag detector in the upper estuary in fall prior to sandbar opening, perhaps due to deteriorating water quality, and after sandbar opening with the loss of lagoon habitat. Our working hypothesis in relating juvenile densities to habitat conditions has been that juvenile steelhead that are sampled in the fall are likely found where they reared for the summer.

Most steelhead juveniles (and nearly all Size Class II and III juveniles) inhabit pools in Santa Rosa Creek. Habitat conditions in pools determined the choice of sampling sites. Habitat depth and escape cover are most important in determining the density of Size Class II and III (=>75 mm Standard Length (SL) juvenile steelhead in small central coast streams. Based on habitat typing and habitat assessment of the entire mainstem's reaches in 1994 and ½-mile segments of reaches at four-year intervals after that (1998, 2002 and 2006) by Don Alley of D.W. ALLEY & Associates (Alley 1995a; 1999a, 2003a and 2007a), reach averages were determined for mean and maximum pool depth, and the escape cover index was calculated for each pool in each reach. Then representative sites were chosen for sampling in 1994–2006 as having pools with approximately the reach average for mean and maximum pool depths and escape cover index.

The correlation between habitat depth, escape cover and density of smolt-sized juveniles was confirmed from a Santa Cruz County-wide sampling program of over 100 sites in 9 watersheds (**Smith 1982b**) and subsequent modeling of smolt-sized juvenile densities as a function of these habitat parameters (**Smith 1984**). Site densities of juvenile steelhead by size class and age class were determined by electrofishing. In 1994–2006, reach production of juvenile steelhead was extrapolated from site densities by multiplying densities by habitat type within the representative sites by the number of feet of each habitat type in the reach, using the habitat proportions of the reach that were determined by habitat typing. Production estimates for each reach were added together to estimate the juvenile steelhead population size.

The Santa Rosa Creek watershed was divided into the lower valley and upper canyon during fishery analyses because lower valley reaches had the capacity to grow a large proportion of YOY to smolt size their first growing season in every year. In the upper canyon, only a small proportion of YOY usually grew to smolt size, except in above average rainfall years. The lower valley consisted of the lagoon and four stream reaches with 4 sampling sites in 1998–2006 (2 stream reaches in 1994–1997 with two sampling sites, and Reaches 0a and 0b were dry in 1994) (**Figure A13**). The upper canyon consisted of the 6 reaches and 8 sampling sites in 1998–2006 (5 reaches and 6 sampling sites in 1994–97 with Reach 3a dry in 1994).

Steelhead densities were determined by electrofishing at sampling sites, using the threepass multiple-pass depletion method. If depletion was poor in three passes, a fourth pass was made and the number of steelhead captured was considered a total count. In some cases the same low number were captured on the first two passes, with none captured on the third. The total count was deemed more accurate than the depletion model estimate. The concern was to prevent overestimate of juvenile densities. These judgments have been made consistently over the past 13 years of sampling. The depletion model was applied separately for size classes and age classes in each habitat type. Therefore, total population estimates were slightly different after adding up the size classes compared to age classes. Three passes were made in nearly every habitat, which had been blocked off with nets. In a few shallow habitats with no cover where no fish were captured in two passes, the third pass was cancelled.

Measuring Juvenile Steelhead Densities at Stream Sampling Sites

In the work by D.W. ALLEY & Associates, depletion estimates of steelhead density were applied separately to two age-classes in each habitat type at each site. The densities of young-of-the-year (YOY) fish were estimated separately from yearling (1+) and older juveniles (2+). Depletion estimates were also applied separately to size classes of steelhead. The number of fish in each age and size class was recorded for each pass. The age-class boundary was determined for each sampling site, based on the length frequency histogram of fish captured at the site. The dividing line between age classes was a break in the length-frequency distribution of fish lengths that had been lumped into 5 mm groupings. Age class information was used to determine annual juvenile production.

In this and other juvenile steelhead studies in which sampling occurred in the fall, a size-class boundary was chosen at 75 mm (3 inches) Standard Length (SL) for two reasons. One was that fish smaller than this would probably spend another spring, summer and fall in the stream before smolting and entering the ocean the following winter and spring. The other reason for the size class boundary was that fish captured at larger than 75 mm SL would probably migrate downstream to enter the ocean as smolts during the late winter and spring following fall sampling. These probable behaviors were based on the size distributions of juvenile fish captured throughout Santa Cruz County (Smith 1982b) and the sizes of down-migrant smolts captured in the San Lorenzo River. It was found that although some fish larger than 75 mm SL stayed a second year in the stream, the large majority of fish captured during fall sampling that were larger than 75 mm SL smolted the very next spring to enter the ocean. (Smith 1993 (AFS presentation). The 75 mm SL cut-off for smolt size was based on scale samples analyzed by Dr. Jerry Smith for juvenile steelhead smolts trapped as they moved toward the sea in the San Lorenzo River in 1987-89 and determining smolt size at the first annulus. Most fish of 75 mm SL size or larger would grow sufficiently in the following spring to smolt. Fish below that size very rarely smolted the following spring. It was found that 97% of 1+ smolts were 76mm SL or longer. In addition, in the 1987-89 data years, 75% (240 of 320) of fish sampled that were 76mm SL or longer at their first annulus smolted the following spring. This meant that an estimated 75% of the juveniles that had reached 76 mm SL by the end of their first growing season smolted by the following spring. It also meant that nearly all of the 1+ juveniles (those that had taken two seasons to reach smolt size) were at least 76 mm SL.

The second size-class boundary was set at 150 mm SL, which is the typical size above which stream-reared steelhead in Waddell Creek are 2+ years old (**Smith, pers. comm.**). These three size-classes coincided with the age-class boundaries used in the Dettman model to estimate adult returns from juvenile production (**Kelley et al. 1987**).

The depletion method was used to estimate the number of fish in each sampled habitat type in two size categories; those less than (<) 75 mm SL (3 inches) (Size Class 1) and those equal to or greater than (=>) 75 mm SL (Size Classes 2 and 3). Once the number estimate was determined for Size Classes 2 and 3 combined, the proportion of each of these two larger size classes in the group of captured fish was calculated. These proportions of captured fish were multiplied by the number estimate for all steelhead in Size Classes 2 and

106

3 to obtain separate estimates for each size class in the habitat. These larger size classes were entered separately into the Dettman population model (**Kelley et al. 1987**) to predict number of returning adults. The 0+ age class, 1+ age class and 2+ age class for Waddell Creek steelhead in the model corresponded to our Size Classes 1, 2 and 3, respectively. In comparisons of size class densities between sampling sites, densities of Size Classes 2 and 3 were combined.

Measuring Juvenile Steelhead Densities in Reaches

For each reach, the number of juvenile steelhead estimated by size class and age class per foot of stream in each sampled habitat type was multiplied by the number of feet of that habitat type in the reach. Then the number of fish estimated in each habitat type of the reach was added to the number of fish in the other habitat types to obtain reach totals. The depletion model was applied separately for size and age classes in each habitat type. Therefore, total population estimates were slightly different after adding up the size classes compared to age classes.

Estimating the Adult Index

The predicted number of returning adults was based on survival rate of different size classes of juveniles returning as adults to Waddell Creek during the period, 1933-42 (**Shapovalov and Taft 1954**). It was found that steelhead survival rate to spawning adults increased exponentially with increasing size of steelhead smolts (**Shapovalov and Taft 1954; Bond 2006**). Dave Dettman (**Kelley et al. 1987**) developed a model based on the Waddell Creek relationship of average size of each age class as smolts and survival to returning adult. He estimated survival of juveniles from a reasonable estimate of densities in Waddell Creek in the fall to the down-migrant smolt stage for the different age classes. The relationship derived from Waddell Creek data was:

(0.025)(Fork length of smolt) Fraction of Survival = (0.067) e

The input required in the Dettman model was an estimate of juvenile steelhead densities by age class in the fall of the year. The size classes were divided according to year class sizes typically found in Waddell Creek, based on Dr. Jerry Smith's experience. Young-of-the-year fish were up to 75 mm Standard Length. Yearlings were from 75 mm to 150 mm Standard Length. Steelhead were included in the 2+ age class if larger than 150 mm Standard Length.

Number of juvenile steelhead by age/size class per foot of each habitat type in each reach was inputted to the Dettman model to predict number of returning adults, using the Waddell Creek rate of return during the 1933-42 period. Returning adults consisted of two categories. One category was first time spawners. The other was the total number of returning adults expected with a 20% repeat spawning rate. The model emphasized the increased survival rate expected for larger size classes of juvenile steelhead.

To make a more realistic estimate of returning adults from juveniles present in Santa Rosa Creek, estimates derived from the Dettman model were reduced by 50%, based on an estimate of returning adult steelhead to Waddell Creek in 1991-92 (**Smith 1992**). Smith estimated that roughly 248 adults returned to spawn, based on his trapping of up-migrating adult steelhead, tagging, sampling upstream of the trap for recaptures, and trapping down migrants for recaptures. This estimate was approximately half of the average return of 432 adults during the 1933-42 Shapovalov and Taft study (**1954**). An assumption was that the reduction in returns in 1992 resulted from reduced ocean survival. Another underlying assumption in the 50% reduction of survival rate was that rearing habitat in Waddell Creek is currently capable of producing 1930's levels of juvenile smolts over the long term. This assumption was judged likely by Dr. Smith (**personal communication**).

Smith added that the adults returning in 1991-92 on Waddell Creek came from juvenile production primarily in 1988-90, during a five-year drought. Further, additional streamflow reduction and habitat degradation came from summer water diversion that did not exist in the 1930's. Therefore, the juvenile production leading to adults in 1991-92 was probably much less than the average juvenile production during the 1930's. It follows that the average return estimate of 432 adults in the 1930's may be higher than one would expect from juvenile production during drought years of the 1930's. Limited supporting evidence is the following. The first recorded water year on the San Lorenzo River (record beginning in 1937) that produced similar acre-feet of streamflow as the drought years of 1987-92 was water year 1938-39. The adult return estimate from primarily juveniles produced in that water year was 377 adults in 1941-42.

The range of estimated adult returns during the earlier study was 373-539 adults. A less conservative reduction factor, but perhaps a more realistic one, may be 0.33 (1 - 248/373) or 33% instead of 50%, using the ratio of Smith's estimated adult return divided by the lowest estimated adult return during the 1932-42 period. This is still probably a high reduction factor because during drought in 1989-90 there was a surface water diversion reducing juvenile production that was absent during 1930's drought.

Whether the reduction factor should be 50% or 33% or something else, the model provides an annual adult index for comparison. It is important to note that our annually applied model uses the same constant survival rates from juveniles to adults, and our correction factor is also constant. However, there are annual fluctuations in ocean survival that are impossible to account for. Therefore, the estimate of adult returns using the Dettman model is only an index and not an annual prediction of adult returns. This index is valuable because it is a way to express and compare the annual value of juvenile production by size class with other years in terms of potential adult returns if all factors are kept constant.

The aforementioned method of estimating an index of returning adult steelhead was the only practical one. Estimates of adult numbers from numbers of smolts captured by down-migrant smolt trapping would be prohibitively expensive and inefficient because down-migrant smolt trapping would require nightly trapping activities over a period of at least two months in the spring. Smolt trapping would be very inefficient during stormflows when down-migration would increase. Unless a very permanent trapping facility was constructed, the fish trap would be very ineffective during storm events. Down-migrant

adult trapping would give an inaccurate indication of adult up-migration because many adults do not survive to down-migrate after spawning. Trapping of down- migrant adults would require the same expensive, intensive effort required for down-migrant smolt trapping, with the associated ineffectiveness during stormflows. An added negative aspect would be potentially high fish mortality unless the trap was emptied daily.

RESULTS

Juvenile Steelhead Site Densities, Juvenile Population Estimates and Adult Indices

YOY densities at sampling sites were generally higher in the upper canyon than the lower valley (individually and on average) except in 2002 (Figures A2 and A4). Two wet vears, 1998 and 2005, had the lowest YOY densities in the lower valley. In another wet year, 1995, although YOY densities were not determined, total juvenile densities were low in the lower valley, indicating that YOY densities were also low that year (Figure A1). In some drier years (1994, 1997 and 2002–2004), YOY densities were relatively higher in the lower valley than other years, and relatively lower in the upper canyon. These patterns indicated that in wetter years, adults had better passage opportunities through the estuary and lower valley to access the upper canyon and spawn more YOY. It also indicated that more habitat was available in the upper canyon in wetter years due to higher streamflow and presumed greater insect drift and food supply. Whereas in drier years, spawners likely had a shorter spawning opportunity due to earlier sandbar closure (Table A13) and shallower passage conditions related to smaller stormflows. This likely caused more spawning effort in the lower valley with less spawning and YOY production in the upper canyon. In drier years, habitat in the upper canyon likely supported fewer fish with reduced streamflow and reduced insect drift. The fact that annual site densities of YOY (or total juveniles when YOY densities were not determined) sometimes fluctuated mostly in the same direction at all sites in either the lower valley or upper canyon (1995–1999 and 2005 in the lower valley; 1998–1999 and 2001–2004 in the upper canyon), added support to the notion that passage and food supply may have been an important limiting factors in the upper canyon (Figures A1-A4). In 2002 when YOY densities in the upper canyon were very low, it rained very little in January-May the previous winter/spring, with only one storm event in January totaling more than one inch in precipitation at the CCSD wastewater plant near the creekmouth. The sandbar closed in mid-April. The earthquake of December 2003 brought cementing of the streambed and likely poor water quality with heavy seepage of hydrogen sulfide into the stream at Sites 7a and 7b in 2004–2005 (Alley 2005a; 2006a). This likely contributed to lower YOY densities than normal there.

In 1995, 1996, 1998 and 2005, most YOY fish at the lower 4 sites (lower valley) grew into the larger Size Class 2 by fall, thus leading to the small Size Class 1 number in those years. However, in the years with less baseflow, 1994, 1997, 1999 and 2000–2004, fewer did (**Alley 2006a**). In 2005 in Reaches 0a through 2 in the lower valley, approximately 99% of YOY's reached Size Class 2 compared to 44% in 2004 and 47% in 2003 (calculated from **Tables 27b and 28c**). In 2005 in upper canyon Reaches 3a through 7, approximately 38% of the YOY's grew into Size Class 2 compared 1% in 2004 and none in 2003. In the upper canyon, the growth rate of YOY's was less than that in the lower valley in all years, even in particularly high-baseflow years like earthquake-influenced 2004 and 2005. This underscored the importance of higher spring flows in wetter years that influenced growth much more than higher baseflows through the summer and fall.

Figure A1. Annual total Juvenile Steelhead Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

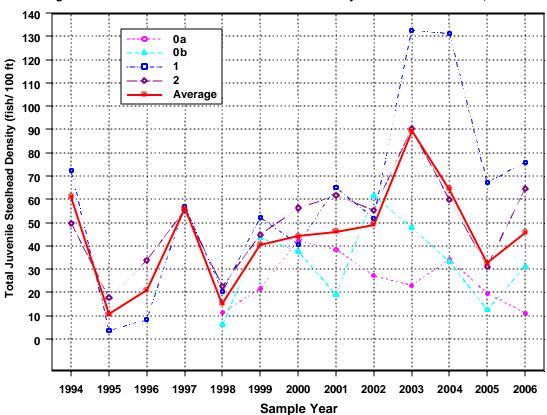


Figure A1. Annual Total Juvenile Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

Figure A2. Annual Young-of-the-Year Steelhead Densities at Lower Valley Santa Rosa Creek Sites, 1997-2006.

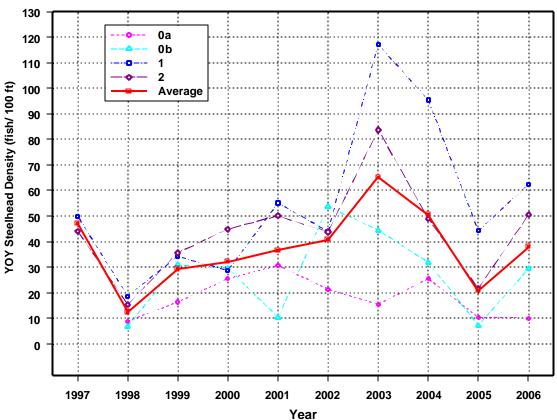
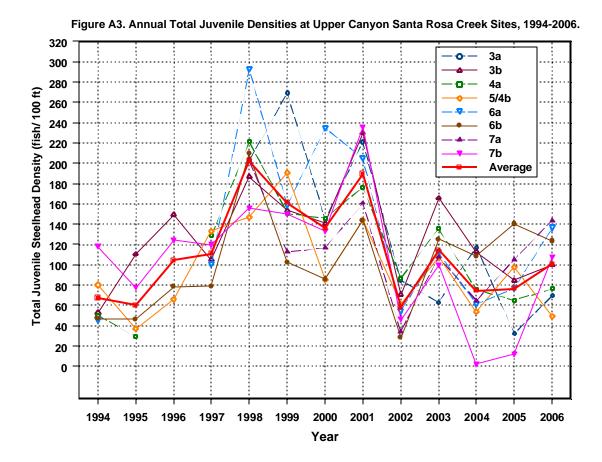



Figure A2. Annual Young-of-the-Year Densities at Lower Valley Santa Rosa Creek Sites, 1997-2006.

112

Figure A3. Annual Total Juvenile Steelhead Densities at Upper Canyon Santa Rosa Creek Sites, 1994-2006.

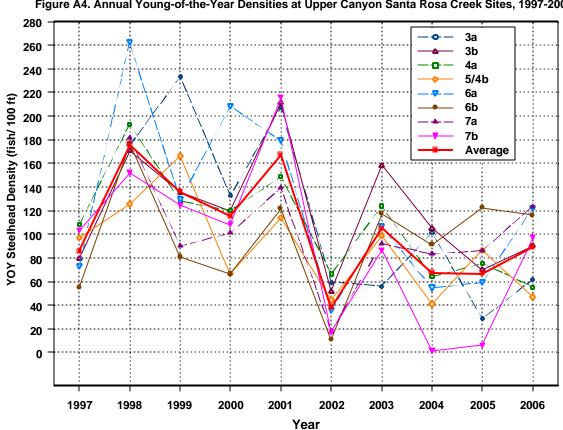


Figure A4. Annual Young-of-the-Year Densities at Upper Canyon Santa Rosa Creek Sites, 1997-2006.

Site densities of Size Class II and III (smolt size) juveniles were higher in the lower valley than the upper canyon or similar in many years (Figures A5–A7). In some wet years with large storm events (1995 and 1998), densities of these larger fish were relatively low in the lower valley, likely due to the reduced YOY densities and reduced yearling survival over the winter (Figure A8). However, in other above-average rainfall years (1997, 2000 and 2005), Size Class II and III steelhead densities were relatively high in the lower valley, likely because of higher proportions of YOY reaching smolt size their first growing season with the higher spring/ early summer flows when growth is fastest. Then in drier years (or years when few storms came late in the spawning season and the sandbar closed early, like 1997), when more spawning effort likely occurred in the lower valley, densities of these larger fish (with large YOY) were also relatively high (1997, 2000, 2003 and 2004). As a general trend, Size Class II and III densities in the lower valley fluctuated up and down annually in 1994-2002 but increased in 2003 and remained relatively high in 2003–2006. Site 1 had especially high densities in 2003–2006 with high densities of fast growing YOY and high densities of large yearlings. This stretch of the creek also changed ownership, which corresponded to an absence of cattle along the creek afterwards and heavy streamside growth of willows at the sampling site (Alley 2004a). In the upper canyon, Size Class II and III densities generally increased from 1994 to 1998 and then decreased steadily to lows in 2003 and 2004, with a large increase in the wet year of 2005 (except at Site 7b that was still suffering from earthquake-related poor water quality) and then a decline in the close to normal rainfall year of 2006 (Figure A8). Again, the effects of the December 2003 earthquake likely contributed to low survival of yearlings in this larger size class at Sites 7a and 7b in 2004-2005.

Figure A5. Annual Size Class II/III Steelhead Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

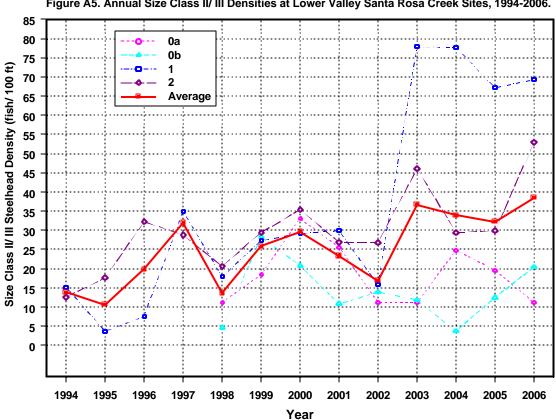
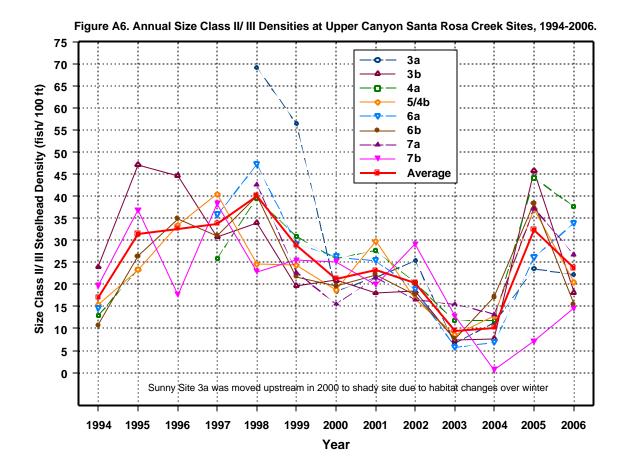
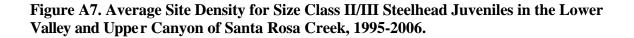




Figure A5. Annual Size Class II/ III Densities at Lower Valley Santa Rosa Creek Sites, 1994-2006.

Figure A6. Annual Size Class II/III Steelhead Densities at Upper Canyon Santa Rosa Creek Sites, 1994-2006.

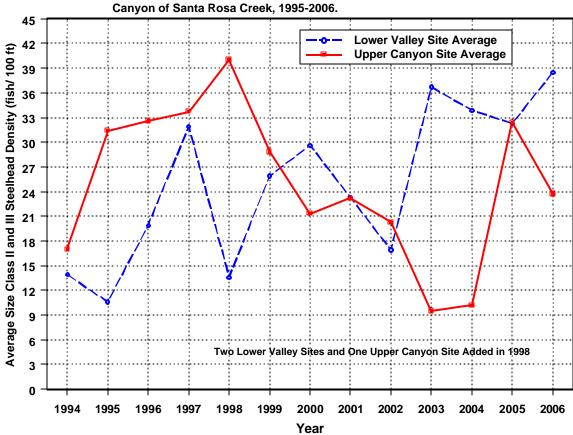
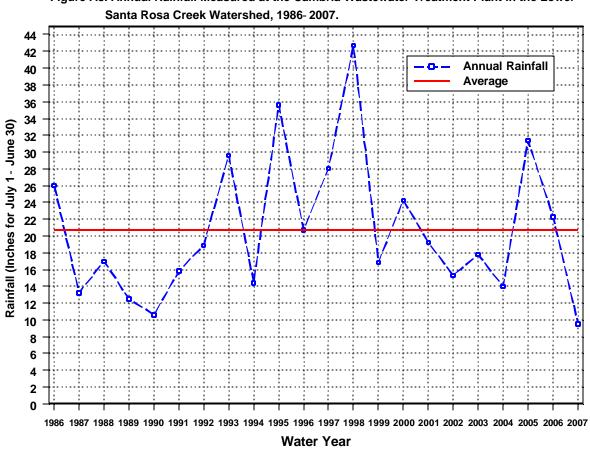
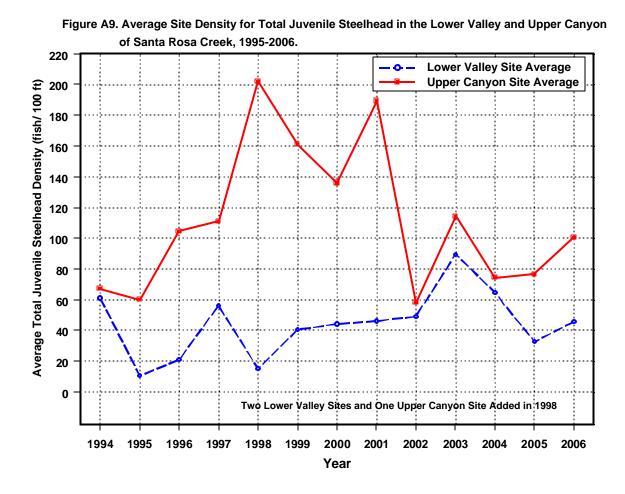
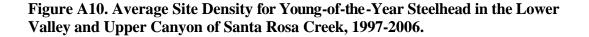
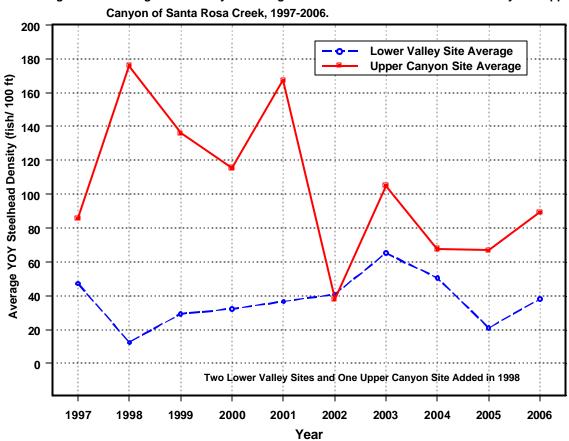


Figure A7. Average Site Density for Size Class II/ III Steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1995-2006.

Figure A8. Annual Rainfall Measured at the Cambria Wastewater Treatment Plant in the Lower Santa Rosa Creek Watershed, 1986-2007.


Figure A8. Annual Rainfall Measured at the Cambria Wastewater Treatment Plant in the Lower

Regarding total juvenile densities at sampling sites, patterns were similar to those of YOY steelhead because most of the population was YOY (Figures A1-A4 and A9-A10). However, more years of total density data were available. In the 1994–1998 period, the impact of the 10 March 1995 flood and good upper watershed spawning access in 1998 were evident. Total densities were very low in the lower valley in 1995 likely due to the flood washing away spawning redds, recently emerged YOY and yearlings. Total densities in the upper canyon in 1995 were also less than in 1994, on average, likely due to flood impacts similar to those in the lower valley. However, late spawning in the upper watershed likely followed the flood and YOY survival was likely greater with less yearling competition. Then in 1998, total densities declined in the lower valley and increased in the upper canyon, likely due to good spawning access to the upper canyon and greater spawning effort with numerous stormflows during the 1997/1998 winter. Survival of YOY was probably high with less competition, as well.

Figure A9. Average Site Density for Total Juvenile Steelhead in the Lower Valley and Upper Canyon of Santa Rosa Creek, 1995-2006.

Santa Rosa Creek juvenile densities in 2006 (a year with moderate total, YOY and Size Class II densities and after a near-average rainfall year in Santa Rosa Creek (**Figures A7 and A9–A11**) were compared to those in other watersheds along the Central California Coast (**Table A2 from Alley 2007a**). Santa Rosa Creek had the highest average site densities in most age and size classes and total juveniles.

Table A2. Average Juvenile Steelhead Densities in Multiple Watersheds Along the
Central California Coast in 2006 (from Alley 2007a).

Watershed (Listed from South to North)	Number of Sites	Avg. YOY Density*	Avg. Yearling Density*	Avg. Size Class II and III Density*	Avg. Total Density*
Santa Rosa	14	67	10	26	77
San Simeon	3	57	6	16	63
Corralitos	7	44	17	18	61
Aptos	4	26	6	11	32
Soquel	6	17	1	5	18
San Lorenzo	16	26	2	11	28
Scott	10	48	7	_	55
Waddell	9	20	2	_	22
Gazos	8	19	5	_	24

* Density measured in fish/ 100 ft.

When the 14 sampling sites in 2006 were rated according to Size Classes II and III steelhead densities, 1 site was rated "excellent" (Site 1); 3 sites were rated "very good" (Sites 2, 4a and 6a); 5 sites were rated "good" (Sites 0b, 3a, 3b, 4b and 7a); and 4 sites were rated "fair" (Sites 0a-1, 0a-2, 6b and 7b) (**Table A3**). These ratings were given according to categories developed from sampling conducted in the early 1980s throughout Santa Cruz County (**Smith 1982b**) (**Table A4**). This 1981 study was the only large-scale comparison of juvenile steelhead densities (100+ streams and 9 watersheds) from which categories could be developed.

Table A3. Santa Rosa Creek Sampling Sites Rated by Fall Density of Smolt-Sized
(=>75 mm SL) Steelhead Juveniles in 2004–2006.

Site	2004	2004	2005	2005	2006	2006
	Density (fish/ 100 ft)	Habitat Rating	Density (fish/ 100 ft)	Habitat Rating	Density (fish/ 100 ft)	Habitat Rating
0a-1	24.8	Good	19.6	Good	11.1	Fair
0a-2					14.6	Fair
Ob	3.7	Poor	12.5	Fair	20.4	Good
1	77.7	Excellent	67.2	Excellent	69.3	Excellent
2	29.4	Good	29.9	Good	53.0	Very Good
3a	11.4	Fair	23.5	Good	22.2	Good
3b	7.6	Below Avg.	45.7	Very Good	18.2	Good
4 a	11.8	Fair	44.1	Very Good	37.6	Very Good
5/ 4b*	12.7	Fair	37.1	Very Good	20.5	Good
6a	6.8	Below Avg.	26.1	Good	33.8	Very Good
6b	17.1	Good	38.4	Very Good	15.5	Fair
7a	13.2	Fair	37.2	Very Good	26.8	Good
7b	0.6	Very Poor	7.1	Below Avg.	14.6	Fair

*Site 5 was moved downstream to Site 4b in 2006 due to access problems.

Table A4. Rating of Steelhead Rearing Habitat For Small Central Coast Streams.*

Very Poor - less than 2 smolt-sized** steelhead per 100 feet of stream.

Poor - from 2 to 4		u	"
Below Average - 4 to 8	n		
<u>Fair</u> - 8 to 16	n		
<u>Good</u> - 16 to 32	n		
Very Good - 32 to 64	n	"	
Excellent - 64 or more			

* Drainages included the Pajaro, Soquel and San Lorenzo systems and other smaller Santa Cruz County coastal streams totaling more than 100 sampling sites in 1981 (Smith 1982b).

** Smolt-sized fish (meaning they would be smolt size by spring) were at least 75 mm (3 inches) Standard Length.

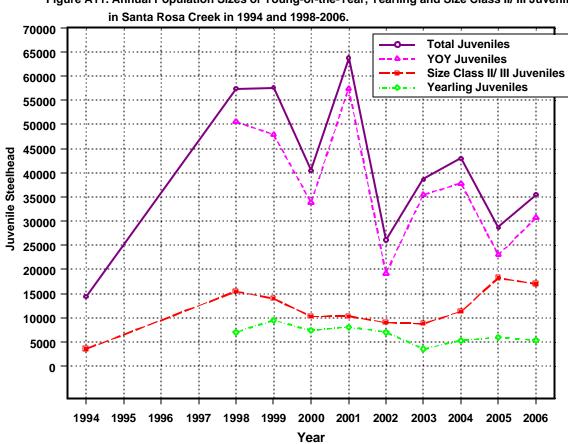
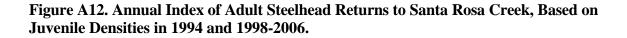
Trends in annual population size for age classes, size classes and total juveniles indicated that 1994 represented a low point in the 13-year monitoring period (Table A5 Figure 11). In 1994, Reaches 0a and 3a were dry and Reach 0b was partially dry with very few juvenile steelhead after an especially mild winter that had caused early sandbar closure (Table A5 (Alley 1995b). The steelhead population had expanded by 1998 and 1999, with relatively large YOY and Size Class II and III populations (Figure A11). In 2000, the population dropped due largely to the smaller YOY population. Habitat conditions were poorer in 2000 compared to 1999 with regard to less escape cover and lower baseflow, which also likely resulted in the smaller yearling population (Alley 2001a). This 2000 decline in population size corresponded with declines in other monitored central coast watersheds in Santa Cruz and San Mateo Counties (Soquel, San Lorenzo and Gazos). Reduced YOY populations in 2000 may have partially been caused by poor spawning success and/or fewer spawners resulting from events associated with the El Nino period beginning in 1998. Over-winter survival of juveniles in 1997/1998 may have been reduced during large El Niño stormflows. Oceanic conditions for juvenile survival to adulthood may have been abnormally difficult for juvenile smolts entering the ocean during the 1997/1998 winter and spring. The El Niño began in summer 1997, peaked in fall and winter of 1997-98, and persisted through spring and summer of 1998. Unusually warm surface sea temperatures (SST's), low macronutrient levels and low chlorophyll and primary production characterized this event (Michisaki et al. 2001). This likely caused poor ocean survival of smolts entering the ocean in 1997 and 1998 due to high competition for limited food under warm water conditions that increased food demand. In smaller watersheds that did not have a reduced YOY population in 2000 (San Simeon, Scott and Waddell), there may have been sufficient adult spawners to saturate the limited YOY habitat. The one large watershed that did not show a reduced 2000 YOY population, the Carmel River, provided refuge for yearlings and YOY in Los Padres Reservoir (and less so in San Clemente Reservoir) during the El Niño storms of 1998.

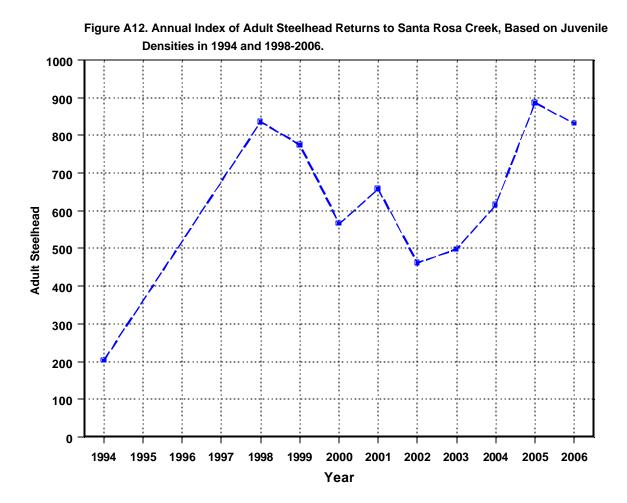
Table A5. Summary Table of Steelhead Size Class Site Densities, Reach Densities,Juvenile Production and Adult Indices in Mainstem Santa Rosa Creek, 1994–2006.

Year	Size Class 1 (<75 mm SL) Avg Site Density / 100 ft	Size Class 1 Avg. Reach Density / 100 ft	Size Classes 2 & 3 (=>75 mm SL) Avg. Site Density / 100 ft	All Sizes Avg. Site Density / 100 ft	Size Classes 2 & 3 Avg. Reach Density / 100 ft	Size Classes 2& 3 Creek- Wide Density / 100 ft	Size Classes 2& 3 Upper Canyon- Wide Density / 100 ft	All Sizes Avg. Reach Density / 100 ft	All Sizes Creek- Wide Density / 100 ft	Size Class 1 Production	Size Class 2 & 3 Production	Total Juvenile Production	Adult Index
1994	51.3		15.8	67.1					47.3	10,800	3,500	14,300	203
1995	28.7		26.5	45.9					30.8	4,400 partial*	4,900 partial	9,300 partial	253 partial
1996	48.2		28.4	76.6					52.3	9,800 partial	6,000 partial	15,800 partial	317 partial
1997	64.1	51.0	33.2	97.3	23.1	25.8		74.1	76.0	15,800 partial	7,800 partial	23,600 partial	409 partial
1998	111.7	100.6	32.0	143.6	30.1	28.6	47.6	130.7	106.1	42,000	15,400	57,400	836
1999	92.9	102.9	27.8	120.7	26.4	25.8	35.8	129.7	106.4	43,700	14,000	57,600	775
2000	81.3	62.2	24.1	105.3	19.1	18.9	19.8	81.0	74.8	30,300	10,300	40,500	566
2001	118.4	111	23.3	141.6	19.1	19.0	21.9	130.1	117.6	53,400	10,300	63,700	658
2002	35.9	35.3	19.2	55.1	18.4	17.6	21.3	55.9	51.0	17,100	9,000	26,100	462
2003	73.9	72.2	18.6	100.8	15.9	17.1	9.2	88.2	71.9	29,900	8,800	38,700	498
2004	53.1	54.3	18.1	71.1	14.8	17.1	11.3	69.1	65.1	31,700	11,300	43,000	615
2005	29.4	27.1	32.4	61.9	31.5	28.6	33.1	58.6	45.1	10,400	18,200	28,700	886
2006	49.6	41.3	27.5	77.1	25.5	26.8	22.9	66.8	55.9	18,500	17,000	35,500	832
Avg.	64.5	65.8	25.2	89.6	22.7	22.6	24.8	88.4	69.3	24,400	10,500	34,900	562

* Reaches in 1995–1997 conformed to wetted reaches in 1994. However, in 1995–1997, downstream reaches (0a and 0b) also had perennial flow to varying degrees but were not sampled until 1998 and afterwards.

Figure A11. Annual Population Sizes of Steelhead Young-of-the-Year, Yearling and Size Class II/III Juveniles in Santa Rosa Creek in 1994 and 1998-2006.


Figure A11. Annual Population Sizes of Young-of-the-Year, Yearling and Size Class II/ III Juveniles

The juvenile population bounced back in 2001, only to plummet in 2002, after a winter that offered few storms with likely poor passage through the sandbar and early final sandbar closure (Table A13). This resulted in poor adult passage into the upper watershed, where YOY are usually most abundant. In the continued drier years of 2003 and 2004, the population size was intermediate, relying more heavily on YOY production in the lower valley. The total juvenile population in 2005 was smaller than the 2 previous years, and it was below average. This probably resulted from a smaller adult population spawning the previous winter. Seven of the 8 monitored watersheds along the Central California Coast experienced YOY and total population reductions in 2005. After the wet winter of 2004/2005, spawning access to the upper watershed was good but the YOY population did not increase over 2004 levels there and it declined in the lower valley, even though habitat conditions were improved in 2005 (Alley 2006a). Beneficially, YOY growth rate in 2005 was relatively high with the higher spring flows, and the Size Class II and III population increased substantially from 2004 to 2005. In 2005, an estimated 55% of YOY (12,500) reached Size Class II compared to 16% (6,100) in 2004. This same trend was detected in the San Lorenzo River and Soquel Creek (Alley 2006c; 2006d). In

2006, the juvenile population increased modestly in Santa Rosa Creek after a nearaverage rainfall winter. However, the YOY and yearling population estimates were below average, consistent with other watersheds (San Simeon, San Lorenzo, Soquel) and low YOY densities in Scott, Waddell and Gazos creeks. This may have been the second year in a row with relatively below average adult returns and the third in the 5-year period of 2002–2006.

The trend in the annual adult steelhead index that was generated from the juvenile population, was most affected by the trend in the annual size of the Size Class II and III portion of the juvenile population. Consequently, the adult index could increase even if the total juvenile population decreased, if the Size Class II/ III population increased at the same time. The adult index increased by four times from 1994 to 1998 (Figure A12). Then it declined in 1999 and 2000 coincident with smaller Size Class II/ III populations when lower spring flows reduced the growth rate of YOY compared to 1998 (Figure A11). The adult index increased in 2001 due to a greatly increased YOY population and despite a no larger Size Class II/ III population during a drier year that did not promote very rapid YOY growth in the lower valley. In 2002 the adult index was the lowest in the 9-year period, 1998–2006, with relatively small YOY and Size Class II/III populations after a mild spring that offered poor growing conditions. The next 2 years, 2003 and 2004, afforded limited spawning and growth opportunities but YOY populations increased over 2002 levels, although the Size Class II/III population decreased in 2003 and then increased modestly in 2004. Accordingly, the adult index increased in 2003 and 2004. The juvenile population was relatively small in 2005, but habitat conditions were good and spring flows were likely relatively high after a wet winter. As a result, YOY growth rate was high in the lower valley and resulted in a substantial increase in the Size Class II/ III population, an increase in the yearling population in the upper canyon and the highest adult index during the monitoring period. In 2006, the YOY population increased during a near-average rainfall year, with adequate growth of YOY in the lower valley to maintain a relatively high Size Class II/ III population and a high adult index, despite the relatively low total juvenile population size (Figures A11 and A12).

D.W. ALLEY & Associates

Trends in Habitat Change Between 1994 and 1998

A very large flood event occurred in March 1995 (estimated as a 90-year event by Questa Engineering (**2005**)). A conservative estimate of streamflow on 10 March 1995 was 16,000 cfs, estimated by Greg Martin, hydraulic engineer at San Luis Obispo County, based on the stream gage operated by the CCSD (at Highway 1) and older stage vs. flow tables. It was more than double the previously highest flow of 7,900 cfs recorded in 1986, since the gage was installed in 1976. Questa Engineering (**2005**) estimated the 100-year storm to be 18,159 cfs. Streambank erosion was extensive from the March 1995 flood. Much of the streambank erosion one observes today actually occurred from of that one storm event or from delayed effects from that storm event. There was downcutting of the channel in the upper canyon. The entire riparian corridor, with all of its trees, was washed away for miles in the lower valley during that one stormflow. Many tree-less vertical banks were left afterwards, even in the straight-aways. The Windsor Boulevard Bridge in Cambria was nearly lost. The following summer, California Conservation Corps crews were brought in to cut up the valuable instream wood through Cambria. Private landowners cut it up elsewhere. Most wood soon left the system.

Santa Rosa Creek has a narrow gap between the upper canyon and lower valley where the creek also makes a rather sharp bend to the south (**Figure A13**). That bend has required considerable stabilization to protect the road above on the outside of the bend. The culverts at the Curti Creek mouth are perched several feet, just upstream of that bend. In 1998, after another wet winter/spring, Reaches 0a, 0b and 3a were added because they contained continuous surface flow and high baseflow after the wet winter of 1997/1998 (**Figure A14**). In the years 1994–1997, Reach 0a downstream of the Perry Creek confluence and the high school went dry through Cambria to varying degrees, although streamflow into the lagoon continued except in October and November 1994.

The lower valley (Reaches 0a-2) had a lower stream gradient than the upper canyon (Reaches 3a-7) and more extensive streambank erosion to contribute sediment to pools in 1998. Also, there were less bedrock outcrops and large boulders to scour pools in the lower valley. Most pools in the lower valley were scoured by tree rootwad masses and instream wood. Overhanging willows were the primary source of escape cover in Reaches 0a = 0.122).

In Reach 1 in 1998, 12 of 20 analyzed pools were formed by scour caused by instream wood (downed tree trunks and limbs). In 1994, the reach consisted of mostly pools and glides, with very little low gradient riffle habitat. Pools were relatively shallow. In 1998, pools made up a smaller proportion of habitat, with much glide habitat becoming run and riffle habitat compared to 1994. In 1998, all habitats were deeper, on average and for maximum depth (**Figures A15 and A16**). Maximum pool depth was 0.3 feet greater in 1998, indicating increased scouring. However, average pool depth was only 0.1 foot deeper, it being accounted for by higher streamflow and indicating a similar level of pool sedimentation to 1994. Escape cover in Reach 1 was primarily from instream wood and overhanging willows in 1998 (pool escape cover index = 0.153).

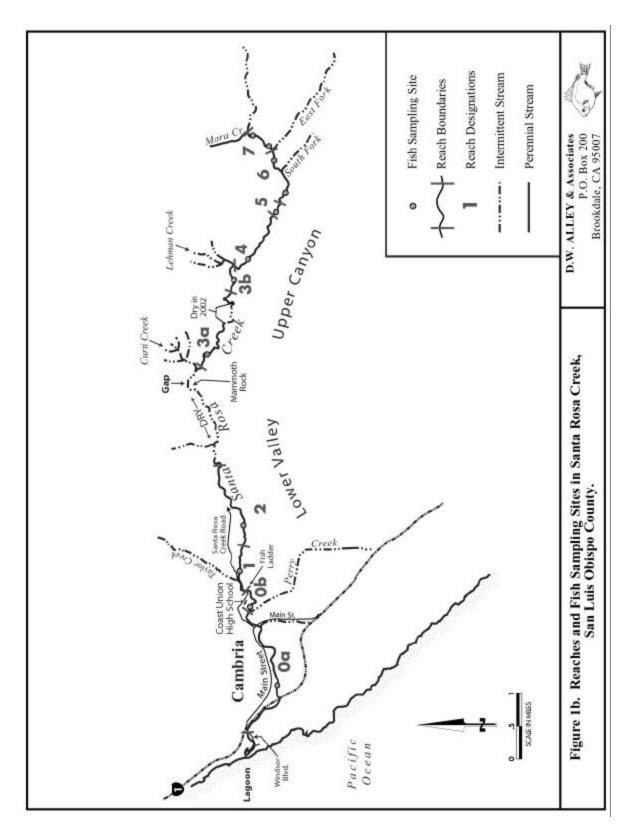


Figure A13. Reaches of Santa Rosa Creek, San Luis Obispo County.

Figure A14. Measured Streamflow in Fall at Sampling Sites in Santa Rosa Creek, 1998-2006.

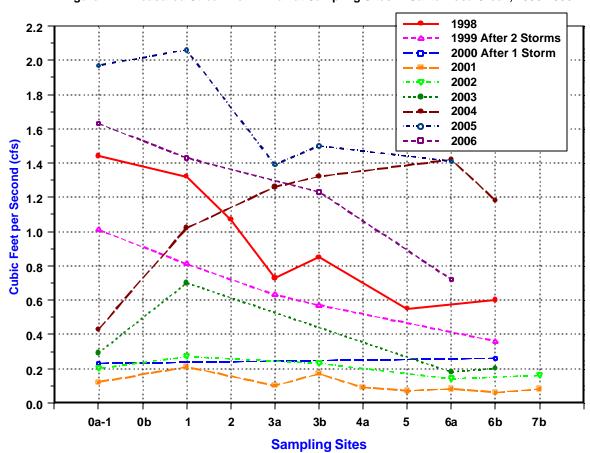
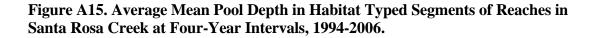



Figure A14. Measured Streamflow in Fall at Sampling Sites in Santa Rosa Creek, 1998-2006.

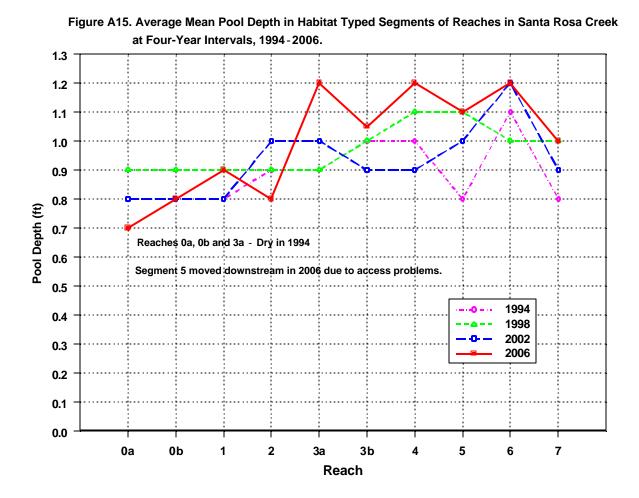
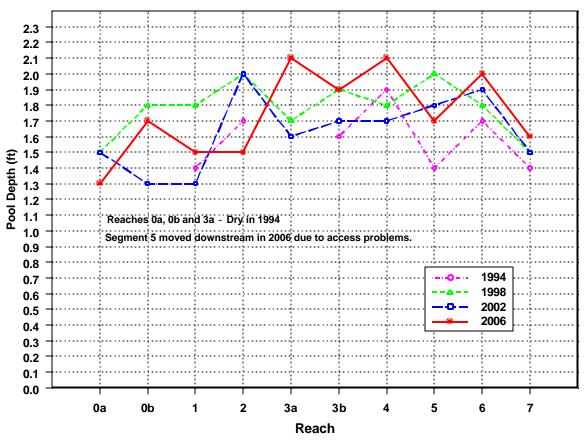
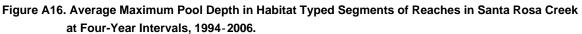




Figure A16. Average Maximum Pool Depth in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals, 1994-2006.

In Reach 2 in 1998, it was noted that it was separated from Reach 1 at a large bedrock outcrop where pool development and gradient began to increase in Reach 2. Average maximum pool depth was greater in Reach 2 than Reach 1, while average pool depth remained equal in 1998 (**Figures A15 and A16**). The habitat typed segment in Reach 2 was dominated by instream wood pools (9 of 17 analyzed pools), with bedrock pools becoming more common than in Reach 1. The proportion of pools increased in 1998, and glides converted to more riffles and runs as in Reach 1. Habitat lengths were longer than in 1994. As in Reach 1, escape cover in 1998 was primarily from overhanging willows with some instream wood and an occasional tree root mass (pool escape cover index = 0.127).

Reaches 3a–7 (upper canyon) were separated from Reach 2 by 2.2 miles of mostly dry streambed in 1998. Reach 3a was dominated by pools, followed by runs riffles and stepruns. Pools in the habitat typed segment were equally scoured by rootwads (7 pools), very large boulders (6 pools) and bedrock (6 pools), with fewer instream wood pools (3 pools). In addition, pools were scoured at bends having streambanks of hard clay (5 pools). Average pool depth was the same as downstream reaches (0.9 feet), and average maximum pool depth was similar to Reaches 0a, 0b and 1 (Figures A15 and A16). Escape cover in 1998 was primarily submerged, living tree roots along the margins (not undercut banks), secondarily boulders and thirdly, overhanging willows (pool escape cover index = 0.142).

Reach 3b had a more closed riparian canopy and passed through a deeper canyon than downstream reaches, and the habitat typed segment was dominated by boulder pools (8) followed by rootwad pools (6) and bedrock pools (3) in 1998. Average and maximum pool depth was deeper than downstream reaches (**Figures A15 and A16**). As in Reach 2, maximum pool depth was deeper than in 1994 but average pool depth was unchanged. Substantial cover was provided by undercut banks in 1998 (unlike downstream reaches), with unembedded boulders also very important (pool escape cover index = 0.143).

Reaches 3b and 4 were separated by the confluence of the perennial tributary, Lehman Creek. In 1998, the habitat typed segment in Reach 4 was predominately pools scoured by rootwads (10), boulders (10) and bedrock (6). This was a change over 1994, when step-runs were more prevalent. Compared to downstream reaches, average pool depth increased (**Figure A15**). All habitat depths in Reach 4 increased in 1998 compared to 1994, especially in step-runs (**Figure A16**). Most of the increase was probably due to increased streamflow (**Figure A14**). As in Reaches 3a and 3b, escape cover in Reach 4 in 1998 was primarily undercut banks and unembedded boulders (pool escape cover index = 0.118).

The short Reach 5 was demarcated at its lower end by a failing canyon slope, eroding into the channel. Reach 5 was lower gradient than reaches below and above. In 1998 there was a habitat shift to more and deeper pool habitat (**Figures A15 and A16**). Escape cover was more abundantly provided under boulders and by undercut banks than in reaches above and below (pool escape cover index = 0.248)

Reach 6 began with increasing gradient and consisted of mainly pools (51%) and stepruns (41%). In the habitat typed segment, most pools were scoured primarily by rootwads (13), followed by boulders (7) and bedrock (4). In 1998, average pool depth had decreased slightly and maximum pool depth had increased slightly, resulting in not much change from 1994 (**Figures A15 and A16**). As in Reach 4, step-run depth had increased greatly over 1994. In 1998, escape cover was primarily undercut banks, unembedded boulders and submerged roots bordering the margins (pool escape cover index = 0.172).

Reach 7 began upstream of the large, dry tributary from the south (the East Fork) and a bridge crossing. Reach 7 ended at the Mora Creek confluence from the north. Large boulders dominated the streambed in this reach. In 1998, Reach 7 was primarily step-runs and pools, with a large shift from glides, runs and riffles in 1994 to step-runs in 1998. In the habitat typed segment, pools were primarily scoured by boulders (13) and rootwads (6). In 1998, maximum pool depth declined and average pool depth was unchanged from 1994 (**Figures A15 and A16**). Escape cover in 1998 was primarily under large, unembedded boulders with fewer undercut banks, providing overall good cover (pool escape cover index = 0.213).

Trends in Habitat Change Between 1998 and 2002

Santa Rosa Creek sometimes went dry through Cambria in summer prior to 1998 downstream of the High School in much of Reach 0a. Yates and Van Konyenburg (**1998**) modeled the Santa Rosa Creek groundwater basin for 1988-89, producing a calibration simulation that predicted the stream between the High School (Reach 0b) and the Highway 1 Bridge (Reach 0a) was dry from July through mid-December when agricultural and municipal pumping were included in the model. Without agricultural pumpage, but with municipal pumpage retained in the model for 1988, the simulation predicted that a trickle of baseflow emerged near well 27S/9E-19H2 and flowed continuously in all months except October when a short reach near well 27S/8E-27H1 (near Highway 1) went dry. In 1998-2006, surface flows continued through Reaches 0a and 0b to the lagoon.

Habitat quality in Reach 0a improved from 1998 to 2002, excluding the reduced flow in 2002. In 2002, Reach 0a was again dominated by long shallow pools with shallow glides and runs. Compared to 1998 conditions, conditions in 2002 indicated similar pool scour because despite the much lower streamflow in 2002, averaged mean pool depth was nearly as deep (0.8 feet vs. 0.9 feet) and equally deep for averaged maximum depth (1.5 feet) (**Figures A15 and A16**). Other habitat types were naturally shallower in 2002. Tree canopy had increased since 1998 (42% vs. 33%), and the escape cover index was slightly increased (0.133 vs. 0.122) with more overhanging willows in 2002 (**Figures A17 and A18**). Most of the cover was in pools. Pools were scoured by tree rootwads (7), woody material (3), boulders (1), riprap (1) and one hard earthen bank. In 2002 there were more of all kinds of habitats except riffles. It appeared that some run habitat in 1998 scoured more and became pool habitat in 2002. Percent fines increased in riffles in 2002.

Habitat quality declined in Reach 0b from 1998 to 2002. Consistent with Reach 0a, in Reach 0b that began at the Perry Creek confluence (**Figure A13**) there were more and shorter habitats in 2002 except for runs. Glides appeared. In Reach 0b it appeared that run habitat in 1998 scoured and became shallow pool habitat by 2002. Pool lengths in Reach 0b were much shorter than in Reach 0a, consistent with pool lengths upstream. In 2002, pools were scoured by tree rootwad (4), riprap (3), boulders (2), woody material (2) an earthen bank and a concrete road crossing with culvert. Runs were much shorter in 2002.

Compared to 1998, in 2002 mean pool depth was slightly shallower (0.8 feet vs. 0.9 feet) and maximum pool depth was much shallower (1.3 feet vs. 1.8 feet) (**Figures A15 and A16**). This indicated increased sedimentation in this reach or scour of runs to make shallow pools that made the overall pool depth less. The escape cover index decreased in 2002 (0.138 vs. 0.188) while tree canopy increased (61% vs. 40%) (**Figures A17 and A18**). Overhanging willows and instream wood were important escape cover factors. Percent fines in riffles were similar in 1998 and 2002.

Figure A17. Escape Cover Index for Pool Habitat in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals (1998-2006).

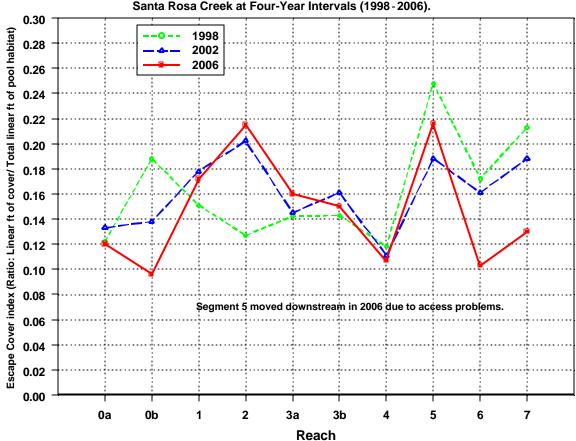


Figure A17. Escape Cover Index for Pool Habitat in Habitat Typed Segments of Reaches in Santa Rosa Creek at Four-Year Intervals (1998-2006).

Figure A18. Tree Canopy Closure in Fall in Wetted Reaches of Santa Rosa Creek in Habitat Typed Segments at Four-Year Intervals (1994-2006).

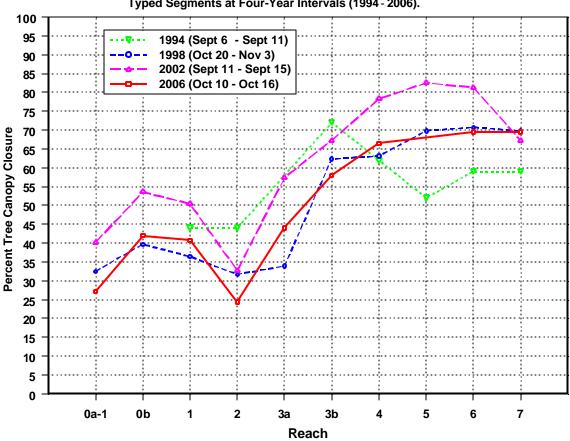


Figure A18. Tree Canopy Closure in Fall in Wetted Reaches of Santa Rosa Creek in Habitat Typed Segments at Four-Year Intervals (1994 - 2006).

Habitat quality in Reach 1 improved from 1998 to 2002, excluding the reduced flow in 2002 (**Figure A14**). In Reach 1 (beginning at the fish ladder) (**Figure A13**), habitat lengths were all shorter in 2002. Most pools were scoured by wood (10), followed by tree rootwads (7), boulders (2) and bedrock (1). Compared to 1998, in 2002 averaged pool depth trends were consistent with Reach 0b. Averaged pool depth was slightly shallower (0.8 feet vs. 0.9 feet in 1998), while averaged maximum pool depth was much shallower (1.3 feet vs. 1.7 feet in 1998). Pool depth in 1994 was similar to 2002, with averaged mean and maximum depth of 0.8 feet and 1.4 feet (**Figures A15 and A16**). The shallowing from 1998 to 2002 indicated either pool sedimentation or scour of runs to make shallow pools that resulted in a lower overall average pool depth. In 2002, the escape cover index increased (0.178 vs. 0.151 in 1998) (**Figure A17**) with increased tree canopy closure (53% vs. 36% in 1998) (**Figure A18**). Escape cover was primarily from instream wood and overhanging willows. There were many more riffles in 2002. Riffle embeddedness (small particle size) and percent fines in riffles were less in 2002.

Habitat quality in Reach 2 improved from 1998 to 2002, excluding the reduced flow in 2002 (**Figure A14**). Reach 2 was separated from Reach 1 at a bedrock outcrop (**Figure A13**) where pool development and gradient increased. As in downstream reaches, the habitat frequency increased for all types except runs. As in Reach 1, most pools were scoured by wood (11), followed by bedrock (5), tree rootwads (4) and boulders (1). Despite reduced streamflow in 2002, averaged pool depth was deeper than in 1998 (1.0 feet vs. 0.9 feet in 1998) and averaged maximum depth was equal in both years (2.0 feet). Averaged mean and maximum pool depth in 1994 were shallower than 2002 (0.9 and 1.7 feet, respectively) (**Figures A15 and A16**). Pool escape cover increased in 2002 (0.202 vs. 0.127 in 1998) (**Figure A17**) and tree canopy closure had increased (**Figure A18**). Riffle embeddedness declined in 2002, but particle size in riffles was small and percent fines were similar to 1998.

Habitat quality in Reach 2 improved from 1998 to 2002, excluding the reduced flow in 2002 (**Figure A14**). Reach 2 was separated from Reach 1 at a bedrock outcrop (**Figure A13**) where pool development and gradient increased. As in downstream reaches, the habitat frequency increased for all types except runs. As in Reach 1, most pools were scoured by wood (11), followed by bedrock (5), tree rootwads (4) and boulders (1). Despite reduced streamflow in 2002, averaged pool depth was deeper than in 1998 (1.0 feet vs. 0.9 feet in 1998) and averaged maximum depth was equal in both years (2.0 feet). Averaged mean and maximum pool depth in 1994 were shallower than 2002 (0.9 and 1.7 feet, respectively) (**Figures A15 and A16**). Pool escape cover increased in 2002 (0.202 vs. 0.127 in 1998) (**Figure A17**) and tree canopy closure had increased (**Figure A18**). Riffle embeddedness declined in 2002, but particle size in riffles was small and percent fines were similar to 1998.

The upper canyon (Reaches 3a through 7) was separated from Reach 2 by 2.2 miles of mostly dry streambed in 1998 and 2002 that extended upstream of the Curti Creek confluence (**Figure A13**). Habitat quality in Reach 3a was similar in 1998 and 2002, except for reduced flow in 2002. In 2002, Reach 3a continued to be dominated by pools (60%), followed by runs, riffles, glides and step-runs. Pools were scoured mostly by rootwads (15), followed by boulders (9), bedrock (5) and woody material (3). Despite reduced baseflow in 2002 (**Figure A14**), averaged pool depth was greater in 2002 (1.0 feet vs. 0.9 feet) and only slightly less as averaged maximum pool depth (1.6 feet vs. 1.7 feet) (**Figures A15 and A16**). From 1998 to 2002, the escape cover index was similar (**Figure A17**), riffle embeddedness was less, and percent fines were similar. As in downstream reaches, percent canopy closure improved (55% vs. 34%) (**Figure A18**).

Habitat quality in Reach 3b declined in 1998 and 2002. Reach 3b had a more closed riparian canopy than downstream reaches, and pools were the most common habitat (55%). In descending order of frequency, rootwad scour pools were most common (9), followed by boulder pools (8), bedrock pools (2) and log-scoured pools (1) in 2002. Pool depth averaged less in 2002 than in 1998 (averaged mean = 0.9 feet vs. 1.0 feet in 1998 and averaged maximum = 1.7 feet vs. 1.9 feet in 1998) (**Figures A15 and A16**), presumably due at least partially from reduced streamflow (**Figure A14**). Pool depths were similar in 1994 (averaged mean = 1.0 feet and averaged maximum = 1.6 feet). The pool escape cover index was somewhat higher in 2002 (0.161 vs. 0.143 in 1998) and tree

canopy closure was increased (72% vs. 63% in 1998) (**Figures A17 and A18**). Riffle substrate was more highly embedded (48%) and contained more percent fines (36%). It appeared that riffle habitat in 1998 became step-run habitat in 2002 with considerably less escape cover (2002 index of 0.016 vs. 0.074 in 1998) with similar embeddedness (45%) and percent fines (29%) (**Figures A19 and A20**). Step-run depth was 0.1-foot shallower with reduced flow in 2002.

Figure A19. Substrate Embeddedness in Step-Runs and Runs in Reaches of Santa Rosa Creek at Four-Year Intervals (1998-2006).

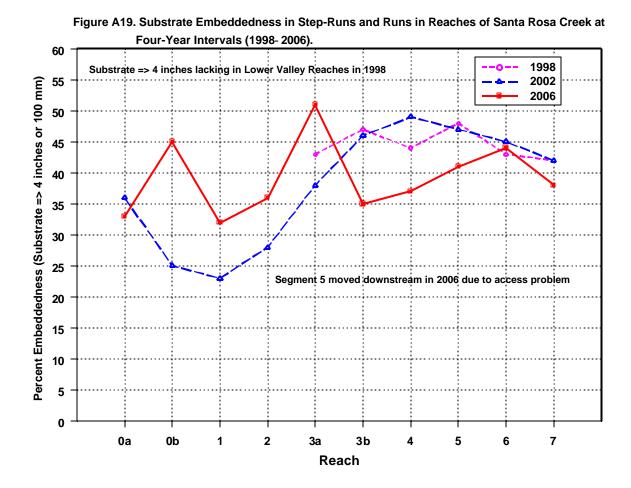
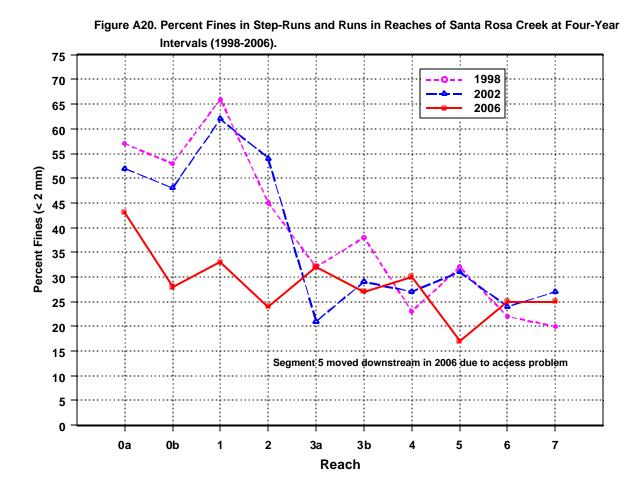



Figure A20. Percent Fines in Step-Runs and Runs in Reaches of Santa Rosa Creek at Four-Year Intervals (1998-2006).

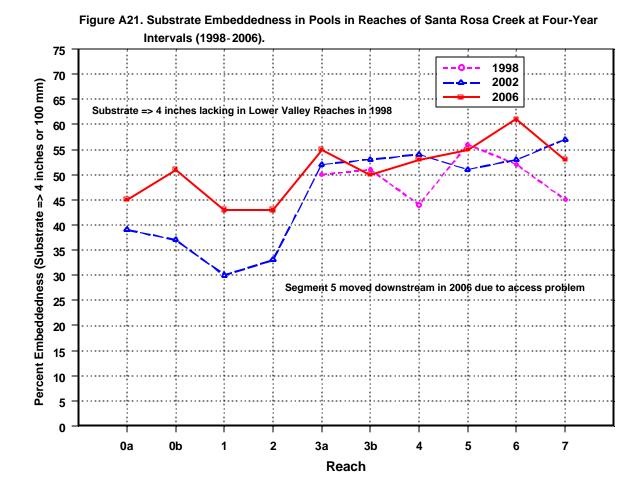
Habitat quality in Reach 4 was similar in 1998 and 2002, except for reduced flow in 2002 (**Figure A14**). Reach 4 had changed in habitat proportions in 2002, with more pool habitat, less step-run habitat and more run habitat. Habitat value was lost with the loss of step-run habitat. Both averaged mean depth (0.9 feet vs. 1.1 feet in 1998) and maximum depth (1.7 feet vs. 1.8 feet in 1998) declined in 2002 compared to 1998 partially due to reduced streamflow (**Figures A15 and A16**). Compared to 1994, pool depth was shallower in 2002. However, more habitat was surveyed in 1994, making comparisons weaker. Pool escape cover was very similar between 1998 and 2002 (0.111 vs. 0.118 in 1998), and tree canopy increased (77% vs. 63% in 1998) (**Figures A17 and A18**). Undercut banks and unembedded boulders were the primary sources of escape cover in Reach 4. Riffle and step-run habitat had very similar levels of embeddedness and percent fines (**Figures A19 and A20**).

The short, lower gradient Reach 5 was demarcated at its lower end by a failing canyon slope, eroding into the channel and had a wood jam near its upper end with the

horizontal-trunked sycamore (Figure A13). Habitat quality in Reach 5 was lower in 2002 compared to 1998, but perhaps better than in 1994. Regarding habitat proportions in Reach 5, pools dominated (59%), step-run habitat was less (14%) and riffle habitat increased (9%). This reach was unusual in that it had a higher proportion of woodscoured pools and boulder pools compared to reaches above and below. Several boulder pools were formed by old riprap along the road. As in downstream reaches, averaged pool depth was less in 2002 compared to 1998, (1.0 foot vs. 1.1 feet in 1998) (Figure A15). So was averaged maximum depth in pools (1.8 feet in 2002 vs. 2.0 feet in 1998) (Figure A16). Reduced streamflow played a part (Figure A14). However, pool depth was less in 1994 (0.8 feet for averaged mean depth and 1.4 feet for averaged maximum depth). Pool escape cover in 2002 was high (0.188) relative to other reaches, but was less than in 1998 (0.248) (Figure A17). Step-runs in 2002 were considerably shallower and had much less escape cover than in 1998, although embeddedness and percent fines were somewhat less (Figures A19 and A20). Riffle embeddedness and percent fines were similar between the years. Canopy closure increased from 70% in 1998 to 80% in 2002 (Figure A18).

Habitat quality in Reach 6 had improved since 1998, excluding consideration of the reduced baseflow in 2002 (**Figure A14**). As in other reaches of the upper canyon, steprun habitat was reduced in Reach 6 while run and riffle habitat increased, likely due to reduced baseflow. Reach 6 began with increasing gradient and consisted of primarily pools (50%) and step-runs (32%). Pools were deeper in 2002 than 1998 (1.2 feet vs. 1.0 foot for averaged mean depth in 1998 and 1.9 vs. 1.8 feet for averaged maximum depth in 1998) despite the reduced streamflow (**Figures A15 and A16**). Pools in 2002 were also deeper than in 1994. As in 1994 and 1998, most pools in 2002 were rootwad-scoured (14). In 2002, less frequent pools were bedrock pools (8) and boulder pools (5). Pool escape cover was similar (0.161 in 2002 vs. 0.172 in 1998), and tree canopy closure increased some (71 to 77%) (**Figures A17 and A18**). Step-runs remained similar in depth, escape cover, embeddedness and percent fines (**Figures A19 and A20**). Riffle embeddedness was similar, but percent fines in riffles were somewhat less in 2002.


Habitat quality in Reach 7 in 2002 appeared similar to 1998 conditions except for reduced baseflow (**Figure A14**). Reach 7 began at the confluence of the East Fork and ended at the Mora Creek confluence (**Figure A13**). Pools had similar depths between 1998 and 2002 (averaged mean depth = 0.9 in 2002 vs. 1.0 foot in 1998 and averaged maximum depth = 1.5 feet in both years) (**Figures A15 and A16**). Most pools were boulder scoured in 2002 (8), followed by bedrock (4), rootwad (2) and wood-scoured (1). Pools dominated the reach (58%) followed by step-runs (37%), though the proportion of step-runs decreased as in other upper canyon reaches. Pool escape cover was similar (0.188 in 2002 vs. 0.213 in 1998) (**Figure A17**). Escape cover was similar in step-runs, as was embeddedness and percent fines. Tree canopy closure was similar (74% in 2002 vs. 70% in 1998) (**Figure A18**). Step-run depth was greater in 1998 probably due to increased flow that year.


Trends in Habitat Change Between 2002 and 2006

Habitat conditions in Reach 0a [beginning at Windsor Drive Bridge (Figure A13)] declined from 2002 to 2006, excluding the higher baseflow in 2006. In 2006, Reach 0a was again dominated by long shallow pools runs and glides. Habitat typing in segment 0a-1 in 2006 indicated pool filling because, despite the higher streamflow in 2006 (Figure A17), the averaged mean pool depth was shallower (0.7 vs. 0.9 feet in 2002), as was averaged maximum depth (1.3 vs. 1.5 feet in 2002) (Figures A15 and A16). Pool length increased slightly as it did in all reaches in 2006. Other habitat types were shallower in 2006. Tree canopy was reduced in 2006 (27 vs. 42% in 2002), and the escape cover index decreased slightly (0.120 vs. 0.133 in 2002), with fewer overhanging willows in 2006 (Figures A17 and A18). Most of the cover was in pools. Pools were scoured by tree rootwads (9), bedrock (1), riprap (1) and one hard earthen bank. In 2006, the number of riffles increased while the number of runs and glides declined though lengthened. There was one fewer pool in 2006. Embeddedness was similar between 2002 and 2006 in all habitat types (Figures A19 and A21). Percent fines remained high and the same in pools (80%) (Figure A22) and lessened in other habitat types in 2006 (Figure A20).

Habitat conditions in Reach 0b declined overall in 2006 from 2002, despite the higher maximum pool depths and higher baseflow that increased the depth of fastwater habitat (runs and riffles). In Reach 0b [beginning at Perry Creek confluence (**Figure A13**)] the averaged mean pool depth remained the same and averaged maximum pool depth increased in 2006 (1.7 vs. 1.3 ft) (**Figures A15 and A16**). The main factor that reduced habitat quality was the reduced pool cover index in 2006 (0.096 vs. 0.138) (**Figure A17**). Run escape cover also declined. In 2006, pools in the Reach 0b were scoured by artificial boulder riprap (5), tree rootwads (3), woody material (1), an earthen bank and a concrete road crossing with a culvert and fish ladder. Pool length increased slightly as it did in all reaches in 2006. The percent of run habitat increased in 2006 while glide habitat decreased, consistent with higher baseflow. Tree canopy closure decreased (42 vs. 61%), as it did in all repeated stream segments (**Figure A18**). Overhanging willows and woody debris were important escape cover factors. Embeddedness and percentage of fines increased in pools and runs in 2006 compared to 2002, indicating sedimentation (**Figures A19–A21**).

In Reach 1 [beginning at the fish ladder (**Figure A13**)], habitat conditions improved in 2006 over 2002 primarily due to increased mean pool depth (0.9 vs. 0.8 ft) and maximum pool depth (1.5 vs. 1.3 ft) and increased baseflow (**Figures A14–A16**). Evidence of cattle using the riparian corridor appeared absent in 2006. The pool escape cover index was similarly high in 2002 (0.178) and 2006 (0.172) (**Figure A17**) while run escape cover index declined in 2006 (0.022) from 2002 (0.054). Most pools were scoured by tree rootwads with overhanging limbs (11), followed by wood (2), boulders (2) and bedrock (1) and a mudstone wall. In 2006, average embeddedness increased in pools and runs while average percent fines decreased (**Figures A19–A22**). Canopy closure decreased in Reach 1 in 2006 (42 vs. 61%) as in all repeated habitat typed segments (**Figure A18**).

D.W. ALLEY & Associates

Figure 22. Percent Fines in Pools in Reaches of Santa Rosa Creek at Four-Year Intervals (1998-2006).

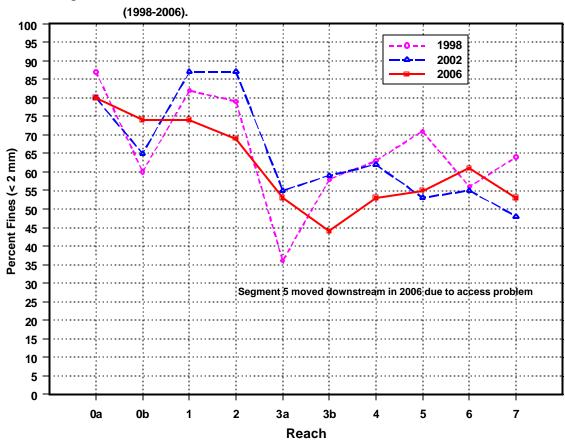


Figure A22. Percent Fines in Pools in Reaches of Santa Rosa Creek at Four-Year Intervals

Habitat conditions in Reach 2 declined from 2002 to 2006 primarily due to pool shallowing, although pool escape cover increased slightly despite less tree canopy closure. Reach 2 was separated from Reach 1 at a bedrock outcrop, where pool development and gradient increased (Figure A13). In 2006, averaged mean pool depth declined (0.8 vs. 1.0 ft in 2002), averaged maximum pool depth declined substantially (1.5 vs. 2.0 ft in 2002) and tree canopy closure declined considerably (24 vs. 54% in 2002), while the pool escape cover index increased slightly (0.215 vs. 0.202 in 2002) and baseflow was higher compared to 2002 (Figures A14–A18). As in Reach 1, most pools were scoured by tree rootwads (wood (8), followed by wood (6), bedrock (3), mud banks (2) and boulders (1). As in Reach 1, embeddedness increased slightly in all habitat types while percent fines decreased (Figures A19–A22).

The upper canyon (Reaches 3a through 7) was separated from Reach 2 in 2006 by 0.25 miles of mostly dry streambed downstream of the Curti Creek confluence (Figure A13). Reach 3a improved in habitat quality in 2006 compared to 2002. Pools deepened, escape cover increased and baseflow increased. In 2006, averaged mean pool depth increased

(1.2 vs. 1.0 ft in 2002), averaged maximum pool depth increased (2.1 vs. 1.6 ft in 2002), pool escape cover increased (0.160 vs. 0.145 in 2002), run cover increased (0.018 vs. 0 in 2002) and baseflow increased substantially after the earthquake in 2003 (**Figures A14–A18**). In 2006, Reach 3a continued to be dominated by pools (50%), but riffles increased in proportion (9% in 2002 to 28% in 2006) at the expense of pools and runs, primarily. Pools lengthened in 2006, and there were much fewer of them. This was partially due to a shorter habitat-typed section. Pool embeddedness and percent sand in pools and runs were similar in 2002 and 2006, although run embeddedness increased in 2006 (**Figures A19–A22**). As in other repeated reach segments, percentage canopy closure decreased (44 vs. 55% in 2002) (**Figure A18**). Pools were formed primarily by tree rootwads (10), followed by bedrock (4), boulders (4) and wood (2).

Habitat conditions in Reach 3b improved overall in 2006 compared to 2002. Along with increased baseflow, water depth increased in all habitat types, as did escape cover in steprun habitat in 2006. In 2006, averaged mean pool depth increased (1.05 vs. 0.9 ft in 2002), averaged maximum pool depth increased (1.9 vs. 1.7 ft in 2002), averaged run mean depth and maximum depth increased by 0.2 ft, averaged step-run mean depth increased by 0.2 ft and maximum depth by 0.3 feet, step-run escape cover increased (0.059 vs. 0.016 in 2002) and baseflow was much greater (1.23 vs. 0.23 cfs in 2002) (**Figures A14–A18**). While pool embeddedness was similar in 2002 and 2006, embeddedness in other habitat types declined and percent fines decreased in all habitat types (**Figures A19–A22**). The only decline in habitat conditions in 2006 occurred with a slight decline in pool escape cover (0.150 vs. 0.161 in 2002) (**Figure A17**). Pools were formed by scour against boulders (9), tree rootwads (7) and bedrock (1).

Reach 4 [beginning at the Lehman Creek confluence (**Figure A13**)] showed net decrease in habitat quality in 2006 compared to 2002 primarily due to the proportion of pool habitat greatly decreasing (45 vs. 67% in 2002), it being converted with step-run habitat to riffle habitat in 2006 (37 vs. 4% in 2002). Riffle habitat does not provide much habitat compared to pools, particularly for larger juveniles. The quality of pool habitat improved in 2006, as averaged mean pool depth increased (1.2 vs. 0.9 ft in 2002) and averaged maximum pool depth increased (2.1 vs. 1.7 ft in 2002) (**Figures A15 and A16**). Averaged mean and maximum run depth also increased. Pool escape cover was very similar between 2006 and 2002 (0.107 vs. 0.111 in 2002), and tree canopy decreased (67 vs. 77% in 2002) (**Figures A17 and A18**). Undercut banks and unembedded boulders were the primary sources of escape cover in Reach 4. Pool embeddedness was similar to 2002, though percent fines was less in pools in 2006 (**Figures A21 and A22**). Embeddedness lessened in riffles and runs while percent fines were similar between years (**Figures A19 and A20**). Pools were primarily scoured by tree rootwads (9) followed by boulders (4), bedrock (3) and wood (1).

After being denied access to the short, lower gradient Reach 5 by new landowners in 2006, a new segment was substituted in upper Reach 4, immediately downstream of Reach 5. This new 4b segment had slightly better habitat conditions in 2006 than the previous Reach 5 in 2002. As in lower Reach 4 in 2006, riffle habitat increased in proportion but at the expense of run and step-run habitat. The proportion of pool habitat was very similar between years. Habitat improvement was primarily due to more pool

escape cover in 2006 (0.216 vs. 0.188 in 2002) and more streamflow in the upper canyon (**Figures A14 and A17**). Averaged mean pool depth was deeper in 2006 (1.1 vs. 1.0 ft in 2002), but averaged maximum pool depth was less in 2006 (1.7 ft vs. 1.8 ft in 2002) (**Figures A15 and A16**). Pools in segment 4b were scoured primarily by tree rootwads (7) followed by bedrock (5) and boulders (3). Embeddedness and percent and in pools were similar between years (**Figures A21 and A22**). Percent sand and embeddedness in other habitat types were similar between years except percent fines were reduced in runs in 2006 (**Figures A19 and A20**). Canopy closure was similar in segment 4b in 2006 (85%) and in Reach 5 in 2002 (80%) (**Figure A18**).

Overall habitat conditions in Reach 6 declined in 2006 compared to 2002 primarily due reduced pool escape cover (0.103 vs. 0.161 in 2002) (Figure A17), although step-run escape cover increased (0.074 vs. 0.041 in 2002). The number and proportion of pool habitat increased in 2006, but more habitat was typed in 2006. Pool depths were similar with slightly deeper averaged maximum pool depth in 2006 (2.0 vs. 1.9 ft in 2002) (Figures A15 and A16). Pools were primarily scoured by tree rootwads (26) followed by bedrock (9) and boulders (4). Other habitat types were deeper in 2006 partially due to increased streamflow (Figure A14). Pool embeddedness increased in 2006 while percent fines in pools decreased (Figures A21 and A22). Embeddedness in riffles and step-runs were similar between years with more percent sand in riffles and similar amounts in step-runs (Figures A19 and A20). Embeddedness increased in 2006 vs. 77% in 2002) (Figure A18).

Overall habitat conditions in Reach 7 [beginning at the confluence of the East Fork (**Figure A13**)] declined in 2006 compared to 2002 primarily due to reduced pool escape cover (0.130 vs. 0.188 in 2002) (**Figure A17**), although step-run escape cover increased (0.088 vs. 0.062 in 2002). Pools slightly deepened with averaged mean depth increased (1.0 vs. 0.9 ft in 2002) and averaged maximum depth increased (1.6 vs. 1.5 ft in 2002) (**Figures A15 and A16**). Most pools were scoured by boulders (14), followed by tree rootwads (8), bedrock (6), and wood (2). Tree canopy closure was similar (68% in 2006 vs. 74% in 2002) (**Figure A18**). Water depth in all other habitat types increased partially due to increased baseflow in the upper canyon (**Figure A14**). Embeddedness declined in all habitat types while percent sand diminished in pools and riffles and remained similar in step-runs and runs, indicating reduced overall sedimentation (**Figures A19–A22**).

Comparison of Habitat Conditions in Reaches Between 1994 and 2006

In comparing habitat conditions in 2006 to those in 1994 in the lower valley, Reach 1 had similar conditions with slightly deeper pools (mean and maximum) in 2006 (Figures A15 and A16), which may have been partially due to higher baseflow in 2006 (Figure A14), and similar tree canopy closure (Figure A18). Reach 2 conditions had worsened by 2006, with shallower pools (mean and maximum) in 2006 despite higher baseflow. Tree canopy closure in Reach 2 was the lowest in the 13-year period and had not recovered to 1994 levels after the 1995 flood. In comparing 2006 to 1994 in the upper canyon, habitat conditions had improved in 2006 with deeper pools (mean and maximum depth) in all reaches (3b, 4, 5, 6 and 7). Tree canopy was very similar in 1994 and 2006 in the upper

canyon. Escape cover could not be compared due to the change to better methods in 1998 that were used thereafter.

Changes in Tree Canopy Closure Between 1994 and 2006

Comparisons of tree canopy closure in fall at four-year intervals was not clear-cut because data in1994 and 2002 were collected approximately a month earlier than in 1998 and 2006. Data in 1994 and 2002 were collected after below average rainfall winters (perhaps hastening earlier leaf drop), and data in 1998 and 2006 were collected after above average rainfall winters (perhaps delaying leaf drop). Despite these ambiguities, tree canopy closure in lower valley reaches was trending in a negative direction since the 1995 flood, as it was in the 2 lower reaches of the upper canyon (Reaches 3a and 3b) (**Figure A18**). The upper 4 reaches of the upper canyon had somewhat more tree canopy than prior to the 1995 flood. In 2006, the lower valley and Reach 3a in the upper canyon had relatively lower tree canopy closure (25–45%), while the remainder of the upper canyon had relatively higher closure (55–70%).

In looking at the details, it appeared that tree canopy in the lower valley decreased from 1994 to 1998, after the devastating flood of spring 1995 and 2 wet winters of 1995 and 1998 (**Figures A8 and A18**). Tree canopy also decreased in Reach 3b of the upper canyon in 1998, was unchanged in Reach 4 and had increased in the upper Reaches 5, 6 and 7 since 1994. From 1998 to 2002, with average to below average rainfall winters, tree canopy in Reach 1 of the lower valley had increased to slightly above the 1994 level, but Reach 2 (which had sustained such major streambank erosion in 1995) had remained at the low 1998 level. In the upper canyon, Reaches 3b, 4, 5, and 6 increased by 2002, while Reach 7 was similar to the 1998 level. From 2002 to 2006, tree canopy closure decreased back to near 1998 levels in 9 of 10 reaches (except in Reach 7 where canopy closure had been stable since 1998), with continued reduction in Reach 2. Winter of 2005 was especially wet.

Water Temperature Monitoring at Stream Sites in 2003–2006 and Management Guidelines

Since the December 2003 earthquake that increased summer baseflow, the proposed temperature guidelines were met at upper canyon temperature monitoring sites in 2004–2006 except for short periods. Once summer baseflows return to pre-earthquake levels, more water temperature monitoring will indicate if the guidelines are still being met. Water temperature was monitored for only the latter part of the summer in 2003, prior to the baseflow-augmenting effects (**Figure A14**) of the December 2003 earthquake. However, for the month of September in 2003 vs. 2004, daily maximum water temperatures were very similar at lower valley Sites 0a and 1 and within 1°F at the upper Site 6a (slightly cooler in 2004), despite the increased baseflow in 2004 (**Alley 2004a and 2005a**). Monitoring of water temperature in 2003 and the post-December 2003 earthquake era (2004–2006) indicated that the upper canyon was cooler than in the lower valley (about 5 °F cooler in 2006 for the maximum daily water temperature) (**Table A6**). However, the maximum 7-day rolling average at Site 6a in 2006 was equal to that at Site 0a (20.4 °C (68.8 °F); 19 July to 28 July) between 1 July and 10 September. In all years,

the daily water temperature varied more between days in the upper canyon but the diurnal (daily) variation in water temperature was greatest in the lower valley (Tables A6-A8). It is significant to note that although the baseflow in 2004 was much less at Site 0a than in 2005 and 2006 (Figure A14), water temperature was cooler there in 2004 than in the two succeeding years. When the 7-day rolling average was examined for each year at Site 0a for the months of July and August, the range for 2004 was 17.6–19.3 °C (63.6–66.7 °F) (Figure A23). In 2005 and 2006 during the same period, the 7-day rolling average ranges were 17.4–19.6 °C (63.4–67.3 °F) and 17.2–20.4 °C (63.0–68.8 °F), respectively (Figures A27 and A31). Therefore, the degree of persistence of fog and overcast nearer the coast during the summer (and their effect on air temperature) may be more important in maintaining cooler water temperature than higher streamflow (within the ranges of streamflow in 2004–2006). The common range of daily maximum water temperature was higher in 2005 than 2004 despite the generally higher baseflow in 2005. The common range of daily maximum temperature in the lower valley (Sites 0a and 1) between 1 July and 10 September in 2005 was 70–75.5 °F (71–74 °F in 2004). In the upper canyon (Sites 3b and 6) it was 65–71 °F (63–70 °F in 2004). This likely resulted from warmer afternoon air temperature in 2005.

Table A6. Comparison of Dry-Season Water Temperatures at Lower Valley and	
Upper Canyon Fish Sampling Sites from <u>1 July through 10 September 2006</u> Using	g,
Continuous 30-Minute Interval Measurements.	

Fish Sampling Site	Range of Daily Max. Temp. °F (°C)	Common Range of Daily Max. Temp. °F (° C)	Temp. Range on Day with Coolest Max. Temp. °F (°C) (Date)	Temp. Range on Day with Warmest Max. Temp. °F (°C) (Date)	Max. 7-Day Rolling Average	Avg. Site Tree Canopy	Fall Streamflow (cfs)
0a Lower Valley	64.5- 76.7 (17.9- 24.8)	70-74 (21-23.3)	61-64.5 (16.1- 17.9) 8 Sep	63.3-76.7 (17.4- 24.8) 19 July	68.8 (20.4) 19-25 July	28	1.63
1 Lower Valley	63.8- 75.7 (17.7- 24.1)	69-72 (20.6- 22.2)	60.4- 64.1 (15.6- 17.7) 8 Sep	62.7-75.7 (17.1- 24.1) 22 July	67.2 (19.6) 22-28 July	36	1.43
3b Upper Canyon	_	_	_	_	_	_	1.23
6a Upper Canyon	61.8- 74.5 (16.6- 23.6)	65.3-68.8 (18.5- 20.3)	59.5- 61.8 (15.1- 16.6) 8Sep	65.6-74.5 (18.7- 23.6) 22 July	68.8 20.4 22-28 July	76	0.72

Table A7. Comparison of Dry-Season Water Temperatures at Lower Valley andUpper Canyon Fish Sampling Sites from <u>1 July through 10 September 2005</u> Using,Continuous 30-Minute Interval Measurements.

Fish Sampling Site	Range of Daily Max. Temp. °F (°C)	Common Range of Daily Max. Temp. °F (°C)	Temp. Range on Day with Coolest Max. Temp. °F (°C) (Date)	Temp. Range on Day with Warmest Max. Temp. °F (°C) (Date)	Max. 7-Day Rolling Average	Avg. Site Tree Canopy	Fall Streamflow (cfs)
0a Lower Valley	65.9– 76.1 (18.8– 24.5)	70–75.5 (21.1– 24.2)	61.9– 65.9 (16.6– 18.8) (15 Aug)	62.2– 76.1 (16.8– 24.5) (23 July)	67.2 (19.6) 8-14 July	26	1.97
1 Lower Valley	65.9– 75.7 (18.8– 24.3)	71–75 (21.7– 23.9)	61.0– 65.9 (16.1– 18.8) (15 Aug)	61.3– 75.7 (16.3– 24.3) (23 July)	66.5 (19.2) 9-15 July	48	2.06
3b Upper Canyon	62.1– 70.9 (16.7– 21.6)	65–70 (18.3– 21.1)	59.8– 62.1 (15.5– 16.7) (15 Aug)	62.4– 70.9 (16.9– 21.6) (23 July)	65.2 (18.4) 19-25 July	74	1.50
6a Upper Canyon	62.6– 71.7 (17.0– 22.1)	65–71 (18.3– 21.7)	59.7– 62.6 (15.4– 17.7) (15 Aug)	62.6– 71.7 (17.0– 22.1) (23 July)	65.4 (18.6) 19-25 July	73	1.41

Fish Sampling Site	Range of Daily Max. Temp. °F (°C)	Common Range of Daily Max. Temp. °F (°C)	Temp. Range on Day with Coolest Max. Temp. °F (°C) (Date)	Temp. Range on Day with Warmest Max. Temp. °F (°C) (Date)	Temperature Range °F (°C) on 24 July at All Sites	Max. 7-Day Rolling Average	Avg. Site Tree Canopy	Fall Stream- flow (cfs)
0a Lower Valley	67.4– 74.6 (19.7– 23.6)	71–73 (21–22)	62.7– 67.4 (17.1– 19.7) (30 Aug)	63.9– 74.6 (17.7– 23.6) (24 July)	63.9–74.6 (17.7–23.6)	66.7 (19.3) 19-25 July	41%	0.43
1 Lower Valley	68.5– 73.5 (20.3– 23.1)	71–74 (21–23.3)	62.4– 68.5 (17.5– 20.3) (8 July)	63.5– 73.5 (17.5– 23.1) (24 July)	63.5–73.5 (17.5–23.1)	67.0 (19.4) 18-24 July	67%	1.02
3b Upper Canyon	63.8– 70.3 (17.7– 21.3)	63–69 (17.2– 20.6)	60.7– 63.8 (15.9– 17.7) (8 July)	62.1– 70.3 (16.7– 21.3) (20 July)	62.1–68.2 (16.7–20.1)	64.9 (18.3) 16-22 July	69%	1.32
6a Upper Canyon	64.0– 71.1 (17.8– 21.7)	64–70 (17.8– 21.1)	60.6– 64.0 (15.9– 17.8) (8 July)	62.6– 71.1 (17.0– 21.7) (20 July)	61.5–68.4 (16.4–20.2)	65.4 (18.6) 16-22 July	67%	1.42

Table A8. Comparison of Dry-Season Water Temperatures at Lower Valley andUpper Canyon Fish Sampling Sites from 1 July through 10 September 2004, UsingContinuous 30-Minute Interval Measurements.

According to laboratory work, water temperatures would ideally not rise above 20°C (68°F) to balance steelhead/ rainbow trout scope of activity and metabolic demands. Refer to the literature review in **Appendix B**. However, despite the increased food demand at higher temperatures, if food supply is adequate, YOY steelhead can grow to smolt size the first year at water temperatures above 20°C, though they select habitats where food is abundant, such as lagoons (**Smith 1990**) and fastwater habitat (**Smith and**

Li 1983; Moyle et al. 1982). YOY steelhead grow rapidly to smolt size in one growing season in central coast streams (lower mainstem of San Lorenzo River and Soquel Creek in Santa Cruz County) where summer water temperatures regularly rise above 20°C (Alley 2008b), as in the lower valley reaches of Santa Rosa Creek (Alley 2007a), in lower San Luis Obispo Creek downstream of the treated effluent outfall (Alley 2008a), in Soquel Creek lagoon (Alley 2008c).

The recommended water temperature guideline during the important growth period of April and May for steelhead in stream of Santa Rosa Creek, upstream of the lagoon, is to maintain stream temperature below 20°C (68°F.

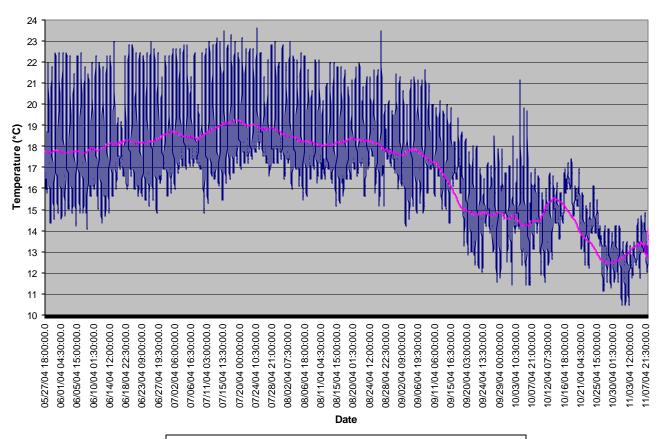
The recommended water temperature guideline for lower valley reaches of Santa Rosa Creek to protect steelhead habitat should be to maintain the average daily temperature at 20°C (68°F) or less, with a 23°C (73.4°F) daily maximum from June 1 to October 15.

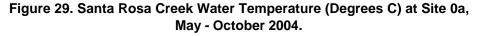
These summer/fall guidelines were based on 1) consideration of the SYRTAC guidelines, 2) steelhead sampling at lower valley sites 1994–2006, 3) the high densities of smolt-sized juveniles (many of which were fast-growing YOY), 4) the measured summer water temperatures in summer 2004–2006 and late summer 2003 and 5) the Hokanson et al. (1977) conclusions.

From June 1 to October 15 in the lower valley reaches of Santa Rosa Creek, divergence from the proposed guidelines of the Santa Ynez River Technical Advisory Committee (SYRTAC) for the Santa Inez River are appropriate. The SYRTAC had proposed guidelines with upper limits of 20°C average daily temperature and 25°C daily maximum as providing acceptable habitat conditions for steelhead in the Santa Ynez River (SYRTAC 2000). The SYRTAC (2000) decided that a mean daily temperature of 22°C may be the threshold between acceptable and unsuitable from a long-term perspective. This was based on studies by Hokanson et al. (1977) who concluded that the highest constant temperature at which the effects of growth and mortality balance out was 23°C.

By comparison with our temperature guidelines, an average daily water temperature requirement that was more restrictive than ours was determined for upper Big Sulphur Creek (Russian River drainage) in the Geysers Geothermal Region. For Big Sulphur Creek, it was concluded that stations which had temperatures greater than 20°C for less than 50% of the time in any one month were not expected to cause significant sub-lethal effects in that month, unless that station reached a marginal or lethal maximum temperature (25.8°C for fish acclimated to 20°C) (**Kubicek and Price 1976**).

More restrictive guidelines than those for the lower valley should be followed in the upper canyon of Santa Rosa Creek, where baseflow was less. To protect steelhead habitat in the upper canyon, the average daily water temperature should have upper limits of 20°C (68°F) and the maximum daily temperature should not rise above 22°C (71.6°F).


This summertime goal was based on electrofishing data that indicated the upper canyon Santa Rosa Creek reaches that met these guidelines produced relatively high densities of yearling juveniles and were typically cool enough to allow juvenile steelhead to inhabit more than just fastwater habitat in pools.


In 2004–2006, our recommended temperature guidelines regarding average daily water temperature were likely met at lower valley sites regarding average daily temperature except for a 10-day period in July 2006, based on the 7-day rolling average. Refer to **Figures 21–31** for continuous temperature probe data in 2004–2006. The 7-day rolling average was less than 20°C in all three years. In 2004, the temperature guidelines regarding daily maximum temperature were met at Site 0a except for a small number of days but less so at Site 1. In 2005, the guidelines were approached less at Site 0a for maximum daily temperature than at Site 1, with exceedence about a third of the days at each site. In 2006, the maximum daily temperature guideline was not met much of July and half of August at Site 0a and for a warm 10-day period in July at Site 1. The increased baseflow effects from the December 2003 earthquake (**Figure 14**) may have promoted cooler water temperatures in the lower valley than under pre-earthquake baseflow conditions.

In 2004–2006, the temperature guidelines regarding average daily temperature and daily maximum were likely met at monitored upper canyon sites except for a six-day period in mid-July 2006. These guidelines will allow steelhead to grow and thrive without water temperature being a significant limit factor. Once summer baseflows return to preearthquake levels, more water temperature monitoring will indicate if the guidelines continue to be met.

Regarding temperature optima, Moyle (2002) stated, "The optimal temperatures for growth of rainbow trout are around 15-18°C, a range that corresponds to temperatures selected in the field when possible. Thus in a section of the Pit River containing a thermal plume from an inflowing cold tributary, rainbow trout selected temperatures of 16-18°C. However, many factors affect choice of temperatures by trout (if they have a choice), including the availability of food." Optimal temperature for rainbow trout in higher elevation mountain streams of the Sierra Nevada or Cascades may be lower than what is optimal for juvenile steelhead along the central Coast. According to Smith (2003), "The optimum temperature for steelhead very much depends upon factors other than temperature of the habitat. The ideal habitat conditions would be moderately cool and sunny, with the sunny conditions providing higher algae and invertebrate abundance (fish food). In the Sierra or other northern or higher elevation habitats this combination is possible. However, along the Central Coast, most cool habitats are heavily shaded and unproductive and most sunny habitats are relatively productive, but warm. Because the interactions that control survival and growth of steelhead in warmer and/or productive habitats are fairly complex, the best way to determine the suitability of the habitat and the optimum temperature is to sample the fish to determine their densities, microhabitat use and growth rates. If fish are abundant and fast growing in warm lagoons or warm stream reaches having fastwater feeding areas, then the warmer temperatures are being compensated for by increased food supply and may be facilitating high growth rates. In these reaches, higher temperatures are optimum. In small tributaries where fish grow slowly, then cooler temperatures are required, and overwintering habitat and habitat for yearling fish are likely to be the major habitat concern."

Figure A23. Santa Rosa Creek Water Temperature (Degrees C) at Site 0a, May-October 2004.

Water Temperature in Celsius — 7-Day Rolling Average Water Temperature

Figure A24. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, May–October 2004.

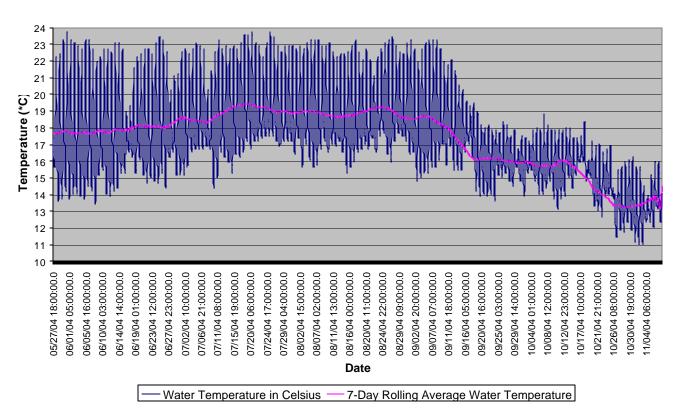


Figure 31. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, May - October 2004.

Figure A25. Santa Rosa Creek Water Temperature (Degrees C) at Site 3b, May–October 2004.

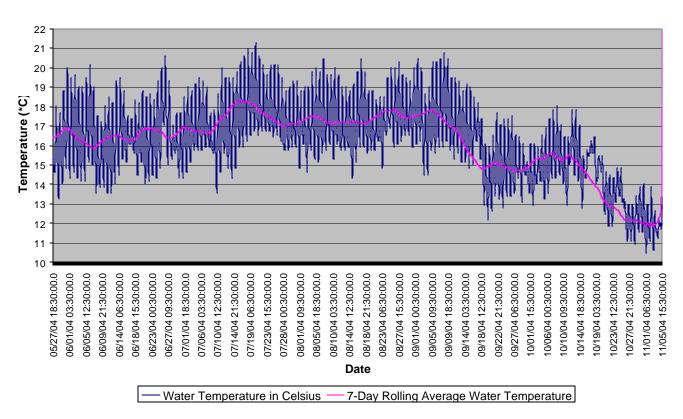


Figure 33. Santa Rosa Creek Water Temperature (Degrees C) at Site 3b, May - October 2004.

Figure A26. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, May-October 2004.

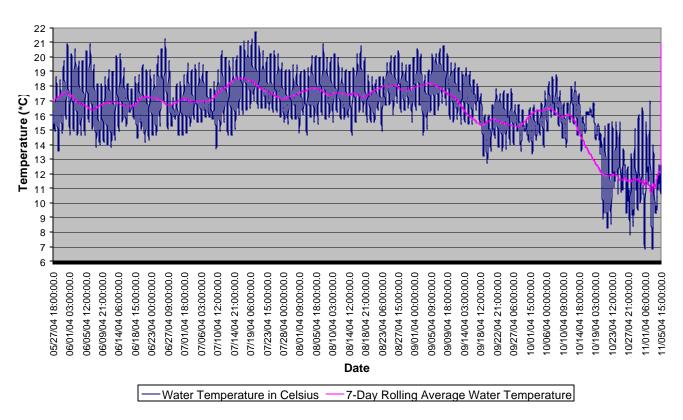


Figure 35. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, May - October 2004.

Figure A27. Santa Rosa Creek Water Temperature (Degrees C) at Site 0a, June–October 2005.

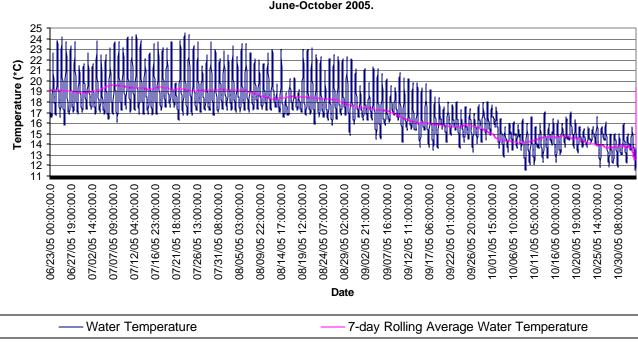


Fig. 37. Santa Rosa Creek Water Temperature (Degrees C) at Site 0a, June-October 2005.

Figure A28. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, June– October 2005.

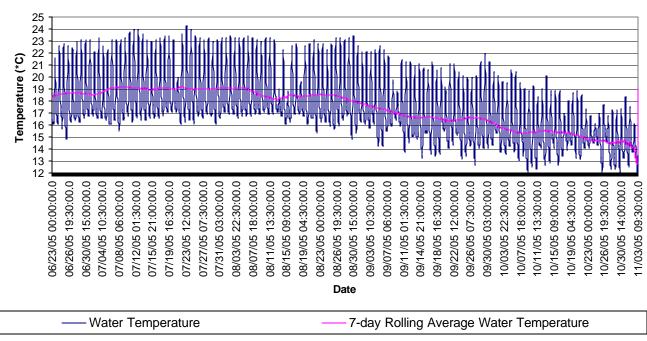


Fig. 39. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, June-October 2005.

Figure A29. Santa Rosa Creek Water Temperature (Degrees C) at Site 3b, June–October 2005.

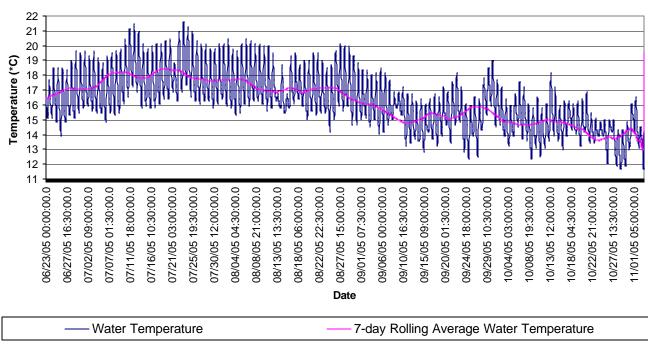


Fig. 41. Santa Rosa Creek Water Temperature (Degrees C) at Site 3b, June-October 2005. Figure A30. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, June–October 2005.

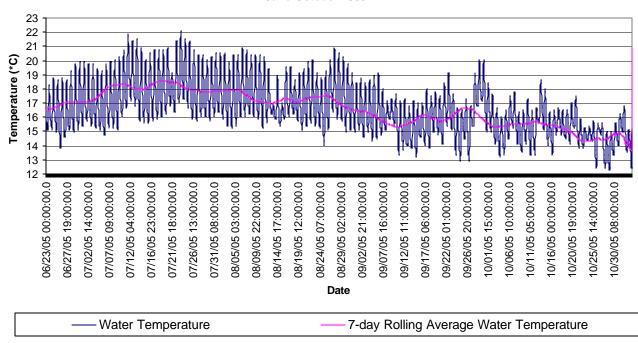
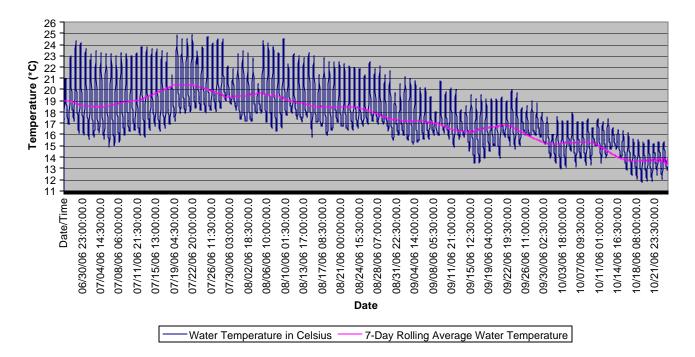
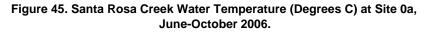




Fig. 43. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, June-October 2005.

Figure A31. Santa Rosa Creek Water Temperature (Degrees C) at Site 0a, June–October 2006.

Figure A32. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, June–October 2006.

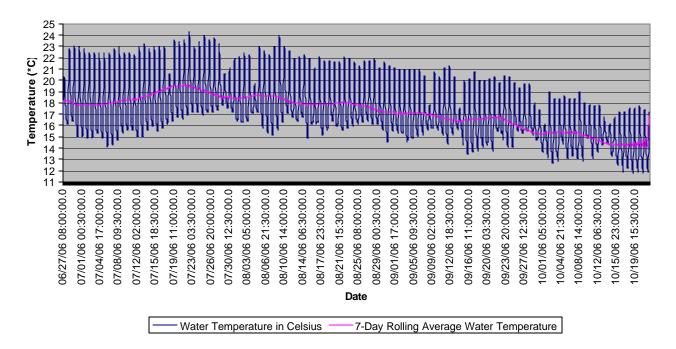


Figure 47. Santa Rosa Creek Water Temperature (Degrees C) at Site 1, June-October 2006.

Figure A33. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, June–October 2006.

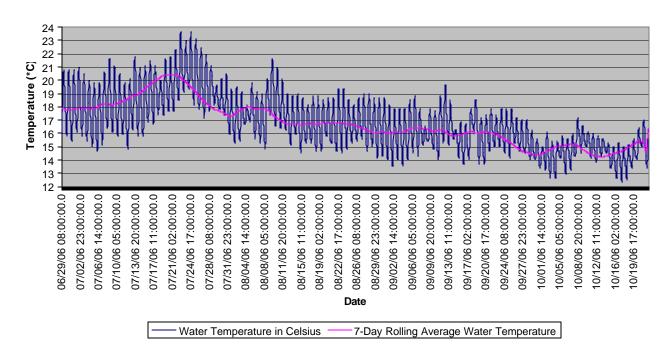


Figure 49. Santa Rosa Creek Water Temperature (Degrees C) at Site 6a, June-October 2006.

Lagoon Water Temperature Monitoring and Management Guidelines

Regarding Santa Rosa Lagoon for the period of sandbar closure, the water temperature guidelines to provide steelhead habitat are as follows:

- The 7-day rolling average water temperature within 0.25 m of the bottom should be 19°C or less.
- Maintain the daily maximum water temperature below 25°C (77°F).
- If the maximum daily water temperature should reach 26.5°C (79.5°F), it may be lethal and should be considered the lethal limit.
- Water temperature at dawn near the bottom for at least one of the two monitoring stations (adjacent Moonstone parking lot or Shamel Park) should be 16.5°C (61.7°F) or less on sunny days without morning fog or overcast and 18.5°C (65.3°F) or less on days with morning fog or overcast.

These recommended guidelines are based on 1) SYRTAC (2000) recommendations for temperature maxima, 2) our continuous temperature monitoring data and two-week temperature monitoring in Soquel Creek Lagoon during the period of sandbar closure in 2007 when it supported and estimated 6,000+ juvenile steelhead (Figures A34–A36)

(Alley 2008a), 3) our continuous temperature monitoring data from Santa Rosa Lagoon during periods of sandbar closure (Alley 2006), 4) the maximum daily fluctuation of 10°C observed in four years of Santa Rosa Lagoon data subtracted from 26.5°C (considered the lethal limit) and 5) the maximum common daily fluctuation of 8°C from four years of data subtracted from 26.5°C.

Figure A34. Water Temperature (°C) Above the Trestle in Soquel Lagoon, 0.5 feet from the Bottom, 29 May-30 September 2007.

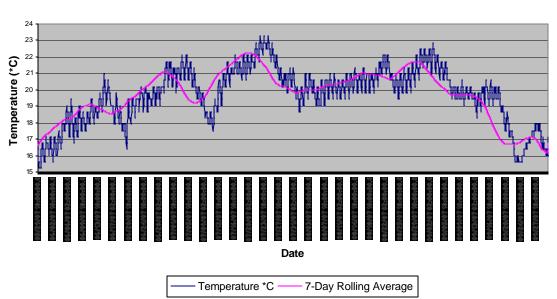


Figure 4a. Water Temperature (*C) Above Trestle, 0.5 ft from Bottom, 29 May- 30 September 2007 (30-minute interval).

Figure A35. Water Temperature at Dawn at Four Lagoon Stations Near the Bottom and Upstream in Soquel Creek in 2007.

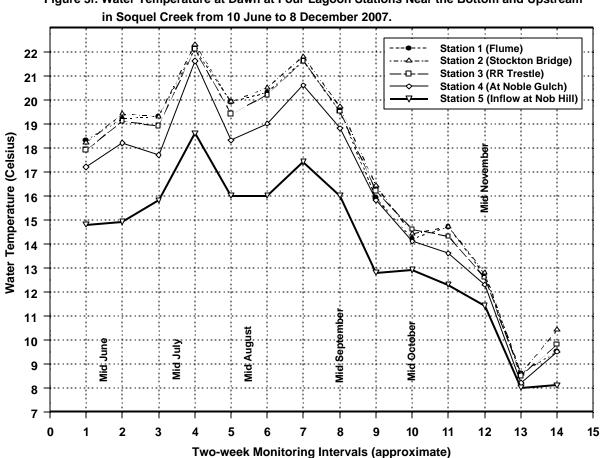
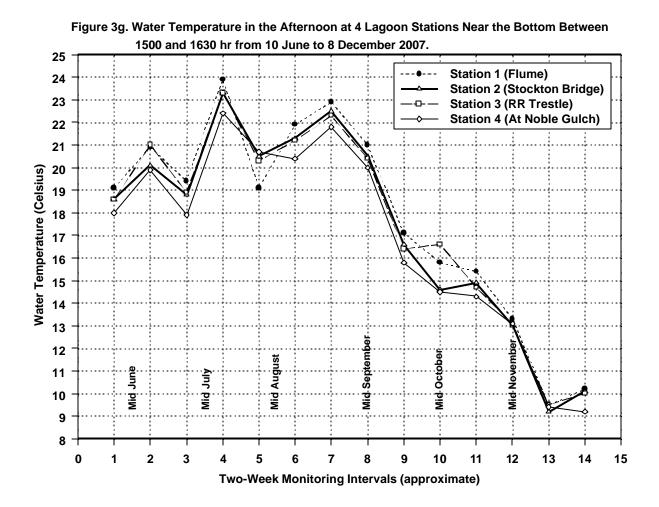



Figure 3f. Water Temperature at Dawn at Four Lagoon Stations Near the Bottom and Upstream

Figure A36. Water Temperature in the Afternoon at Four Soquel Lagoon Stations Near the Bottom in 2007.

Table A9 summarizes the range in daily water temperature fluctuations in Santa Rosa Lagoon in two relatively low stream inflow years (2001 and 2002) and two relatively high stream inflow years (2005 and 2006). The summary **Table A9** was developed from temperature graphs that follow the table.

Station	2001 Range in Daily Fluctuation (°C); Common Daily Fluctuation	2002 Range in Daily Fluctuation (°C); Common Daily Fluctuation	2005 Range in Daily Fluctuation (°C); Common Daily Fluctuation	2006 Range in Daily Fluctuation (°C); Common Daily Fluctuation
1-Adjacent Moonstone Parking Lot	4 – 10; 8°C	2 – 9; 6°C	4 – 7; 5°C	2 – 7; 5°C
2- Adjacent Shamel Park	4 – 9; 8°C	2 – 8; 5°C	4 – 9; 6°C	3 – 10; 8°C

Table A9. Daily Water Temperature Fluctuations in Santa Rosa Lagoon Near the Bottom in 2001, 2002, 2005 and 2006.

In the four years when continuous water temperature data were available (2001, 2002, 2005 and 2006) Santa Rosa Lagoon did not meet temperature guidelines regarding maximum daily temperature (25°C) at either Station 1 (adjacent the Moonstone Drive parking lot) or Station 2 (adjacent Shamel Park) in any year for the annual period of monitoring (**Figures A37–A44**). Water temperature probes malfunctioned in 2003, and Sites 1 and 2 went dry in 2004 (there was a small, stagnant pool remaining near Shamel Park at Site 2, with the probe not remaining submerged). The lethal limit (26.5°C) was reached at Site 1 in every year and at Site 2 in 2006. With the 7-day rolling average calculated in 2005 and 2006, the temperature guideline for 7-day rolling average (19°C) was exceeded in both years at both stations. Thus, temperature guidelines related to the 7-day rolling average, maximum daily temperature and the lethal limit are not likely to be achieved without increased lagoon shading, increased stream inflow through the entire period of sandbar closure to deepen the lagoon and reduction in tidal overwash.

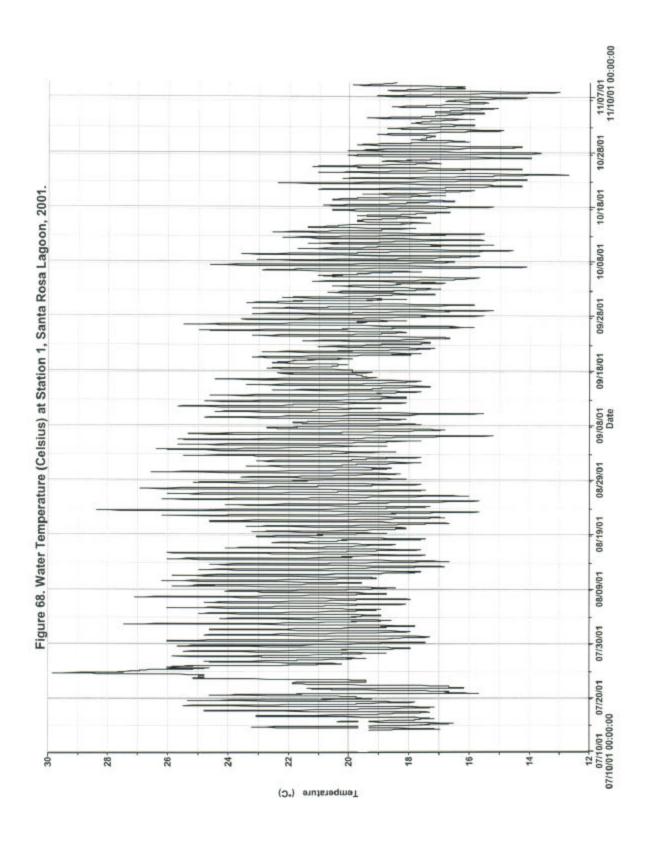


Figure A37. Water Temperature (°C) at Station 1 in Santa Rosa Lagoon in 2001.

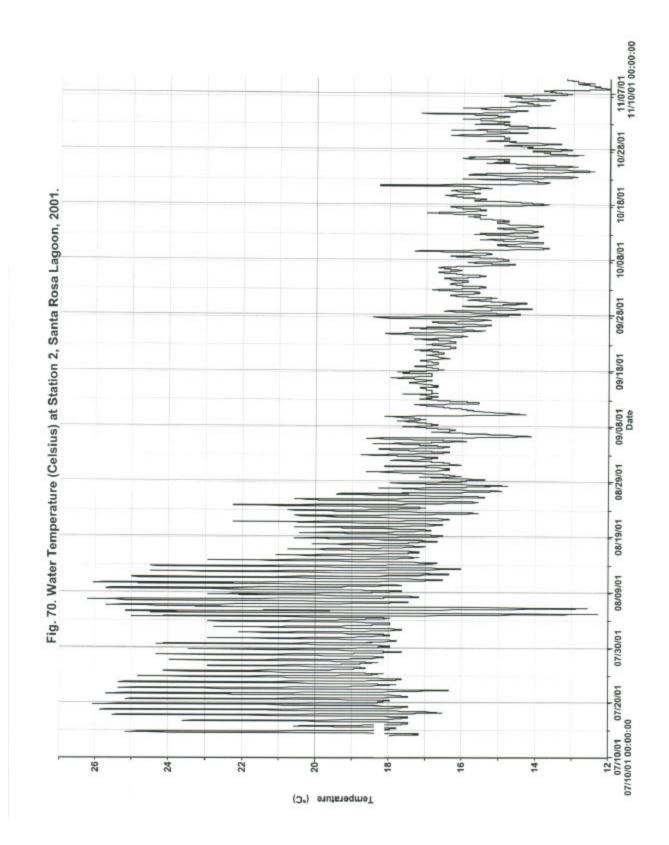


Figure A38. Water Temperature (°C) at Station 2 in Santa Rosa Lagoon in 2001.

D.W. ALLEY & Associates

Santa Rosa Creek Fishery Assessment 2008

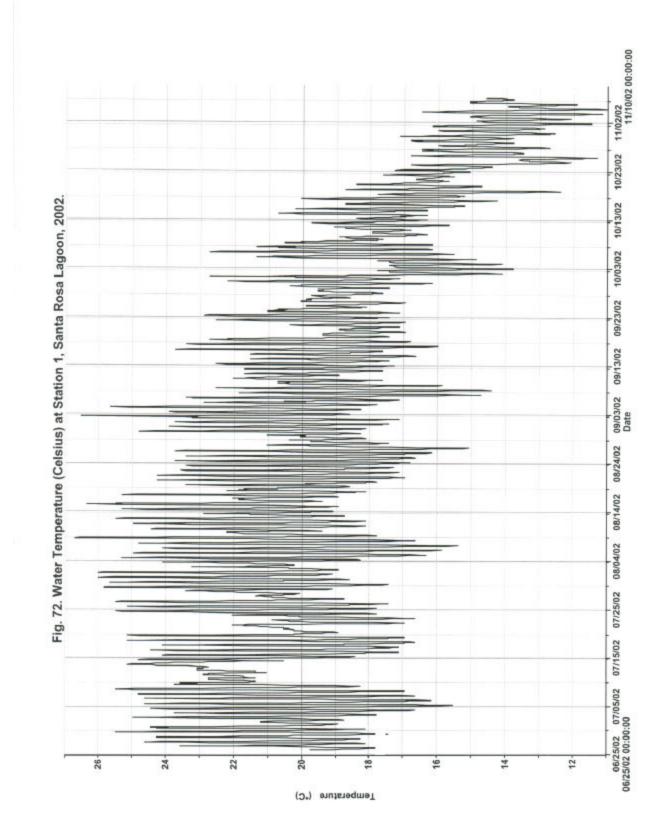
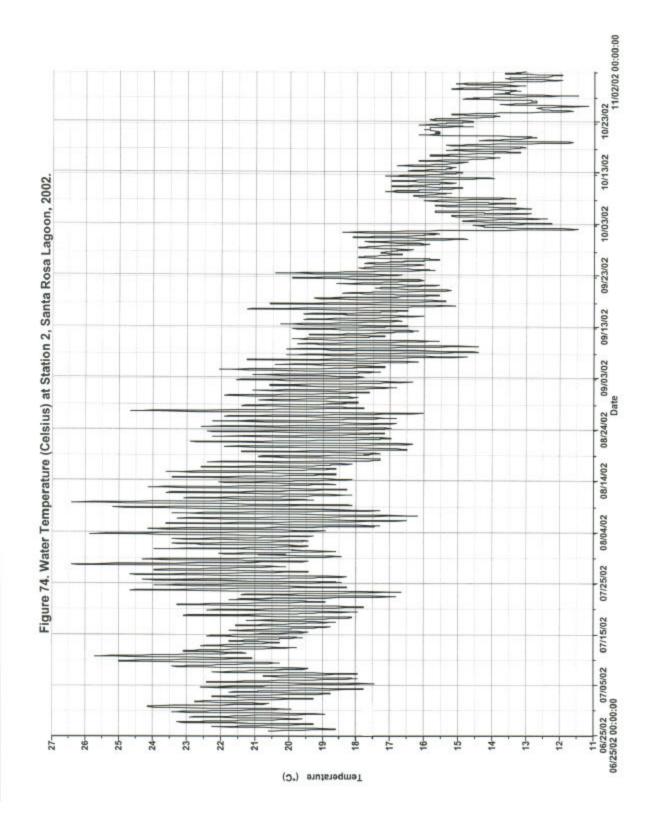



Figure A39. Water Temperature (°C) at Station 1 in Santa Rosa Lagoon in 2002.

D.W. ALLEY & Associates

Santa Rosa Creek Fishery Assessment 2008

D.W. ALLEY & Associates

Santa Rosa Creek Fishery Assessment 2008

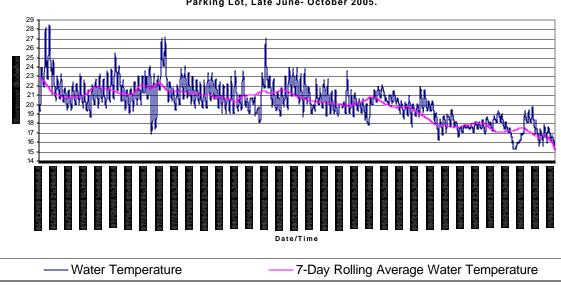


Figure 52. Santa Rosa Creek Lagoon Water Temperature (*C) at Site 1 Near Moonstone Parking Lot, Late June- October 2005.

Figure A42. Water Temperature (°C) at Station 2 in Santa Rosa Lagoon in 2005.

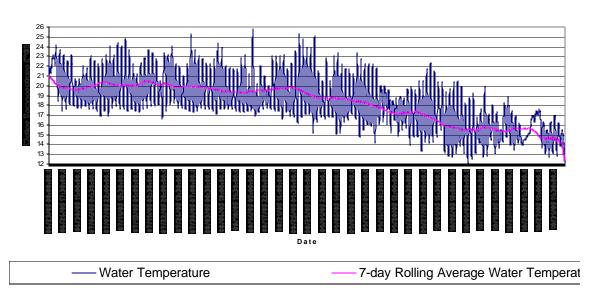


Figure 54. Santa Rosa Lagoon Water Temperature (*C) at Site 2 Near Shamel Park, Late June - October 2005.

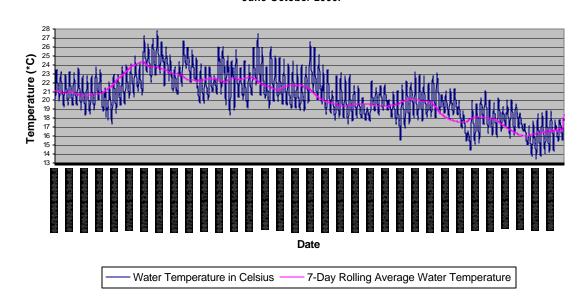


Figure . Santa Rosa Lagoon Water Temperature (Degrees C) at Site 1, June-October 2006.

Figure A43. Water Temperature (°C) at Station 1 in Santa Rosa Lagoon in 2006.

Figure A44. Water Temperature (°C) at Station 2 in Santa Rosa Lagoon in 2006.

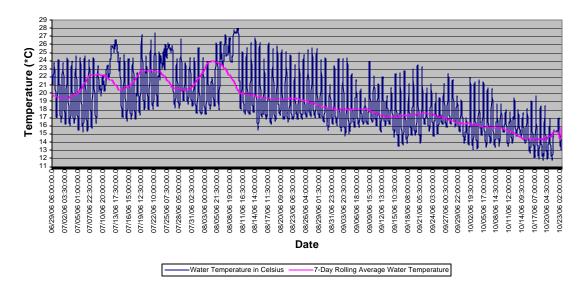


Figure . Santa Rosa Lagoon Water Temperature (Degrees C) at Site 2 Adjacent to Shamel Park, June-October 2006.

In 2001 at Site 1 near the Moonstone parking lot, the lethal temperature limit was exceeded on 6 separate occasions and the daily maximum temperature guideline was exceeded on 32 days (38%) between 10 July and 1 October, with no rolling average calculated. Even so, steelhead were observed feeding on the surface near Site 1 as late as 20 September 2001 (Alley 2003b). In 2001 at Station 2 near Shamel Park, the daily maximum guideline was exceeded on 13 days (16%) between 10 July and 1 October, with no rolling average calculated. The dawn water temperature guideline for sunny days was met on only 10 days (12%) at Station 1 between 10 July and 1 October.

In 2002 at Site 1, the lethal limit was exceeded on 2 occasions and the daily maximum guideline was exceeded on 20 days (20%) between 25 June and 1 October, with no rolling average calculated. In 2002 at Site 2, the lethal limit was approached by 0.1°C on 2 occasions and the daily maximum guideline was exceeded on 5 occasions (5%), with no rolling average calculated. The dawn water temperature guideline for sunny days (16.5 C) was met only 11 days (11%) at Station 1 between 25 June and 1 October. The dawn water temperature guideline for sunny days was met 26 days (26%) at Station 2.

In 2005, a year with the maximum stream inflow measured near the Highway 1 bridge in the nine-year period 1998–2006, none of the lagoon temperature guidelines were met for the entire period of sandbar closure. The lethal limit (26.5) was reached on 5 days at Site 1. Water temperatures at Stations 1 and 2 likely caused sub-lethal stress, leading to indirect mortality from higher vulnerability to predation and higher susceptibility to disease for Central Coast steelhead during the periods in which the 7-day rolling average was 20°C or greater (75% at Station 1 and 25% at Station 2 between 23 June and 1 October). Thus, the 2005 lagoon was a difficult location for steelhead to survive the period of sandbar closure. No juvenile steelhead were observed or captured in the fall of 2005 at the lagoon, after a wet winter when spawning near the lagoon was less likely.

At Site 1 between 23 June and 1 October, the temperature guidelines were not met on 6 days regarding the daily maximum (6%). At Station 1, the lethal limit (26.5°C) was reached on 5 days. Water temperature near the bottom reached 28.3°C (82.9°F) on 25 June, the warmest day of the season and 28.1°C (82.6°F) the previous day. The 7-day rolling average guideline (19°C) was exceeded until approximately 26 September 2005 (95% between 23 June and 1 October), after which it was met. It exceeded 20°C until approximately 5 September (75%). The 7-day rolling average went above 22°C during 3 periods totaling approximately 6 days and was above 21°C for more than a month during one period and more than 15 days during another. The high water temperatures near the bottom for 24 and 25 June coincided with a stagnant salinity layer on the bottom that could have been avoided by the fish seeking cooler water up in the column. No salinity measurements were available for the extremely warm temperatures above 27°C measured on 24 and 27 July and 20 August, though saltwater overwash was likely the cause. The dawn water temperature guideline for sunny days (16.5°C) was not met at Station 1. The guideline for sunny mornings (16.5°C) was not met, while the guideline for foggy or overcast mornings (18.5°C) was not met 94 days (94%) between 23 June and 1 October at Station 1.

At Station 2 in 2005 after 23 June, the guideline for the 7-day rolling average (19°C) was not met until approximately 1 September 2005 (70% between 23 June and - October) (after which it was met). Daily maxima at Station 2 exceeded the guideline for daily maxima (25°C) on 4 days (4%) and exceeded 24°C) on 12 days (12%). However, the lethal limit (26.5° C) was not reached at Station 2. The 7-day rolling average never went as high as 21°C. However, there were 2 periods of 15 and 9 days (24%) each in which the 7-day rolling average was greater than 20°C. The water temperature for the two warmest days reached 25.8°C (78.4°F) on 14 August and 25.2°C (77.4°F) on 29 July, which were approaching the lethal limit. The warmest water temperatures at Station 2 did not correspond to the warmest at Station 1. Because of this lack of coincidence and the fact that the sandbar was higher adjacent to Station 2 than Station 1 (where the creek exited the beach in spring), it was unlikely that high water temperatures at Station 2 were a result of saltwater overwash in 2005. Therefore, there was likely no thermal refuge higher in the water column to avoid warm water near the bottom on the 4 isolated days with maxima above 25°C. The dawn water temperature guideline for sunny mornings (16.5°C) was not met on 70 days (70%) at Station 2 between 23 June and 1 October. The dawn water temperature guideline for foggy or overcast mornings (18.5°C) was met during the entire period at Station 2.

The lagoon was even warmer in 2006 than 2005. None of the lagoon temperature guidelines were met for the entire period of sandbar closure. The lethal limit of 26.5°C was reached near the bottom on 7 days at Station 1 and 9 days at Station 2. The water temperatures at Stations 1 and 2 likely caused sub-lethal stress, leading to indirect mortality from higher vulnerability to predation and higher susceptibility to disease for Central Coast steelhead during the periods in which the 7-day rolling average was 20°C or greater (66% at Station 1 and 46% at Station 2 between 29 June and 1 October). Thus, the 2006 lagoon was a difficult, if not impossible location for steelhead to survive the period of sandbar closure. Even so, 3 juvenile steelhead were captured and approximately 20 more were observed (all likely large YOY) in the upper lagoon between Shamel Park and the Windsor Bridge.

In 2006 at Station 1 after 29 June, the lethal limit was exceeded on 7 days near the bottom and the daily maximum guideline (25°C) was exceeded on 20 days (21%). The 7-day rolling average guideline (19°C) was exceeded at Site 1 until approximately 23 September 2006 (91% between 29 June and 1 October), after which it was met. At Station 1, 7-day rolling average went to 24.3°C at one point and was greater than 20°C until approximately 30 August (66%) and the lethal limit (26.5°C) was reached on 7 days. At Station 2 in 2006 after 29 June, the lethal limit was exceeded on 9 days near the bottom during three apparent tidal overwashes, with temperatures above it for two continuous days on 2 occasions. The guideline for daily maxima was exceeded on 30 days (32%). After each of the first two tidal overwashes, there was a delayed elevation in minimum daily temperatures near the bottom at Station 1 for several days. The 7-day rolling average guideline (19°C) was exceeded at Site 2 until approximately 27 August 2006 (64% between 29 June and 1 October), after which it was met. The 7-day rolling average at Site 2 went as high as 24°C and was greater than 20°C until 11 August (46%).

Thus, the 2006 lagoon was a difficult, if not impossible location for steelhead to survive the period of sandbar closure.

During the period of lagoon monitoring in which the data were analyzed and reported (1993–2005), lagoon water temperature (Graphs for 1997-2005 in Figures A45–A53), salinity, dissolved oxygen and conductivity were measured through the water column at two-week intervals during sandbar closure. They were measured monthly while the sandbar was open during the period 1997–2005. Monitoring Station 1 was adjacent to the Moonstone Drive parking lot. Station 2 was adjacent to Shamel Park. The lagoon dried up to isolated puddles by September 2000, and water quality graphing was suspended. When the lower lagoon dried up in summer 2003, monitoring was suspended. The lagoon bed aggraded an estimated 2.4 feet at Station 1 in 2003, which likely facilitated the drying out. The lagoon bed at Station 2 likely aggraded as well. In 2003 and afterwards the summer lagoon extended upstream of Shamel Park to near Windsor Blvd Bridge, likely due to lagoon bed aggradation. Station 1 degraded 1.2 feet in 2004 but Station 2 likely did not. Station 1 aggraded 0.5 feet in 2005 while Station 2 degraded considerably. When Stations 1 and 2 dried up in the lower lagoon in 2004, Station 3 adjacent to original Chuck Wagon Restaurant (that became the antique store which has now been demolished and replaced) was added in 2004 after the lower lagoon dried up at Stations 1 and 2. Below are temperature graphs of temperature data near the bottom during the period. 1997–2005. Unfortunately, the degree of overcast or fog was not recorded during monitoring.

In 1993–2000 and 2003–2004, only temperature data at two-week intervals were available. Below is **Table A10**, which provides a summary of monitoring days when water temperature guidelines at dawn were not met (\leq =16.5 C on sunny mornings; 18.5 C on foggy or overcast mornings). When one compares these data for years when data from continuous temperature monitoring were available (2001, 2002, 2005), we see that if the temperature guideline at the dawn is not met, then the daily maximum and lethal maximum temperature guidelines may also be reached later in the day.

Table A10. Summary of Monitoring Days When Water Temperature Guidelines Near the Bottom at Dawn Not Met on Two-Week Intervals in Santa Rosa Lagoon, 1993–2004.

Year	Station 1 # Monitoring Days when Sunny Morning Temperature Guideline (<=16.5 C) Not Met	Station 1 # Monitoring Days when Foggy or Ove rcast Morning Temperature Guideline (<=18.5 C) Not Met	Station 2 # Monitoring Days when Sunny Morning Temperature Guideline (<=16.5 C) Not Met	Station 2 # Monitoring Days when Foggy or Overcast Morning Temperature Guideline (<=18.5 C) Not Met	# Monitoring Days at 2- Week Intervals During Closed Sandbar Period
1993	8	4			14
1994	1 (dried up during August and returned to puddle in September)	0	5	1	10 @ Sta 1 12 @ Sta 2
1995	7	1	8	7	12
1996	4	1	5	0	12
1997	9	9	10	10	12
1998	6	4	6	3	9
1999	8 (7 close)	1	1	0	15
2000	5 (puddle in Sep, dry in Oct and Nov)	2	2 (puddle in Sep, dry in Oct and Nov)	0	6
2001	5	3	3	1	11
2002	8	3	5	3	13
2003	2	0	3	2	2 @ Sta 1
	(went dry)		(went dry)		3 @ Sta 2
2004	5 (went dry)	5	6 (went dry and moved to Sta 3)	0	6 @ Sta 1 11 @ Sta 2/3
2005	7 (data collected later in morning after 9 August, making it incomparable)	4	6 (data collected later in morning after 9 August, making it incomparable)	1	11

Figure A45. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 1997.

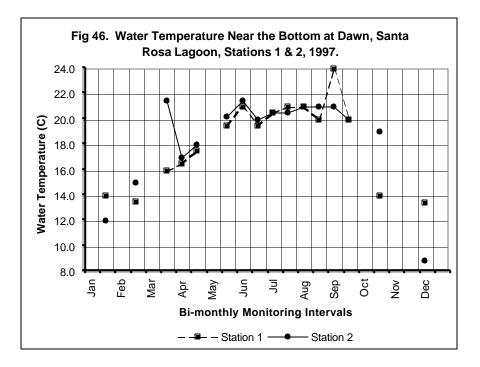


Figure A46. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 1998.

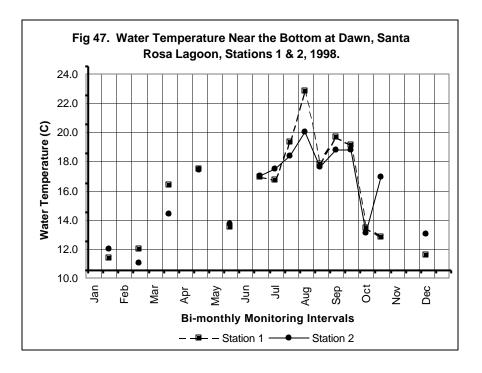


Figure A47. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 1999.

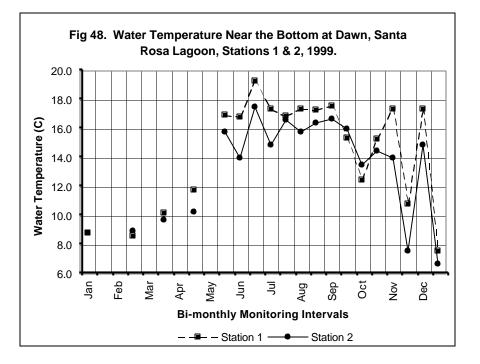


Figure A48. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 2000.

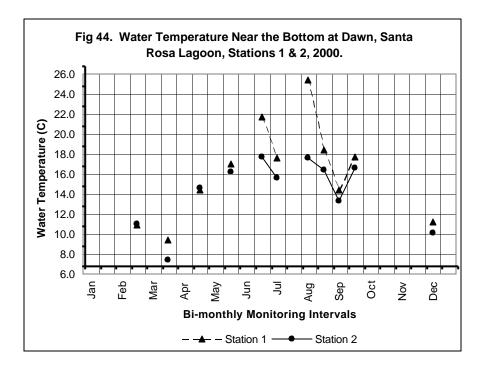


Figure A49. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 2001.

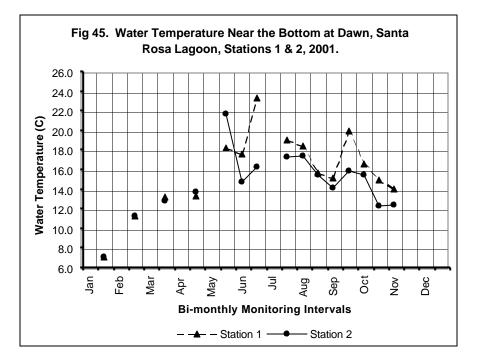


Figure A50. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 2002.

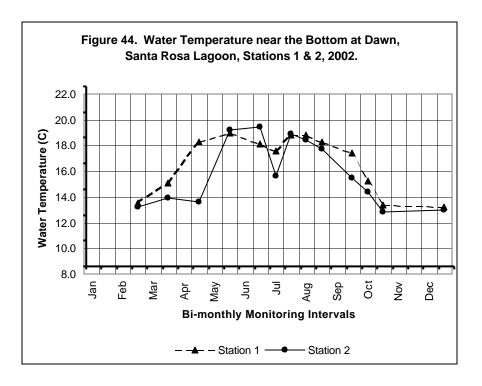


Figure A51. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 2003.

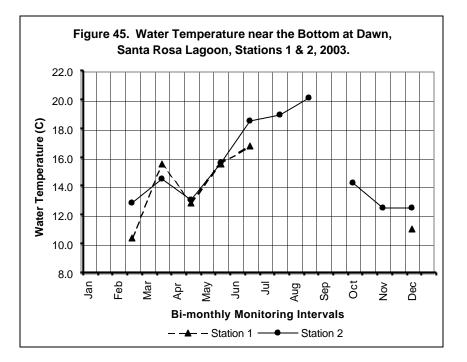


Figure A52. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 2004.

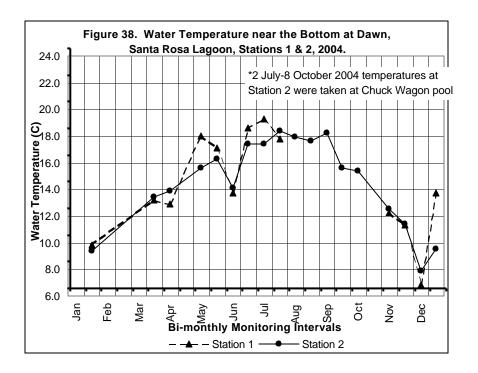
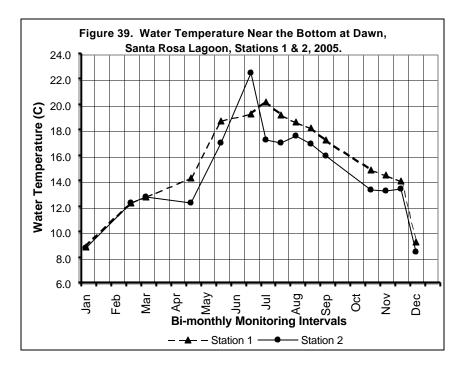



Figure A53. Two-Week Interval Water Temperature (°C) at Stations 1 and 2 in Santa Rosa Lagoon in 2005.

Effects of Stream Inflow Upon Lagoon Size, Depth and Habitat for Steelhead and Tidewater Goby, with Management Guidelines

Based on monitoring of streamflows as the lower portions of Santa Rosa Lagoon dried up in 2003 and 2004, the recommended streamflow guideline is to maintain stream inflow to Santa Rosa Lagoon at 0.9 cfs or greater through the period of sandbar closure in order to provide tidewater goby habitat in the lower lagoon, protect the tidewater goby population from extirpation and maintain steelhead habitat between Shamel Park and Windsor Bridge.

This inflow guideline has been satisfied in only 4 of the years of that 15-year period. Therefore, the likelihood of this guideline being met in the future is unlikely unless a new source of water is provided to the lagoon from treated effluent and/or less water is pumped from wells that reduce stream inflow to the lagoon.

In 2003, the lower lagoon in the vicinity of Station 1 went dry by 24 July with a stream inflow of 0.83 cfs, and the portion of the lagoon as far upstream as Shamel Park was dry by 18 September with a stream inflow of 0.3 cfs. There had been considerable sedimentation over the winter of 2002/2003, with the lagoon bed aggrading 2.4 feet at Station 1 and likely as much at Station 2. In 2004, lower portions of the lagoon began to dry up when stream inflow declined to about 0.8 cfs, with the lagoon bed at Station 1, 1.2 feet lower than 2003 conditions. The water surface elevation of the lagoon between Shamel Park and the Windsor Bridge started to decline when streamflow declined below

0.9 cfs in 2004. By 9 August 2004, when the stream inflow had declined to 0.64 cfs, Station 1 adjacent the Moonstone parking lot had completely dried up. As the lagoon shrank, tidewater goby and steelhead habitat were lost. Steelhead surface hits were observed between Shamel Park and Windsor Bridge throughout the summer of 2004, and juveniles were captured there in the fall by seining. This was the only viable steelhead habitat in the 2004 lagoon.

Tidewater gobies were detected only in very low numbers in the lagoon in fall 2003 after the lower lagoon dried up, and they appeared absent in 2004 and 2005 during both the early summer and late fall sampling and in early 2006. (They were detected in fall 2006 and June 2007 before the lagoon mostly dried up again by October 2007.) Thus, dewatering of the lower lagoon below Shamel Park had a very negative impact on the tidewater goby population, although steelhead habitat was available upstream of Shamel Park. **Table A11** provides information on minimum stream inflow to Santa Rosa Lagoon in 1993–2007. Table A11. Streamflow Measurements Taken Immediately Upstre am of Santa Rosa Lagoon (Except 2005–2006) Prior to Rainfall, Including the Minimum Measured for the Dry Season.

Date	Streamflow (cubic feet/ second
5 August 1993	0.47*
4 October 1993	0.62
16 June 1994	0.69
16 July 1994	0.00 (dry)
14 September 1995	0.52
25 September 1996	0.22
18 August 1997	0.19
16 September 1998	1.37
30 July 1999	0.62
7 September 2000	0.20
20 September 2000	0.40
7 September 2001	0.15
20 September 2001	0.21
30 August 2002	0.28
30 October 2002	0.37
2 October 2003	0.29
10 September 2004	0.30
24 September 2004	0.49
13 September 2005	1.63
23 September 2005	1.97 (Hwy 1)
24 October 2006	1.63 (Hwy 1)
12 October 2007	0.00 (dry)

* All streamflow measurements taken with a Marsh McBirney Model 2000 flowmeter.

Dissolved Oxygen Guidelines and Measurements in Santa Rosa Lagoon

The recommended lagoon guidelines for oxygen concentration within 0.25 m of the bottom are as follows:

- Dissolved oxygen concentration at dawn should be 5 mg/l or greater
- Dissolved oxygen levels less than 2 mg/l at dawn should be considered critically low, close to the lethal limit and prevented, if possible.

However, steelhead have survived in pools in the Carmel River at oxygen levels of 1–2 mg/l [parts per million (ppm)] for 1–2 hours at dawn (**David Dettman 1993, personal communication**). We have documented steelhead survival with chronic levels of less than 2 mg/l in San Simeon Lagoon in 1997 and 1999 (Alley 2001b). Refer to Appendix **B** for details on oxygen tolerances of steelhead and data that relate to the oxygen guidelines.

Table A12 below, summarizes the number of monitoring days in which guidelines for oxygen concentration were not met in Santa Rosa Lagoon in 1992–2005, along with fish data from seining. Below that are graphs of oxygen concentration measured near the bottom at the two monitoring stations in Santa Rosa Creek, extracted from previous lagoon monitoring reports.

For the monitoring years 1992–2005, the 5mg/l oxygen guideline was met at one of the monitoring stations for the entire lagoon season in 3 of 14 years (1995, 1996 and 2001) (Graphs for 1997-2005 in **Figures A54–A61**). The near lethal limit of 2 mg/l oxygen was avoided at one station for the entire lagoon season in 8 of 14 years. Although oxygen levels frequently failed to meet guidelines and were likely restrictive on scope of activity, they were likely less limiting than temperature to steelhead survival in the lagoon. Some low oxygen levels are caused near the lagoon bottom within a stagnant saline layer that does not circulate with the air. Other low oxygen conditions result from high density of filamentous algae, particularly in shallow lagoon conditions that result from insufficient stream inflow to maintain lagoon depth. If tidal overwash can be minimized or prevented, low oxygen conditions resulting from saline lenses may be reduced. Lagoon depth may be maintained to prevent complete filamentous algae growth throughout the water column that prevents water circulation if lagoon inflow is maximized to ideally 0.9 cfs or more. Filamentous algae may be reduced if lagoon shading is increased.

Table A12. Record of Days When Oxygen Guidelines in Santa Rosa Lagoon Were Not Met During Two-Week Monitorings at Dawn With the Sandbar Closed, 1992–2004, and Number of Steelhead and Tidewater Gobies Captured, 1993–2007.

Year	Station 1 # Monitorings with Oxygen Concentration < 5 mg/l	Station 1 # Monitorings with Oxygen Concentration < 2 mg/l	Station 2 # Monitorings with Oxygen Concentration < 5 mg/l	Station 2 # Monitorings with Oxygen Concentration < 2 mg/l	# Monitoring Days at 2-Week Intervals With Closed Sandbar	# Steelhead Observed or Captured in Fall (except 1993-1996 and 2007)	# Tidewater Goby Captured in Fall (except 1993-1996 and 2007)
1992	4	0	—		11		—
1993	7	3	—	—	14	0 (June - with snorkeling)	9 (June)
1994	4 (dried up during August and returned to puddle in Sep.)	0	4	2	10 @ Sta 1 11 @ Sta2	16 (all stranded smolts at Shamel Park only) (June)	3 (sampled Shamel Park only) (June)
1995	2	0	0	0	12	0 (June)	12 (June)
1996	0	0	6	0	12	7 (5 stranded smolts) (June)	2,200+ (June)
1997	2	0	1	1	12	0	223
1998	1	0	4	0	9	3 (surface hits observed until September)	10
1999	5	1	3	0	15	0 (surface hits observed until September)	7
2000	1 (dried up after 20 September)	0	0 (dried up after 20 September)	0	6	0	32
2001	0	0	2	0	11	0	1,200+
2002	5	1	4	1	13	0	165
2003	0 (dried up by July)	0	2 (dried up by September)	0	2 @ Sta 1 3 @ Sta 2	0	9
2004	2 (dried up by 9 August)	1	8 (Station 2 dried up by July and was moved to Station 3)	2	6 @ Sta 1 11 @ Sta 2 and 3	69 YOY (between Shamel Park and Windsor Bridge)	0
2005	1 (data collected by CCSD later in morning after 5 August- not comparable)	0	1	0 (data collected by CCSD later in morning after 5 August- not comparable)	1	0 (surface hits observed into November)	0
2006	_	_	_	_		23 YOY (between Shamel Park and Windsor Bridge)	480+
2007	Small isolated		Small isolated			15-20	463

pool in October	pool and dry	stranded adults	(June)
	upstream to	and 20 smolts	
	Windsor Bridge	observed, only	
	in October	1 stranded smolt	
		captured *	
		(June)	

*Informed by local resident that smolts were rescued from the lagoon and placed in the Monterey Bay prior to our sampling.

Figure A54. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa Lagoon, 1997–1999.

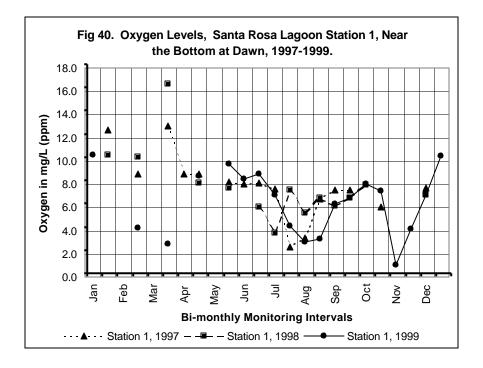


Figure A55. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa Lagoon, 1997–1999.

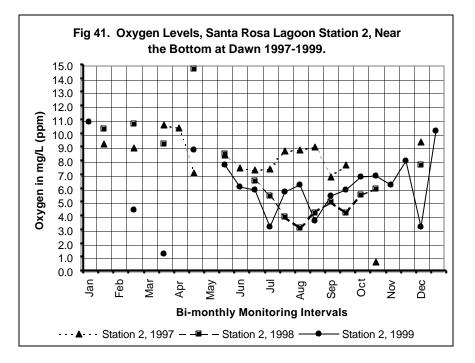


Figure A56. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa Lagoon, 2000–2001.

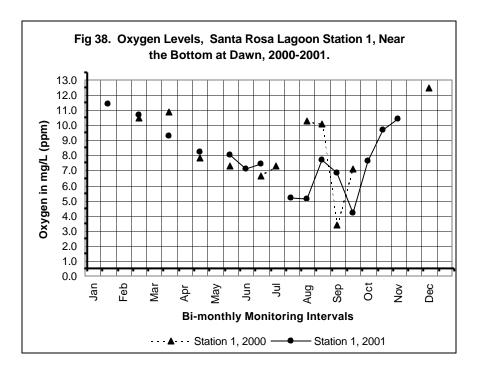


Figure A57. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa Lagoon, 2000–2001.

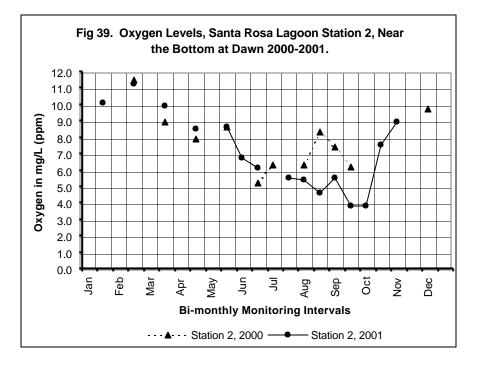


Figure A58. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa Lagoon, 2002–2003.

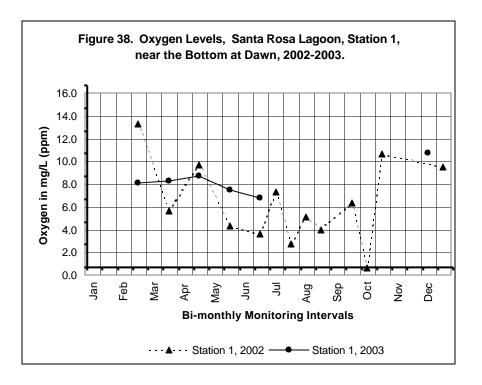


Figure A59. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa Lagoon, 2002–2003.

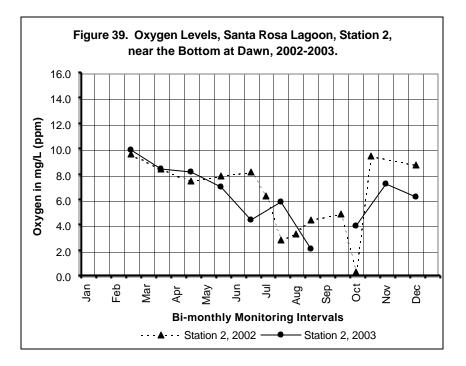


Figure A60. Two-Week Interval Oxygen Levels at Station 1 at Dawn in Santa Rosa Lagoon, 2004–2005.

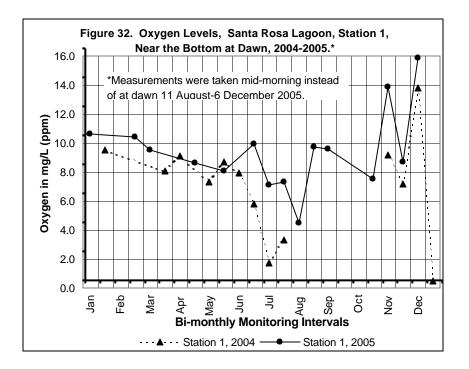
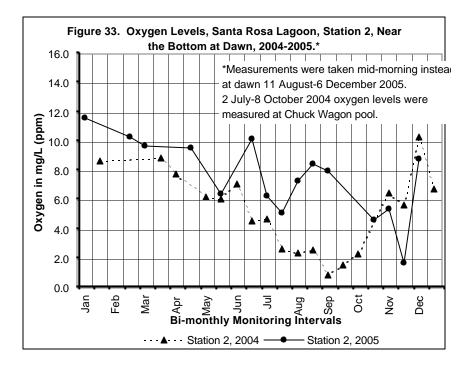



Figure A61. Two-Week Interval Oxygen Levels at Station 2 at Dawn in Santa Rosa Lagoon, 2004–2005.

Adult Steelhead Passage With Streamflow Management Guidelines

Since passage over many riffles in the mainstem is flow dependent, steelhead are more vulnerable to shallow passage conditions in drier years. If winter storms are delayed or drought conditions exist, flows may be inadequate to allow adult steelhead migration over certain critically wide riffles. Judging by the pattern of higher YOY production in the lower valley in drier years and higher YOY production in wetter years (see pervious section on juvenile densities), shallow riffles impede adult passage into the upper canyon in some years. The opening and closing of the sandbar at the creek mouth determines the spawning period during the wet season. If storms are delayed, the sandbar remains closed longer. If storms come early and are largely absent in the spring, then the sandbar closes early, thus preventing adults from entering the creek afterwards and stranding kelts trying to return to the ocean after spawning.

Regarding minimum bypass flows downstream of the Perry Creek confluence and until more current IFIM data are collected, the following management guidelines are recommended:

• In order to promote upstream adult steelhead spawning migration during the primary spawning season of January 1 – April 15, any water diversion or well extraction capable of reducing surface flow should be interrupted during stormflow episodes when streamflow between Perry Creek confluence and Main

Street Bridge is less than 60 cfs and streamflow between Main Street Bridge and the bay is less than 35 cfs.

- In dry fall/ winters in which no storms have occurred by January 1, any water diversion or well extraction capable of reducing surface flow should be interrupted from January 1 until the first stormflow. After that, follow the guideline listed above.
- In order to promote out-migration of post-spawning steelhead kelts, water diversion or well extraction capable of reducing surface flow should not resume after a stormflow until the baseflow between storm events is shown to be greater than 15 cfs at the Highway 1 Bridge until May 1, and water extraction should be discontinued until May 1 if streamflow declines below 15 cfs between the first storm event and May 1.

D.W. ALLEY & Associates performed a steelhead passage study in Reach 0a in lower Santa Rosa Creek in 1993 (Alley 1993b). With limited data at that time, it was estimated that a minimum bypass flow of 7 cfs would be necessary at the Windsor Bridge to prevent sandbar closure and to insure sandbar passage for kelts and smolts to the ocean. Later data on lagoon closure times and streamflow confirmed this initial estimate to be correct. Regarding upstream spawning migration, it was determined that a minimum bypass of 60 cfs was required at the critical riffle # 1upstream of Main Street (channel mile 2.80) and 35 cfs downstream through Cambria to negotiate the critical riffle # 2 at the concrete apron under the Burton Street Bridge (channel mile 2.16) (now removed), critical riffle # 3 a short distance downstream of Highway 1 (channel mile 1.19) and critical riffle # 4 just downstream of the CCSD lift station (channel mile 1.0). The Thompson rule was used, requiring 25% of the top (surface) width of the stream channel or 10% of continuous (contiguous and unbroken) top stream width be at least 0.6 feet deep. An additional condition placed on the passage criteria was that a minimum of 5 continuous feet of channel width most be at least 0.6 feet deep if the channel width was narrowed to less than 50 feet. It was determined that 25 cfs was required to maintain a minimum depth of 0.4 feet over a width of 4 feet for kelt (post-spawner) downstream passage at critical riffle # 1 and 13-15 cfs for critical riffles downstream. It was determined that 17 cfs was required to maintain a minimum depth of 0.3 feet over a width of at least 5 feet for downstream passage of juvenile smolts over critical riffle # 1 and 5.8 to 8 cfs for critical riffles downstream. However, probably a more realistic minimum of 6 cfs was required to maintain a minimum depth of 0.2 feet over a width of at least 5 feet at critical riffle # 1 and 0.2-0.3 feet depth over the other critical riffles for downstream passage of juvenile smolts, yearlings and YOY.

Extent of Anadromy

Updated survey work for barriers to steelhead anadromy was beyond the scope of this report. Road crossings and potential steelhead barriers were mapped by CDFG in 2005 (refer to **Appendix C**). When the mainstem of Santa Rosa Creek was surveyed to the Mora Creek confluence in fall 1994, no passage impediments were observed. However, sometime after the 1995 flood, a potential passage impediment was observed in upper

Reach 2. This was a stretch where an instream project had been completed, and the streambed had been graded into a wide, flat configuration between vertical, unvegetated streambanks. The stream thalweg had been destroyed, causing a critically shallow cross section during winter stormflows until a thalweg was re-established. This location was not re-visited, and the thalweg likely reformed during the wet winter of 1998. The concrete ford with laddered culvert at Ferracsi Road between Reaches 0b and 1 in the lower valley is a potential passage impediment if instream wood collects on the upstream entrance to the culvert and inside during stormflows. Sean Grauel, formerly of the Cambria CSD, Don Alley (D.W. ALLEY & Associates) and Dave Highland of CDFG have cleared wood multiple times that has collected at the culvert through the years. However, Don Alley has no observations of this culvert being completely impassable, and sampling data collected by D.W. ALLEY & Associates for juvenile densities upstream of the culvert has indicated that the culvert was passable to spawning adults for the entire period of sampling (1993–2006).

Although perennial flow exists in Mora Creek (Figure A13), judging from the topography, the gradient rapidly increases and passage impediments likely exist. There may be as much as 1/4 - mile of spawning and rearing habitat on lower Mora Creek. A resident on the East Fork (Figure A13) reported observations of adults and juveniles in that tributary at times. However, this tributary was dry at its mainstem confluence in every year of fish sampling 1994–2006, and the gradient steepened quickly not far from its confluence with the mainstem. There may be ¹/₄-mile of spawning habitat on the East Fork. It is unknown if perennial habitat exists in the East Fork. Lehman Creek has perennial flow at its mouth and is accessible to adult steelhead (Figure A13). Judging by the topography, Lehman Creek may have ¹/₄-mile of spawning and rearing habitat. Curti Creek (Figure A13) likely is inaccessible to adult steelhead due to a perched culvert at its mouth under Santa Rosa Creek Road. It has been ephemeral at its mouth during past sampling and likely has no rearing habitat. Taylor Creek in the lower valley (Figure A13) is likely inaccessible to adult steelhead due to a perched culvert. This drainage is usually intermittent at best and dry in many years, making it unlikely to provide rearing habitat if adult passage was improved. Perry Creek and its tributary, Green Valley Creek, are accessible to adult steelhead and would provide juvenile rearing habitat in perennial stretches. However, we are unfamiliar with that sub-watershed and do not know if perennial habitat exists there. Lower Perry Creek was dry in 1994 when the Santa Rosa Creek mainstem was first surveyed.

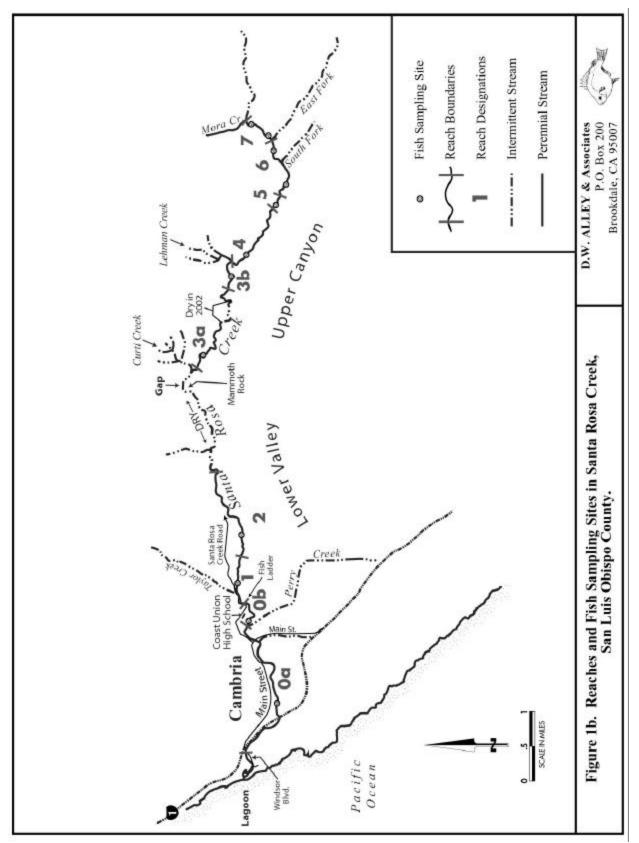


Figure A13. Reaches of Santa Rosa Creek, San Luis Obispo County.

Timing of Lagoon Sandbar Closure and Its Effect on Out-Migration of Steelhead Smolts, with Management Guidelines

The recommended guideline to insure adequate steelhead smolt passage to the Monterey Bay is to discontinue any water extraction that affects surface flow if inflow to the Santa Rosa Creek estuary declines to 7 cfs or less during the typical wet season until at least 15 May.

Smolt out-migration by steelhead occurs primarily from March through May, but may happen earlier if large storms occur earlier and juveniles are large enough. The primary limiting factor on movement of smolts from rearing habitat to the ocean is the early closure of the sandbar at the mouth due to limited spring stormflows and resulting low streamflow into the estuary. Refer to **Table A13** for a record of annual sandbar closure. Based on streamflow data collected at or near the time of sandbar closure, the sandbar at Santa Rosa Creek mouth has closed at streamflows between 2 and approximately 13 cfs. However, most sandbar closures occurred in the 3–6.3 cfs range. Evidence of steelhead smolts that were stranded in the lagoon after sandbar closure indicated that most smolt migration was over by mid-May. Based on data regarding streamflow at the time of sandbar closure and data on stranded smolts after sandbar closure, the recommended guideline for insuring sufficient smolt passage to the Monterey Bay is to maintain stream inflow to the estuary at 7 cfs or greater until at least 15 May.

Table A13. Historical Record of Sandbar Closure at Santa Rosa Lagoon (1993–2007)and San Simeon Lagoon (1991–1992).

Year	Date of First Sandbar Closure Detection After Winter/Spring Rainy Season	Evidence of Smolts in the Lagoon or Immediately Upstream After Sandbar Closure	Stream Inflow Cubic feet/ second (cfs)
1991 (San Simeon Lagoon)	Before 2 April 1991	-	_
1992 (San Simeon Lagoon)	10 Jan (opened 8 Feb) 29 April 1992	-	4.35 2.75
1993	24 May 1993 closed (Re-opened after light rain on 25 May 1993) 11 June 1993 (or		7.9
100.1	sooner)	Yes (few)	4.15 on 11 June
1994	28 March 1994	Yes (many)	2.49 on 29 April
1995	28 May 1995	Yes (few upstream only)	-
1996	3 June 1996	Yes (very few upstream only)	5.13 on 29 May 2.98 on 12 June
1997	23 March 1997	Yes (many)	12.60 on 26 March
1998	13 July 1998	Yes (very few upstream only)	4.65 on 15 July
1999	28 May 1999	No (upstream not sampled)	6.18
2000	31 May 2000	No (upstream not sampled)	3.00 on 15 June
2001	14 May 2001	No (upstream not sampled)	4.40 on 23 May
2002	14 April 2002	Yes (many)	2.14 on 28 Feb. 2.11 on 28 March
2003	9 June 2003	No	1.50 on 3 July
2004	7 May 2004	Yes (few upstream only)	2.69 on 21 May
2005	27 May 2005	Yes (few upstream only)	6.25 on 16 June
2006	Between 24 May and 26 June 2006	No	18.67 on 24 May 3.23 on 12 July
2007	15 March 2007	Yes (many)	21.94 on 1 March

APPENDIX B. WATER TEMPERATURE AND OXYGEN TOLERANCES FOR CENTRAL COAST STEELHEAD

Water Temperature Considerations

The relationship between water temperature and metabolic rate (measured as oxygen consumption) is basic to fish physiology and important in understanding fish distribution and ecology. Fish being ectotherms (cold-blooded), their body temperatures increase along with metabolic rate as water temperature increases. At higher temperatures, steelhead oxygen requirements and food demands increase, and steelhead are forced to fastwater habitat or other sources of abundant food. References that indicate that oxygen consumption by fishes increases with water temperature include Fry (**1947**), Beamish (**1964**) and Beamish (**1970**). Many fisheries textbooks refer to this relationship. An example is <u>The Chemical Biology of Fishes</u> by Malcolm Love (**1970**). The positive relationship between water temperature and metabolic rate in fishes leads to higher oxygen requirements as water temperature increases (**Nikolsky 1963**).

Brett (1956) defined lethal temperature theoretically as that temperature at which 50% of a fish population could withstand for an infinite time. At the lethal temperature and beyond, there is a period of tolerance before death, known as the resistance time (Fry 1947). Because of the resistance time, fish are able to tolerate diurnal fluctuations exceeding lethal temperatures (Fry et al. 1946). Between the upper and lower lethal temperatures is found the preferred temperature for each species. Fry (1947) defined the preferred temperature as the temperature range in which a given fish population will congregate when given the choice of an infinite range of temperatures.

Lethal temperature limits and the preferred temperature of a species can be altered through acclimation to changing environmental temperatures. As the acclimation temperature increases, the lethal and preferred temperatures progressively increase (**Brett 1956**). This process allows a species to survive over an extended temperature range. A review of the literature concerning the effects of high temperature on steelhead-rainbow trout shows considerable variation in results between different researchers. This was partially due to differences in laboratory conditions under which the studies were conducted. Uncontrolled variables such as water chemistry, season, day length, acclimation level, physiological condition, size, age, sex, reproductive condition, nutritional state and genetic history of tested fish may influence their response to water temperature levels.

Sub-lethal effects of high temperatures on salmonids include increased metabolic rates and decreased scope for activity, decreased food utilization and growth rates, reduced resistance to disease and parasites, increased sensitivity to some toxic materials, interference with migration, reduced ability to compete with more temperature resistant species and reduced ability to avoid predation.

A review of the literature indicates that temperatures below 20°C (68°F) are best suited for the success and production of steelhead-rainbow trout (Kubicek and Price 1976). Snyder and Blahm (1971) reporting on the work of Brett (1959) stated that steelhead could exist at temperatures above 20°C (68°F), but only at the expense of feeding, growth, maturation and migration. Mantelman (1958) indicated that the range of 12 to 20°C was most favorable for food consumption and growth of rainbow trout. Coche (1967) concluded that, for his stock of juvenile steelhead, temperatures between 20°C (68°F) and 24°C (75.2°F) were responsible for high maintenance requirements and low conversion efficiency of food into growth. Dickson and Kramer (1971) reported that the scope for activity of hatchery and wild rainbow trout was maximum at 15°C (59°F) and 20°C (68°F), respectively, and slightly less at 25°C (77°F). Baltz et al. (1987) reported that optimal temperatures for growth of rainbow trout to be around 15-18°C, a range that corresponded to temperatures selected in Sierran streams when possible. Baltz et al. (1987) found that rainbow trout selected temperatures of 16-18°C in the Pit River (southern Cascades of Northeast California) when they had a choice. However, Moyle (2002) stated that many factors affect choice of temperatures by trout, including food availability. The applicability of temperature data collected on Sierran/Cascade trout populations has limited applicability to Central Coast steelhead populations and temperature preferences. In higher elevation Sierran streams, there are conditions of cool and sunny, productive conditions. We do not have that on the Central Coast. Cool habitat here is unproductive in terms of food because it is heavily shaded. Sunny habitat on the central coast is warm and productive in terms of food. Therefore, we have warmer stream habitats that are more optimal for steelhead growth and densities than cool, heavily shaded habitats.

At sub-lethal levels water temperature is largely a food availability issue. If food is scarce, low temperatures (10-14°C or less) would be optimal, because they reduce basal metabolic rate, reducing food needs and resulting in lower summer weight loss (if food is very scarce). If food is moderately abundant higher temperatures (14-18°C) would be optimal, because metabolic rate would not be too high, and swimming performance and digestive rate would allow for active feeding and growth. If food is very abundant and available, then warmer temperatures (18-22°C) might be optimal, because rapid digestion would allow the fish to quickly assimilate the abundant food and growth rate would be high.

In the upper canyon of Santa Rosa Creek, summer and the summer/ fall 7-day rolling average water temperature is typically 1–1.5 C (1.8–2.7 F) cooler and the daily maximum is typically 2–4 C (3.6–7.2 F) cooler than the lower valley (Alley 2007a). However, YOY steelhead grow faster in the lower valley and more reach Size Class 2 their first growing season than in the upper canyon. Food supply in the lower valley is evidently greater to offset the added metabolic cost of living there. Higher temperatures increase food demands and restrict steelhead to faster habitats for feeding in these lower reaches, especially above 21°C (70°C) (Smith and Li 1983). Streamflow is higher in the lower valley in spring when feeding and growth are maximized and during the summer months. The lower valley is less shaded with more light to stimulate photosynthesis and insect productivity. More light makes visual feeding more effective. In conclusion, in central coast streams, optimal habitat is not the coolest habitat.

Kubicek and Price (**1976**) concluded that although temperatures less than 26.5°C (79.7°F) were not assumed to directly cause steelhead mortality in the Big Sulphur Creek drainage (tributary to the Russian River, Mendocino County), temperatures consistently above 20°C (68°F) were assumed to cause sub-lethal stress that could result in decreased fish production and indirect mortality. They noted that juvenile steelhead disappeared from a section of Big Sulphur Creek when hot springs caused summer temperatures to rise above 26°C. *They assumed in their monitoring that stations that had temperatures greater than 20°C* (68°F) for less than 50% of the time in any one month were not expected to cause significant sub-lethal effects in that month, unless that station reached a marginal or lethal maximum temperature.

Charlon (**1970**) found that steelhead acclimated at 24°C (75.2°F) experienced a lethal temperature of 26.35°C (79.4°F). Alabaster (**1962**) found steelhead acclimated to 20°C (68°F) to experience a lethal temperature of 26.6°C (79.9°F). McAfee (**1966**) found steelhead lethal temperatures in the range of 24-29°C (75.2°- 84.2°F) with unspecified acclimation temperatures.

Supporting Evidence For High Temperature Tolerance in Steelhead

There are many central coast examples of steelhead surviving and growing well at water temperatures above 21°C. Many of these come from coastal lagoons (Alley 2002b) and lower reaches of unshaded drainages, such as lower Soquel Creek (Alley 2002c) and the lower San Lorenzo River (Alley 2002d), but only where food is abundant. When food is abundant, growth is actually better at warmer water temperatures because digestive rate is increased, allowing fish to consume and process more food and grow more quickly.

The Soquel Creek Lagoon is inhabited by juvenile steelhead each summer and is valuable nursery habitat. As a typical example, on 22 July 1988 at 0820 hr the minimum lagoon temperature was 20.8° C, and by 1449 hr the minimum lagoon temperature was 22-23° C at all stations throughout the water column, (**Alley et al. 1990**). Large, fast-growing steelhead were collected from this lagoon in fall, 1988, indicating their survival well above 21° C. In late July 1989, Smith observed 300+ steelhead juveniles at the mouth of Noble Gulch in Soquel Lagoon where the water column temperature ranged from 21.4 to 22.4° C at 1555 hr.

On 21 July 1992 in Soquel Lagoon, the minimum temperature measured at 4 sites before 0700 hr was 21.2° C (**Alley 1993c**). At 3 of the 4 monitoring sites the minimum was 23° C. By 1700 hr on that day, the minimum water temperature measured was 25.2° C at one site and 26° C at the other monitored site. These sites were representative of the entire lagoon. Large, fast-growing steelhead were collected in abundance in Soquel Lagoon in fall, 1992, after these warm summer conditions.

On two occasions (August and September) in Soquel Lagoon in 1993, steelhead juveniles fed at the surface in early morning with minimum water temperature above 20.6 ° C (Alley 1994). Water temperature was likely to increase at least 2° C through the day. More than 1,100 juvenile steelhead were captured in the lagoon in fall 1993.

Steelhead have been detected at water temperatures as high as 26° C in Pescadero Creek Lagoon (San Mateo County) and at 24° C on a regular basis in Pescadero and San Gregorio Lagoons (San Mateo County) (**Smith 1990**) and Uvas Creek in Santa Clara County (**J. Smith, personal observation**).

It has been reported that rainbow trout (same species as steelhead but with a freshwater life history pattern) survive temperatures from 0 to 28°C, provided that they are gradually acclimated to higher temperatures and that saturated oxygen conditions exist (**Moyle 1976**). Rainbow trout in Big Sulphur Creek, tributary to the Russian River, are often exposed to stream temperatures in excess of 20°C (**Price et al. 1978**). This is particularly the case in Big Sulphur Creek below Little Geysers Creek where daily minimum temperatures sometimes exceed 20°C. Daily stream temperatures fluctuate up to, and perhaps greater than 28°C in Big Sulphur Creek in summer rainbow trout habitat (**Price et al. 1978**). Steelhead inhabited the Creek, downstream of where these data were collected. More than 100 rainbow trout/ steelhead were observed during snorkeling in pools, runs and riffles on 24 July 1976 in Deer Creek, Tehama County, where water temperature fluctuated daily between 19 and 24° C (**Alley 1977**).

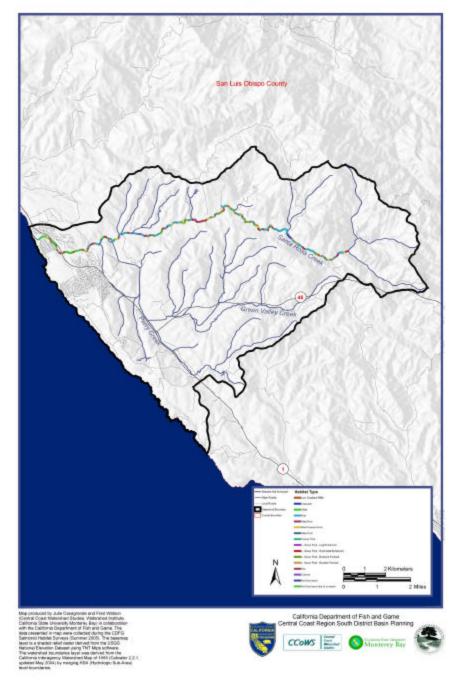
Oxygen Considerations for Steelhead

Steelhead can likely survive oxygen levels in the cooler, early morning as low as 2 mg/l. However, the water quality goal for Santa Rosa Creek should be to maintain oxygen levels above 5 mg/l because activity is likely restricted at lower oxygen levels. Research with YOY rainbow trout (same species as steelhead) acclimated for 5 days at 15°C were provided oxygen levels of 1 and 3 mg/1 for a maximum 48-hour period (Dean and Richardson 1999). Mortality occurred at both 1 mg/l (100% mortality) and 3 mg/l (14.3% mortality after 36 hours and none thereafter) oxygen concentrations. Surfacing behavior to gulp air was also observed at these oxygen concentrations. However, no mortality or surfacing behavior was observed at 5 mg/l. The USEPA (1986) concluded that if salmonid exposure time was less than 84 hours (3.5 days), and temperatures were between 10 and 20°C, dissolved oxygen concentrations of at least 3 mg/l should not produce any direct mortality in salmonids. They considered salmonids to be moderately impaired at 5 mg/l oxygen and acute at 3 mg/l. This was a general recommendation based on a combination of data from multiple species. The 5 mg/l minimum oxygen goal is easily met in flowing stream habitat where riffle turbulence recharges oxygen to full saturation or close to it. However, oxygen may readily fall below 5 mg/l at greater depths in the lagoon if considerable filamentous algae is present at night after a foggy/ overcast day to use up oxygen or if saltwater has been trapped by sandbar closure without sufficient lagoon inflow after mild winters with low summer baseflow to flush the stagnant saltwater lens through the sandbar.

Supporting Evidence for Low Oxygen Tolerance by Steelhead

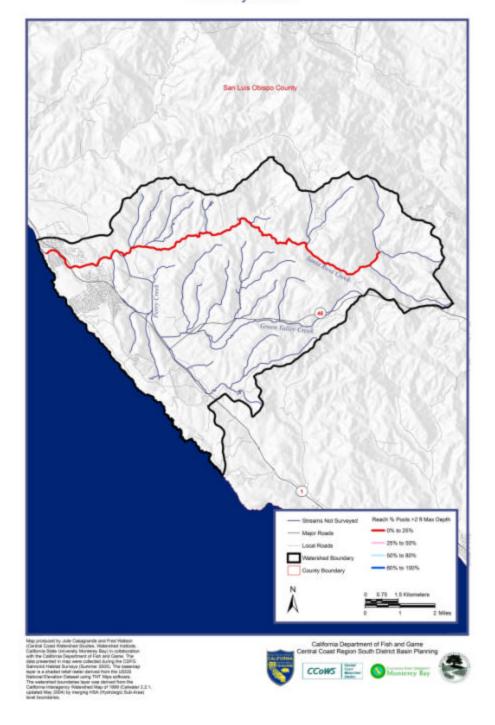
Steelhead have been observed at oxygen levels below 4 mg/l in many locations along the central coast. Steelhead were captured from isolated pools (stream discontinuous) at 3-4 mg/l oxygen and 16° C water temperature in 1988 in Waddell and Redwood creeks in

Santa Cruz and Marin counties, respectively (**J. Smith, pers. observation**). In August 1989 on the Carmel River, juvenile steelhead were observed in pools at three different sites where oxygen ranged from a minimum of 2-4 mg/l at the different sites before dawn to a maximum of 14-15.5 mg/l (super saturation) in the afternoon, with water temperature ranging from 61° F (16.1° C) in the morning to 72° F (22.2° C) in late afternoon (**D. Dettman 2003, pers. communication**).

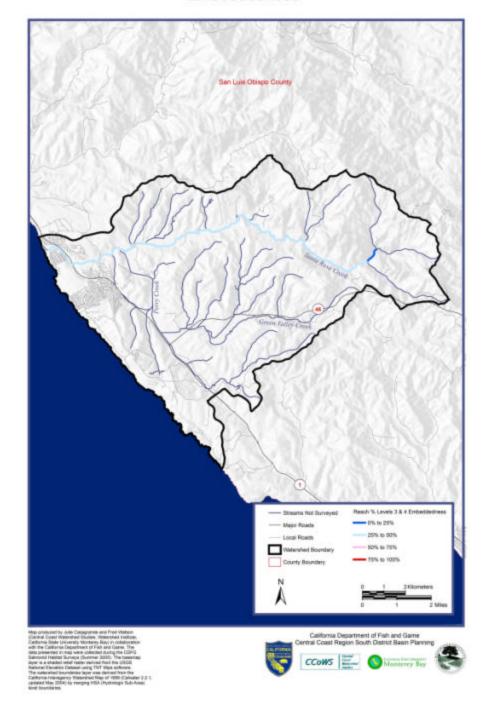

In San Simeon Creek Lagoon in 1993, steelhead survived to at least mid-August, despite morning oxygen levels in the 1.7-2.8 mg/l range (Alley 1995b). Juvenile steelhead were observed on 10 June, and 29 July 1993 at the same location (Alley, pers. observation). On 11 June the maximum oxygen concentration at that station was 2.7 mg/l at 0603 hr (at the surface), with water being 14° C (Alley 1995b). On 8 July the maximum oxygen level was 1.7 mg/l with water at 16° C at 0525 hr (Alley 1995b). On 29 July the oxygen concentration was at a maximum of 2.8 mg/l with water temperature of 17.5° C at 0530 hr (Alley 1995b). An adult steelhead was observed in the lagoon during sampling on 10-11 August (J. Nelson 1993, personal communication).

At low water temperatures, it was reported that rainbow trout withstand oxygen concentrations of 1.5 to 2 mg/l (**Moyle 1976**). Rainbow trout were found in Penitencia Creek (Santa Clara County) at 3 mg/l oxygen and 20° C water temperature (**J. Smith 2003, personal communication**).

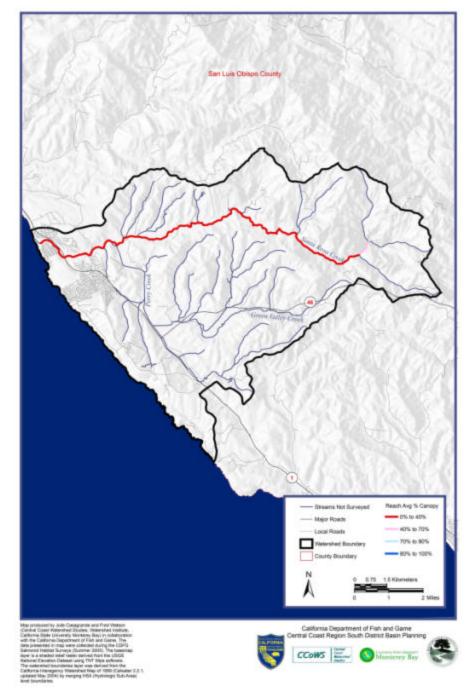
APPENDIX C. HABITAT MAPS FROM THE CDFG BASIN PLANNING AND HABITAT MAPPING PROJECT.


http://ccows.csumb.edu/scdp/data.htm

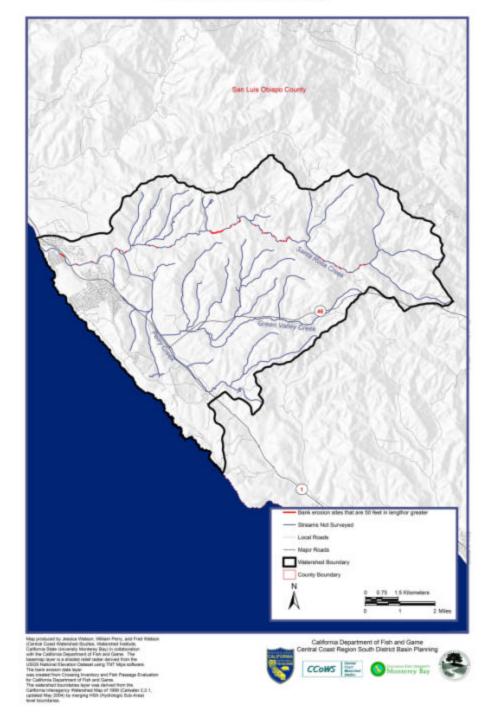
California Department of Fish and Game Central Coast Region South District Basin Planning Santa Rosa Creek Watershed Habitat Type


California Department of Fish and Game Central Coast Region South District Basin Planning Santa Rosa Creek Watershed

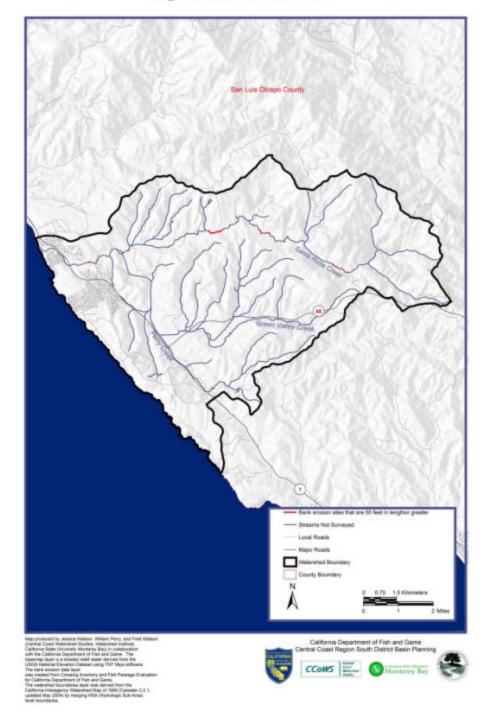
Primary Pools


California Department of Fish and Game Central Coast Region South District Basin Planning Santa Rosa Creek Watershed

Embeddedness


California Department of Fish and Game Central Coast Region South District Basin Planning Santa Rosa Creek Watershed

Riparian Canopy Density


California Department of Fish and Game Central Coast Region South District Basin Planning

Santa Rosa Creek Watershed Left Bank Erosion Sites



California Department of Fish and Game Central Coast Region South District Basin Planning

Santa Rosa Creek Watershed Right Bank Erosion Sites

California Department of Fish and Game Central Coast Region South District Basin Planning Santa Rosa Creek Watershed Stream Structures & Potential Barriers

APPENDIX D. SCALE ANAYSIS FOR STEELHEAD FROM SANTA ROSA CREEK, SAN LUIS OBISPO COUNTY, OCTOBER 2006.

Jerry Smith Dept. Biological Sciences San Jose State University San Jose, CA 95192 11 July 2008 Revised

Aging Methods

True annuli were recognized by cutting over of scale circuli that was not near the edge of the scale and was usually accompanied by tighter spacing of circuli before the annulus. This reflected slowing growth and the major loss of body girth (and scale erosion) during the poor growth period in fall and winter.

False annuli also occurred in many fish. False annuli were recognized by cutting over of circuli near the edge of the scale, but with no change in circuli spacing. This occurs when previously fast-growing, "plump" fish lose weight in late summer due to high stream temperatures and/or reduced stream flow that results in insufficient feeding to maintain weight. False annuli can even occur in hatchery-reared fish of known age, when the normally fast growth is interrupted briefly.

Sizes of fish at true annuli were back-calculated based upon projected scale length versus projected length to annuli and using 25 mm Standard Length (SL) as the fish length at the time of scale formation (a + bx, where a = fish size at scale formation).

Diagnosis of Age and Growth Results from Scales

All but one of the 15 fish samples from Sites 0A and 0A2 were young-of-year, despite standard lengths of 108 to 152 mm SL. The 175 mm SL fish was a yearling.

For Sites 1 and 2, all but 1 of 15 fish samples between 108 and 131 mm SL long were young-of-year. All 10 fish samples with lengths 132 - 156 mm SL were yearlings. The 175 mm SL fish from Site 2 was probably a yearling, also, but may have been a 2-year old with negligible growth in 2006. A 267 mm SL fish from Site 1 was at least 3 years old (all scales were regenerated to some degree). It may have been a resident (male) fish.

The majority of young-of-year fish at all sites showed false annuli near the edge of the scale (so did the majority of yearlings, also those false annuli were not noted in Table 1). They lost weight in late summer during a period of no growth, probably due to very low stream flows and higher water temperatures in late August or September. Growth resumed later as temperatures cooled and/or stream flows increased with leaf drop. The occurrence of false annuli in 2006 (a wet spring) indicates that in drier years, the growth period would shrink and fish sizes at the end of summer would be significantly smaller.

The back-calculated sizes at annuli for yearling fish from sites 1 and 2 were generally small compared to the scale-sampled fish that were young-of-year at sites 1 and 2. This may be because most of the larger young-of-year will smolt as yearlings, and the smaller fish make up most of those which remain for a second year. Alternatively, the smaller size may reflect generally poorer conditions for growth in 2005 or growth by those fish further upstream in 2005.

Length (mm)	Age	Projected	Image Length	Back-calculated Standard Length at Annulus
Standard / Fork	C	Scale	Annulus	
<u>Site 0A1- 20 Oct 0</u>	<u>6</u>			
108 / 121	0+	23	21 false	
128 / 144	0+	30	26 false	
130 / 143	0+	26	22 false	
130 / 144	0+	28		
131 / 147	0+	30		
132 / 146	0+	35	29 false	
132 / 148	0+	29.5	25 false	
137 / 153	0+	33	28 false	
138 / 151	0+	33	26 false	
142 / 161	0+	35.5	30 false	
146 / 163	0+	34.5	30 false	
152 / 167	0+	30	23 false	
175 / 193	1+	31	21	126
<u>Site 0A2- 20 Oct 0</u>	<u>6</u>			
120 / 135	0+	26	22 false	
120 / 135	0+	20 27	22 Tuise	
Site 1- 18 Oct 06				
97 / 108	0+	18		
113 / 125	0+	20	16 false	
117 / 133	0+	28	22 false	
120 / 133	1+	29	15.5	76
122 / 136	0+	22	18.5 false	
131 / 145	0+	26	22.5	

Table 1. Ages of fish from Santa Rosa Creek, San Luis Obispo County, for 2006	
with back-calculated lengths at annuli.	

Length (mm)	Age	Projected Image Length		Back-calculated	
Standard / Fork		Scale	Annulus	Standard Length at Annulus	
100 / 140	1.	07	10		
132 / 148	1+	27	19		
133 / 151	1+	25	11	73	
138 / 156	1+	27	12	75	
152 / 168	1+	32	20	104	
267 / 298	3+ or more	50	regen,22,31,4	2 131, 175, 228	
Site 2- 17 Oct 06					
89 / 101	0+	22	20 false		
101 / 113	0+	22			
101 / 113	0+	18			
101 / 115	0+	25	20.5 false		
107 / 120	0+	19			
108 / 120	0+	22	20 false		
113/ 123	0+	25	21 false		
116 / 130	0+	29	24 false		
122 / 137	0+	24.5	21 false		
132 / 148	1+	29	13	73	
142 / 161	1+	37	18	80	
143 / 160	1+	26	14.5	91	
143 / 161	1+	31	12.5	73	
148 / 166	1+	27.5	17	101	
156 / 174	1+	26	11	80	
175 / 196	1+/2+?	39	13, 36 false	75, 163?	

REFERENCES

Alabaster, J.S. 1962. The effect of heated effluents on fish. Int. J. Air Water Poll. 7: 541-563. (Cited by Kubicek and Price 1976).

Alley, D.W. 1977. The Energetic Significance of Microhabitat Selection by Fishes in a Foothill Sierra Stream. Masters Thesis. University of California, Davis, California.

Alley, D.W, W.L. Elsey, K. B. Lyons, M. Noelle, J.J. Smith, D.L. Suddjian, and J.T. Stanley. 1990. Soquel Lagoon Management and Enhancement Plan. Prepared for the City of Capitola and California Coastal Conservancy by the Habitat Restoration Group.

Alley, D.W. 1992a. Monitoring Report, 1991-1992, Lagoon Water Quality for Fish, Streamflow Measurements and Sandbar Conditions in San Simeon Creek, San Luis Obispo County, California. Prepared for Cambria Community Services District by D.W. ALLEY & Associates.

Alley, D.W. 1992b. Soquel Creek Lagoon Monitoring Report, 1990- 91. Prepared for the City of Capitola by D.W. ALLEY & Associates.

Alley, D.W. 1993a. Monitoring Report, 1992-93. Lagoon Water Quality for Fish, Streamflow Measurements, Fish Sampling and Passage Conditions in San Simeon and Santa Rosa Creeks, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 1993b. Passage requirements for Steelhead in Santa Rosa Creek, San Luis Obispo County, California, 1993. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 1993c. Soquel Creek Lagoon Monitoring Report, 1992. Prepared for the City of Capitola by D.W. ALLEY & Associates.

Alley, D.W. 1994. Soquel Creek Lagoon Monitoring Report, 1993. Prepared for the City of Capitola by D.W. ALLEY & Associates.

Alley, D.W. 1995a. Determination of Juvenile Steelhead Densities in Santa Rosa and San Simeon Creeks, with Estimates of Returning Adult Steelhead, San Luis Obispo County, California, September 1994. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 1995b. Monitoring Report, 1993-1994, Lagoon Water Quality for Fish, Streamflow Measurements, Fish Sampling and Passage Conditions in San Simeon and Santa Rosa Creeks, San Luis Obispo County, California. Prepared for Cambria Community Services District by D.W. ALLEY & Associates.

Alley, D.W. 1995c. Comparison of Juvenile Steelhead Densities in 1981 and 1994 with Estimates of Total Numbers of Mainstem Juveniles and Expected Numbers of Adults Returning to the San Lorenzo River, Soquel Creek and Corralitos Creek, Santa Cruz County, California. Prepared for the Soquel Creek Water District, City of Santa Cruz Water Department, City of Watsonville Water Department, Lompico County Water District, and the San Lorenzo Valley Water District.

Alley, D.W.1996a. Comparison of Juvenile Steelhead Densities in 1994-95 in Santa Rosa and San Simeon Creeks, With Estimates of Juvenile Population Sizes and Expected Adult Returns from that Production, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 1997. Comparison of Juvenile Steelhead Densities in 1994-96 in Santa Rosa and San Simeon Creeks, With Estimates of Juvenile Population Sizes and Expected Adult Returns from that Production, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 1998a. Comparison of Juvenile Steelhead Densities in 1994-97 in Santa Rosa Creek, San Luis Obispo County, California, With Estimates of Juvenile Population Size and Estimated Adult Returns from Juvenile Production. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 1998b. Determination of Juvenile Steelhead Densities in Soquel Creek, Santa Cruz County, California; With a 1997 Estimate of Juvenile Production and Expected Adult Returns. Prepared for the Soquel Creek Water District by D.W. ALLEY & Associates.

Alley, D.W. 1999a. Comparison of Juvenile Steelhead Densities in 1994-98 in Santa Rosa Creek, San Luis Obispo County, California, With Estimates of Juvenile Population Size and an Index of Adult Returns from Juvenile Production. Prepared by D.W. ALLEY & Associates for Cambria Community Services District.

Alley, D.W. 1999b. Soquel Creek Lagoon Monitoring Report, 1998. Prepared for the City of Capitola by D.W. ALLEY & Associates.

Alley, D.W. 1999c. Comparison of Juvenile Steelhead Densities, Population Estimates and Habitat Conditions in Soquel Creek, Santa Cruz County California, 1997 and 1998; With an Index of Expected Adult Returns. Prepared for the Soquel Creek Water District by D.W. ALLEY & Associates.

Alley, D.W. 2000a. Trends in Juvenile Steelhead Production in 1994-1999 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2001a. Trends in Juvenile Steelhead Production in 1994-2000 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2001b. Monitoring Results for Lower San Simeon and Santa Rosa Creeks in 1997-99; Water Quality in Lagoons, Lagoon In-flow and Fishery Resources in Lagoons, Immediately Upstream and in Van Gordon Creek, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2002a. Trends in Juvenile Steelhead Production in 1994-2001 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2002b. Soquel Creek Lagoon Monitoring Report, 2001. Prepared for the City of Capitola by D.W. ALLEY & Associates.

Alley, D.W. 2002c. Comparison of Juvenile Steelhead Densities, Population Estimates and Habitat Conditions in Soquel Creek, Santa Cruz County California, 1997 through 2001; With an Index of Expected Adult Returns. Prepared for the Soquel Creek Water District by D.W. ALLEY & Associates.

Alley, D.W. 2002d. Comparisons of Juvenile Steelhead Densities, Population Estimates and Habitat Conditions for the San Lorenzo River, Santa Cruz County, California, 1994-2001; with an Index of Predicted Adult Returns. Prepared for the San Lorenzo Valley Water District, the Santa Cruz City Water Department and the National Marine Fisheries Service.

Alley, D.W. 2003a. Trends in Juvenile Steelhead Production in 1994-2002 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2003b. Monitoring Results for Lower San Simeon and Santa Rosa Creeks in 2000-2001; Water Quality in Lagoons, Lagoon In-flow and Fishery Resources in Lagoons and Immediately Upstream, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2004a. Trends in Juvenile Steelhead Production in 1994-2003 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2004b. Monitoring Results for Lower San Simeon and Santa Rosa Creeks, 2002-2003: Water Quality in Lagoons, Lagoon Inflow and Fishery Resources in Lagoons and Immediately Upstream, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2005. Trends in Juvenile Steelhead Production in 1994-2004 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2006a. Trends in Juvenile Steelhead Production in 1994-2005 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2006b. Monitoring Results for Lower San Simeon and Santa Rosa Creeks, 2004-2005: Lagoon Water Quality, Fishery Resources and Inflow Near Cambria, San Luis Obispo County, California. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2006c. Comparison of Juvenile Steelhead Densities, 1997-2001 and 2003-2005, In the Middle and Upper San Lorenzo river and 5 Tributaries, Santa Cruz County, California; With an Index of the Juvenile Population Size and Adult Returns. Prepared by D.W. ALLEY & Associates for the San Lorenzo Valley Water District and Santa Cruz County.

Alley, D.W. 2006d. Comparison of Juvenile Steelhead Densities, Population Indices and Habitat Conditions in Soquel Creek, Santa Cruz county, California, 1997-2005; With an Index of Expected Adult Returns. Prepared by D.W. ALLEY & Associates for the Soquel Creek Water District, City of Capitola and Santa Cruz County.

Alley, D.W. 2007a. Trends in Juvenile Steelhead Production in 1994-2006 for Santa Rosa Creek, San Luis Obispo County, California, with Habitat Analysis and an Index of Adult Returns. Prepared by D.W. ALLEY & Associates for Cambria CSD.

Alley, D.W. 2007b. 2006 Juvenile Steelhead Densities in the San Lorenzo, Soquel, Aptos and Corralitos Watersheds, Santa Cruz County, California. Prepared by D.W. ALLEY & Associates for Santa Cruz County Environmental Health Department.

Alley, D.W. 2008a. 2007 Juvenile Steelhead Distribution and Population Estimate for the San Luis Obispo Creek Watershed, San Luis Obispo County, California.

Alley, D.W. 2008b. 2007 Juvenile Steelhead Densities in the San Lorenzo, Soquel, Aptos and Corralitos Watersheds, Santa Cruz County, California. Prepared by D.W. ALLEY & Associates for Santa Cruz County Environmental Health Department.

Alley, D.W. 2008c. Soquel Creek Lagoon Monitoring Report, 2007. Prepared by D.W. ALLEY & Associates for the City of Capitola.

Alley, D.W., J. Dvorsky, J. Ricker, K. Schroeder and J.J. Smith. 2004. San Lorenzo River Enhancement Plan. Prepared for Santa Cruz County by D.W.ALLEY & Associates and Swanson Hydrology and Geomorphology.

Bailey, R. 1973. An Estimate of Standing Crop of Steelhead Trout, Santa Rosa Creek, San Luis Obispo County, California. Natural Resources Management Department, California Polytechnic State University, San Luis Obispo. 23pp.

Baker, P. 1998. Compiler. Draft Strategic Plan for Restoration of the endangered coho salmon south of San Francisco Bay. Dept. Fish and Game.

Baltz, D.M., B. Vondracek, L. R. Brown, and P.B. Moyle. 1987. Influence of temperature on microhabitat choice by fishes in a California stream. Trans. Am. Fish. Soc. 116:12-20. (Cited in Moyle 2002).

Beamish, F.W.H. 1964. Respiration of fishes with special emphasis on standard oxygen consumption. VI. Influence of weight and temperature on respiration of several species. Canadian Journal of Zoology, 42:177-188.

Beamish, F.W.H. 1970. Oxygen consumption of largemouth bass (*Micropterus salmoides*) in relation to swimming speed and temperature. Canadian Journal of Zoology, 48:1221-1228.

Bjornn, T.C. 1969. Embryo survival and emergence studies. Salmon and Steelhead Investigations, Job Completion Report, Project F-49-R-7. Idaho Department of Fish and Game, Boise, Idaho. (Cited in Bratovich and Kelley 1988).

Bond, Morgan H. 2006. The importance of estuarine rearing to central California steelhead (*Oncorhynchus mykiss*) growth and marine survival. Master's Thesis. University of California, Santa Cruz.

Bratovich, P.M. and D.W. Kelley. 1988. Investigations of salmon and steelhead in Lagunitas Creek, Marin Count, California. Volume I. Migration, spawning, embryo incubation and emergence, juvenile rearing and emigration. Preared for the Marin Municipal Water District. Prepared by D.W. KELLEY & Associates.

Brett, J.R. 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol. 31: 75-87. (Cited by Kubicek and Price 1976).

Brett, J.R. 1959. Thermal requirements of fish – three decades of study, 1940-1970. <u>In</u>: Biological problems in Water Pollution. USPHS Tech. Rept. W60-3, 110 Cincinnati, Ohio. pp. 110-117. (Cited by Kubicek and Price 1976).

Brown, G.W. 1991. Forestry and Water Quality. Published by Oregon State University Book Stores, Inc. Corvallis Oregon. Second Edition.

Bustard, D.R. and D.W. Narver. 1975. Aspects of the Winter Ecology of Juvenile Coho Salmon (*Oncorhynchus kisutch*) and Steelhead Trout (*Salmo gairdneri*). J. Fish. Res. Board Can. 32:667-680.

California Department of Fish and Game. 1996. Steelhead Restoration and Management Plan for California. 234pp.

California Department of Water Resources. 1958. San Luis Obispo County Investigation. Bulletin 18. 288 pp.

California Department of Water Resources. 1975. Sea-water Intrusion in California: Inventory of Coastal Ground Water Basins. Bulletin 63-5.

Cech, Joseph. 1993. Personal Communication. Fish Physiologist and Professor. University of California, Davis, CA. Phone # (916) 752-3103.

Charlon, N., B. Barbier and L. Bonnet. 1970. Resistance de la truite arc-en-ciel (*Salmo gairdneri* Richardson) a des variations brusques de temperature. Ann. Hydrobiol. 1: 73-89. (Cited by Kubicek and Price 1976).

Cleveland, G.B. 1980. Drought and ground deformation, Cambria, San Luis Obispo County, California: California Geology, v. 32, no. 2, pages 29-35. (Cited by Yates and Van Konyenburg 1998).

Coche, A.G. 1967. Production of juvenile steelhead trout in a freshwater impoundment. Ecol. Monographs 37: 201-228. (Cited by Kubicek and Price 1976).

Davis, L. 1995. Age Determination of Steelhead Trout (*Oncorhynchus mykiss*) in Microhabitats of a Small Central California Coastal Stream, Using Otolith Microstructural Analysis. Master's Thesis. San Jose State University.

Dean, T.L. and J. Richardson. 1999. Responses of seven species of native freshwater fish and a shrimp at low levels of dissolved oxygen. New Zealand Journal of Marine and Freshwater Research, Vol. 33:99-106. 0028-8330/99/3301-0099.

Dettman D.H. and D.W. Kelley. 1984. Investigations of Alternative Water Development Projects on Soquel Creek Progress Report 1982-83. Prepared for the Soquel Creek Water District.

Dettman, David. 1993. Personal Communication. Fisheries Biologist. Monterey Peninsula Water Management District, Monterey, CA. Phone # (831) 336-8290.

Dettman, David. 2003. Personal Communication. Fisheries Biologist. Monterey Peninsula Water Management District, Monterey, CA. Phone # (831) 336-8290.

Dickson, I.W. and R.H. Kramer. 1971. Factors influencing scope for activity and active and standard metabolism of rainbow trout (<u>Salmo gairdneri</u>). J. Fish. Res. Bd. Can. 28: 587-596. (Cited by Kubicek and Price 1976).

Emmett, R.L., S.A. Hinton, S.L. Stone and M.E. Monaco. 1991. Distribution and abundance of fishes and invertebrates in west coast estuaries, vol. 2: Species life history summaries. Rockville Md.: NOAA/NOS Strategic Env. Assess. Div. ELMR Rpt. 8. 329 pp. (Cited in Moyle 2002.)

Erman, D.C., J.D. Newbold and K.B. Roby. 1977. Evaluation of streamside buffer strips for protecting aquatic organisms. Contribution 48. Davis, CA: California Water Resources Center, University of California.

FEMAT (Forest Ecosystem Management Assessment Team). 1993. Forest ecosystem management: an ecological, economic, and social assessment. Report of the Forest Ecosystem Management Assessment Team. 1993-793-071. U.S. Government Printing Office.

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey and B. Collins. 1998. <u>California</u> <u>Salmonid Stream Habitat Restoration Manual</u>, 3rd ed. State of California Resources Agency, California Department of Fish and Game.

Fry, F.E.J., J.S. Hart, and K.F. Walker. 1946. Lethal temperature relations for a sample of young speckled trout (*Salvelinus fontinalis*). Univ. Tornoto Stud. Biol., Ser. 54. Ontario Fish. Res. Lab. 66: 1-35. (Cited by Kubicek and Price 1976).

Fry, F.E.J. 1947. Effects of the environment on animal activity. Univ. Toronto Studies, Ontario Fish. Res. Lab., Biol. Ser., no. 55, pp. 1-62.

Hall, J.D. and R.L. Lantz. 1969. Effects of logging on the habitat of coho salmon and cutthroat trout in coastal streams. Pages 355-375. In: Institute of Fisheries, Univ. of British Columbia, Vancouver, British Columbia, Canada. (Cited in Bratovich and Kelley 1988).

Hayes, S. A., M. H. Bond, C. V. Hanson, E. V. Freund, J. J. Smith, E. C. Anderson, A. J. Ammann and R. B. MacFarlane. 2008. Steelhead growth in a small central California watershed: upstream and estuarine rearing patterns. Trans. Amer. Fish. Soc. 137: 114-128.

Hayes, S. A. 2008. Personal Communication. NOAA Fisheries Service. Southwest Fisheries Science Center. Santa Cruz Laboratory.

Hokanson, K.E.F., C.F. Kleiner and T.W. Thorslund. 1977. Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmon Gairdneri. J. Fish. Res. Board Can. 34:639-648. (Cited in Santa Ynez River Technical Advisory Committee 2000).

Kelley D.W., D.H. Dettman, S.K. Li and W.C. Fields, Jr. 1981. Lower Soquel Creek Instream Flow Requirements and Fish Screen and Ladder Layout for Proposed Diversion. Prepared for the Soquel Creek County Water District.

Kelley, D.W., D.H. Dettman, and J.E. Rueter. 1987. Preservation of the Carmel River Steelhead Run with Fish Passage Facilities over San Clemente Dam or with a Hatchery Near Its Base. Prepared for the Monterey Peninsula Water Management District.

Kondolf, G. M., R. Kattelmann, M. Embury and D.C. Erman. 1996. Status of riparian habitat. In: Sierra Nevada Ecosystem Project: Final report to Congress, vol. II, Assessments and scientific basis for management options. Wildland Resources Center Report no. 37. Davis, CA: University of California, Centers for Water and Wildland Resources; 1000-1030.

Kubicek, P.F. and D.G. Price. 1976. An evaluation of water temperature and its effect on juvenile steelhead trout in geothermally active areas of Big Sulphur Creek. Pacific Gas and Electric Company Department of Engineering Research.

Leicester M. 2002. Distribution, species composition and abundance of trees and large woody debris adjacent to and within Gazos Creek. San Jose State University. (Unpublished report).

Leicester, M. 2002. Distribution, species composition and abundance of trees and large woody debris adjacent to and within Soquel Creek. (Unpublished report).

Love, R.M. 1970. <u>The Chemical Biology of Fishes</u>. Academic Press Inc. New York. SBN: 12-455850. Library of Congress no. 72-92397. 547pp.

Mantelman, I.I. 1958. Distribution of the young of certain species of fish in temperature gradients. Fish Res. Bd. Can. Transl. Ser. No. 257. 67 pp. (1960). (Cited by Kubicek and Price 1976).

McAfee, W.R. 1966. Rainbow trout. In: Inland Fisheries Management. A. Calhoun (ed.). Calif. Dept. Fish and Game. 546 pp. (Cited by Kubicek and Price 1976).

Michisaki, R., J.T. Pennington, C. Castro, and F.P. Chavez. 2001. El Nino and La Nina Across the Central California Coastal Upwelling Zone: Physics, Nutrients and Effects on Phytoplankton. Monterey Bay National Marine Sanctuary Symposium, 2001.

Moyle, P.B. 1976. <u>Inland Fishes of California</u>. Univ. of Calif. Press. Berkeley and Los Angeles, California. ISBN: 0-520- 02975-5. Library of Congress no. 75-3776.

Moyle, P.B. J.J. Smith, R.A. Daniels, T.L. Taylor, D.G. Price and D.M. Baltz. 1982. Distribution and Ecology of Stream Fishes of the Sacramento-San Joaquin Drainage System, California. University of California Press, Berkeley, Los Angeles and London. Zoology Vol. 115. ISBN:0-520-09650-9. Library of Congress no. 81-13072.

Moyle, P.B. 2002. Inland Fishes of California. Revised and Expanded. Univ. of Calif. Press. Berkeley, Los Angeles and London. ISBN: 0-520- 22754-9.

Murphy, M.L. and J.D. Hall. 1981. Varied effects of clear-cut logging on predators and their habitat in small streams of the Cascade Mountains, OR. Canadian Journal of Fisheries and Aquatic Sciences 38: 137-145. (Cited in Reid and Hilton 1998.)

Naiman, R.J. and J.R. Sedell. 1979. Relationships between metabolic parameters and stream order in Oregon. Canadian Journal of Fisheries and Aquatic Sciences 37: 834-847. (Cited in Reid and Hilton 1998.)

Nelson, Jennifer. 1993. Personal Communication. Salmon and Steelhead Biologist. Calif. Dept. Fish and Game, Monterey, CA. Phone # (831) 688-6768.

Nelson, Jennifer. 1994. Summary of Steelhead Population and Habitat Sampling in Santa Rosa Creek, San Luis Obispo County, 1993.

Nikolsky, G.V. 1963. <u>The Ecology of Fishes</u>. Academic Press. New York. SBN: 12-519750-0. Library of Congress no. 62-18582. 352pp.

Phillips, R.W., R.L. Lantz, E.W. Claire and J.R. Moring. 1975. Some effects of gravel mixtures on emergence of coho salmon and steelhead trout fry. Trans. of the Amer. Fish. Society 104(3): 461-466. (Cited in Bratovich and Kelley 1988).

Price D.G., R.E. Geary and D.R. Longanecker. 1978. Geysers Unit 18 Site Specific Studies, Fisheries Resources and Water Temperature Characteristics. Pacific Gas and Electric Company. Report 420-78.121

Questa Engineering Corporation. 2005. Hydrologic and Hydraulic Analysis for FEMA CLOMR Application. Cambria, California. Prepared for County of San Luis Obispo Public Works. Questa Flooding 98237-CLOMR-report.

Robert Bein, William Frost & Assocaites. 2008. Draft Program-Level Environmental Impact Report for the CCSD Water Master Plan. Prepared for the Cambria Community Services District.

Reid, L.M. and S. Hilton. 1998. Buffering the buffer. USDA Forest Service Gen. Tech. Rep. PSW-GTR-168.

Santa Ynez River Technical Advisory Committee (SYRTAC). 2000. Lower Santa Ynez River Fish Management Plan. Volume II Appendices. *Prepared for* Santa Ynez River Consensus Committee. *Prepared by* Santa Ynez River Technical Advisory Committee. October 2, 2000.

Shapovalov, L. and A. Taft. 1954. The Life Histories of Steelhead, Rainbow Trout and Silver Salmon. Calif. Dept. Fish and Game. Fish Bulletin No. 98. 375 pp.

Shirazi, M.A., W.K. Seim and D.H. Lewis. 1981. Characterization of spawning gravel and stream system evaluation. Pages 227-278. <u>In</u>: State of Washington Water Research Center, editor. Salmon spawning gravel: A Renewable Resource in the Pacific Northwest. Report 39, State of Washington Water Research Center, Washington State Univ., Pullman, Wash. (Cited in Bratovich and Kelley 1988).

Singer S. and M. Swanson. 1983. Soquel Creek Storm Damage Recovery Plan. In cooperation with the Santa Cruz County Resource Conservation District. Prepared for the U.S. Soil Conservation Service.

Smith J.J. 1982a. Fishes of the Pajaro River System. In P.B. Moyle (ed.) Studies on the distribution and ecology of stream fishes of the Sacramento-San Joaquin drainage system, California. University of California Publications in Zoology 115: 83-169.

Smith, J.J. 1982b. Fish Habitat Assessments for Santa Cruz County Streams. Prepared for Santa Cruz County Planning Department.

Smith, J.J. and H.W. Li. 1983. Energetic factors influencing foraging tactics of juvenile steelhead trout (*Salmo gairdneri*). D.L.G. Noakes et al. (4 editors). In: <u>The Predators and Prey in Fishes</u>. Dr. W. Junk publishers, The Hague. pages 173-180.

Smith, J.J. 1984. Liddell Creek and San Vicente/Mill Creek Watershed Studies. Report prepared for Lonestar Industries by Harvey and Stanley Associates. Project # 67-02.

Smith, J.J. 1987. Aquatic Habitat and Fish Utilization of Pescadero, San Gregorio, Waddell and Pomponio Creek Estuary/Lagoon Systems. Report prepared under Interagency Agreement 4-823-6004, between Trustees for California State University and the Calif. Dept. of Parks and Recreation.

Smith, J.J. 1990. The Effects of Sandbar Formation and Inflows on Aquatic Habitat and Fish Utilization in Pescadero, San Gregorio, Waddell and Pomponio Creek Estuary/ Lagoon Systems, 1985-1989.

Smith, J.J. 1992. Summary of Trapping Results on Waddell Creek for Department of Biological Sciences, San Jose State University, San Jose, California.

Smith, J.J, 1993. Drought effects on steelhead density, growth and potential smolt production. Western Division American Fisheries Society Conference.

Smith, J.J. 1994a. Abundance of coho and steelhead in Redwood Creek in 1994. Report to Golden Gate National Recreation Area, National Park Service.

Smith, J.J. 1994b. Distribution and Abundance of Juvenile Coho and Steelhead in Gazos, Waddell and Scott Creeks in 1994. Department of Biological Sciences, San Jose State University. In Draft Strategic Plan for Restoration of the Endangered Coho Salmon South of San Francisco Bay. California Dept. Fish and Game. 1998.

Smith, J.J. 1996. Distribution and Abundance of Juvenile Coho and Steelhead in Gazos, Waddell and Scott Creeks in 1996. Department of Biological Sciences, San Jose State University. (Unpublished report).

Smith, J.J. 2000. Appendix A. Habitat consequences of large wood input in 1998 on Scott, Waddell and Gazos creeks. <u>In</u>: Site stability and habitat assessment following high flows in water year 2000, and habitat restoration recommendations for Gazos Creek, San Mateo County. Prepared for the County of San Mateo Department of Public Works by Entrix Inc.

Smith, J.J. 2001. Distribution and Abundance of Juvenile Coho and Steelhead in Gazos, Waddell and Scott Creeks in 2000. Department of Biological Sciences, San Jose State University. (Unpublished report).

Smith, J.J. 2002. Distribution and Abundance of Juvenile Coho and Steelhead in Gazos, Waddell and Scott Creeks in 2001. Department of Biological Sciences, San Jose State University. (Unpublished report).

Smith, J.J. 2003. Memorandum Regarding Optimum Temperature for Steelhead and Coho. Provided to D.W. ALLEY & Associates.

Smith, J.J. 2008. Scale analysis for steelhead from Santa Rosa Creek, San Luis Obispo County, October 2006. (Unpublished report).

Snyder, G.R. and T.H. Blahm. 1971. Effects of increased temperature on cold water organisms. J. Water Poll. Control Fed. 43: 890-899. (Cited by Kubicek et al. 1976).

Spence, B.C., G.A. Lomnicky, R.M. Hughes and P. Novitzki. 1996. An ecosystem approach to salmonid conservation. TR-4501-96-6057. Corvallis, OR: ManTech Environmental Research Services Corporation.

Swanston, D.N. and F.J. Swanson. 1976. Timber Harvesting, Mass Erosion and Steepland Forest Geomorphology in the Pacific Northwest. In Coates, D.R., ed., <u>Geomorphology and Engineering</u>, Dowden, Hutchinson and Ross, Inc. Stroudsburg, PA.

Swift, C.C., J.L. Nelson, C. Maslow and T. Stein. 1989. Biology and Distribution of the Tidewater Goby, *Eucyclogobius Newberryi* (Pisces: Gobiidae) of California. Contributions to Science. No. 404. pages 1-19. Natural History Museum of Los Angeles County.

Thuer, F.D., I. Lines, and T. Nelson. 1985. Interaction between riparian vegetation, water temperature and salmonid habitat in the Tucannon River. Water Resources Bulletin 21(1):53-64. (Cited in Reid and Hilton 1998.)

USDA and USDI (United States Department of Agriculture and United States Department of the Interior). 1994. Record of Decision for amendments to Forest Service and Bureau of Land Management planning documents within the range of the northern spotted owl; Standards and Guidelines for management of habitat for late-successional and old-growth forest related species within the range of the northern spotted owl. 1994-589-111/00001. Region 10: U.S. Government Printing Office.

USEPA. 1986. Ambient water quality criteria for dissolved oxygen. United States Environmental Protection Agency Publication. EPA 440/5-86-003. 46 pp.

Yates, E.B. and K.M. Van Konyenburg. 1998. Hydrogeology, Water Quality, Water Budgets, and Simulated Responses to Hydrologic Changes in Santa Rosa and San Simeon Creek Ground-Water Basins, San Luis Obispo County, California. U.S. Geological Survey. Water-Resources Investigations Report 98-4061.

Zimmerman, R.C., Goodlett, J.C. and Comer, G.H. 1967. The influence of vegetation on channel form of small streams. International Association of Hydrological Sciences Publication 75:255-275. (Cited in Reid and Hilton 1998.)

APPENDIX M

NORTH COAST AREA PLAN ENVIRONMENTAL GOALS

County of San Luis Obispo (revised, 2008)

NORTH COAST AREA PLAN ENVIRONMENTAL GOALS

Environmental goals defined in the North Coast Area Plan (revised, 2008) are to maintain and protect a living environment that is safe, healthful and pleasant for all residents by:

- Assuring the protection of coastal resources such as wetlands, coastal streams, forests, marine habitats, and wildlife, including threatened and endangered species.
- Conserving nonrenewable resources and replenishing renewable resources.
- Balancing the capacity for growth allowed by the Area Plan with the sustained availability of resources.
- Avoiding or mitigating to the maximum extent feasible, any adverse impacts from development using the best available methods.
- Preserving and protecting the air quality by seeking to attain and maintain state and federal ambient air quality standards by determining, and mitigating where feasible, potential adverse air quality impacts of new residential, commercial, and recreational development.
- Preserving and protecting water quality by avoiding and mitigating, potential adverse water quality impacts of new residential, commercial, and recreational development, among other ways through the implementation of low impact site designs that protect natural drainage courses, maximize opportunities for on-site percolation or detention and reuse of stormwater, and treat and filter runoff as necessary to remove sediments and contaminants.
- Supporting the efforts of the Monterey Bay National Marine Sanctuary, or future local marine sanctuaries.
- Protecting cultural, archaeological, and paleontological resources.
- Avoiding new development in hazardous areas and, where feasible, removing development threatened by hazards.

Other general goals in the North Coast Area Plan (2007) that relate to the goals of the Santa Rosa Creek Watershed Conservation Plan (Conservation Plan) include:

- <u>Orderly Development</u>-Establish a growth rate consistent with the protection of coastal resources.
- <u>Residential Design in Cambria</u>- Preserve the native forest ecosystem; maximize onsitepercoloation of stormwater, or detention and reuse of stormwater; and provide adequate setbacks and open space to implement water best management practices both during and after construction.
- <u>Parking and Access</u> Minimize impervious surfaces and hardscapes.
- <u>Landscape Design</u> Renew the urban forest and use California Central Coast native plants and drought and fire-resistant vegetation.
- <u>Public Services, Parks and Facilities</u> Plan new development using Management Systems and Growth Management Strategies to ensure resource demands do not exceed existing and planned capacities.

- <u>Open Space</u> Encourage collaboration among governmental agencies, landowners, and non-profit organizations for the preservation of open space.
- <u>Resource Use and Energy Conservation</u> Recognize the impacts of land use and water consumption activities that are inappropriate for semi-arid climates.

"North Coast Rural Land Use" category standards significant to the Conservation Plan include:

- <u>Site Design and Building Construction</u> New development shall not be visible from State Highway 1. Development shall be on moderately sloped terrain, leaving steep slopes visible from public roads undeveloped.
- <u>Building Height</u> Structures on the east side of State Highway 1 cannot exceed 22 feet, unless a maximum height exceeding this level is required to meet a specific building standard.

Standards applied to all lands within the Cambria Urban Reserve Line that are of importance to the Conservation Plan include:

• <u>Marine Habitat Protection – Projects with Point-Source Discharge – Water Quality</u> <u>Enhancement</u> – In-stream habitat for sensitive species including steelhead, red-legged frog, and tidewater goby, cannot be affected by water temperature and quality at discharge locations.

Standards applied to land use categories in and adjacent to Santa Rosa Creek and are significant to this Conservation Plan include:

- <u>Biological Viability</u> Proposed development must maintain Santa Rosa Creek's ecologic viability.
- <u>Channelization or Filling in Floodways</u> Channelization or filling of the channel or floodplain is prohibited unless action is consistent with Coastal Act Section 30236.
- <u>Creek Setbacks and Habitat Protection</u> A 100 foot buffer between the upland edge of riparian vegetation and new development must be maintained unless consistent with the Coastal Zone Land Use Ordinance Section 23.07.174d.2. Recreational trails cannot be constructed within riparian vegetation.
- <u>Limitations on Residential Construction</u> No more than 125 residential building permits will be issued each year.
- <u>Limitations on Development Supplemental Water Supply Standards Creek</u> <u>Withdraws</u>- Services District water withdraws from the Santa Rosa Creek and San Simeon Creek must maintain a level to protect adequate in-stream flows for sensitive species and riparian/wetland habitats; groundwater aquifers; and agricultural resources.

APPENDIX N

CAMBRIA COMMUNITY SERVICES DISTRICT CALIFORNIA MUNICIPAL CODE

Edited with supplementation by Matthew Bender & Company, Inc., 2004 (Downloaded online: http://www.municode.com/resources/gateway.asp?pid=16102&sid=5)

CAMBRIA COMMUNITY SERVICES DISTRICT CALIFORNIA MUNICIPAL CODE

<u>Chapter 4.08: Waste of Water</u> – Eliminate waste of potable water within district boundaries and encourage the use of nonpotable water for activities such as irrigation and construction. Water waste is defined as any of the following activities:

1. The watering of grass, lawns, ground-cover, shrubbery, open ground, crops and trees herein after collectively called "landscape or other irrigation," in a manner or to an extent which allows excess water to run-off the area being watered. Every water user is deemed to have under his or her control at all times his or her water distribution lines and facilities and to know the manner and extent of his or her water use and excess run-off;

2. The watering of grass, lawns, ground-cover, shrubbery, open ground, crops or trees or other irrigation within any portion of the district in violation of the following schedule and procedures:

- a. Watering shall be accomplished with a person in attendance;
- b. Watering shall not take place between the hours of ten a.m. and six p.m.; and

c. Watering shall be limited to the amount of water necessary to maintain landscaping.

3. The washing of sidewalks, walkways, driveways, parking lots, windows, buildings and all other hard-surfaced areas by direct hosing;

4. The escape of water through breaks or leaks within the water user's plumbing or distribution system for any substantial period of time within which such break or leak should reasonably have been discovered and corrected. Water must be shut off within two hours after the water user discovers such leak or break, or receives notice from the district of such leak or break, which ever occurs first. Such leak or break shall be corrected within an additional six hours;

5. The serving of water to customers by any eating establishment except when specifically requested;

6. Except as approved in advance in writing by the general manager of the district, the use of water by governmental entities or agencies for: (1) routine water system flushing for normal maintenance, (2) routine sewer system flushing for normal maintenance, and (3) fire personnel training;

7. Washing vehicles by use of an unrestrained hose. Use of a bucket for washing a vehicle and rinsing with a hose with a shutoff at the point of release is permitted subject to non-wasteful applications. Vehicle is defined as any mechanized form of transportation including, but not limited to, passenger cars, trucks, recreational vehicles (RVs), campers, all terrain vehicles (ATVs), motorcycles, boats, jet skis, and off-road vehicles;

8. Use of potable water from the district's water supply system for compacting or dust control purposes;

9. Using unmetered water from any fire hydrant, except as required for fire suppression;

10. It is unlawful for any consumer to remove, replace, alter or damage any water meter or components thereof.

<u>Chapter 4.12: Emergency Water Conservation Program</u> – Provide the structure where the board of directors may restrict water use when water demands necessitate water conservation strategies.

<u>Stage 1 Water Conservation Program – Drought Watch Condition:</u> Reduce consumption through voluntary actions by seven percent. A drought watch condition may be declared and the Stage 1 water conservation program may be placed into effect using the procedures set forth in Section 4.12.060, under any of the following circumstances:

1. If, at any time, the results of the water supply and demand model indicate that groundwater levels may be insufficient to meet the ordinary demands and requirements of the water consumers;

2. Once seasonal streamflow in San Simeon Creek ceases to flow to the Pacific Ocean, if the results of the water supply and demand model indicate that groundwater levels may be insufficient to meet the ordinary demands and requirements of the water consumers; or

3. If, at any time, water delivery capabilities are impaired such that the water supply or delivery system is incapable of meeting the ordinary demands and requirements of the water consumers.

Stage 2 Water Conservation Program – Water Shortage Condition:

Reduce water consumption by 15 percent. A water shortage condition may be declared and the Stage 2 water conservation program may be placed into effect using the procedures set forth in Section 4.12.060, under any of the following circumstances:

1. If, at any time, results of the water supply and demand model indicate groundwater levels will be insufficient to meet ninety-three (93) percent of the ordinary demands and requirements of the water consumers; or

2. If, at any time, water delivery capabilities are impaired such that the water supply or delivery system is incapable of meeting ninety-three (93) percent of the ordinary demands and requirements of the water consumers.

<u>Stage 3 Water Conservation Plan – Water Shortage Emergency Condition</u>: Conserve water supply for human consumption, fire protection, and sanitation. A Stage 3 water shortage emergency condition may be declared using the procedures set forth in Section 4.12.060, under any of the following circumstances:

1. If, at any time, results of the water supply and demand model indicate groundwater levels will be insufficient to provide water for human consumption, sanitation and fire protection; or

2. If, at any time, water delivery capabilities are impaired such that the water supply or delivery system is incapable of providing sufficient water for human consumption, sanitation and fire protection; or

3. If, at any time, the board of directors finds and determines that the ordinary demands and requirements of water consumers cannot be satisfied without depleting the water

supply of the district to the extent that there would be insufficient water for human consumption, sanitation and fire protection.

<u>Chapter 4.16: Water Conservation Devices</u> – Reduce the consumption of potable water within the Cambria Community Services District through installations of water-saving plumbing and fixtures and the prohibition of use of high water consumptive devices and fixtures.

All new construction shall be equipped with water conserving fixtures and plumbing exclusively. (Ord. 3-88 § III)

Within 90 days from the supplemented Code chapter's activation, all motels, hotels, recreational vehicle parks, and campgrounds must be retrofitted with water conserving plumbing and fixtures where high water consuming plumbing and fixtures exist. (Ord. 3-88 § IV)

All residential, commercial, industrial, and public authority structures shall be retrofitted with water conserving plumbing and fixtures, if not already so, when a change in ownership occurs. (Ord. $3-88 \$ V)

All residential, commercial, public authority, and industrial reconstruction, remodels or additions that add or change bathroom plumbing fixtures, and/or increase floor area by 20 percent or greater of the existing floor area must have low water-use plumbing fixtures for the entire facility, including retrofitting of existing plumbing fixtures as identified in Section 4.16.030. (Ord. 3-88 § VI)

Prior to the close of escrow, the new owner/applicant must successfully meet the district's inspection to show compliance with retrofit requirements. Prior to the change of use of any commercial, industrial, or public authority buildings, the owner must certify in writing compliance with all plumbing fixture retrofitting requirements to the Cambria Community Services District. (Ord. 6-2005 § 1: amended during 2004 codification; Ord. 3-88 § VII)

APPENDIX O

LAND USE CODE DESCRIPTIONS

Original Land Use Code descriptions provided by the County of San Luis Obispo Assessor's Office

LUC	LAND USE	LAND USE DEFINED
008	Unknown	Unknown
018	Residential	Retired
019	Residential	Water List
020	Residential	Transition Structure
033	Residential	Residual Land Segment
039	Open Space	Open Space Easement
050	Unknown	Misc
051	Residential	Urban Residential
102	Vacant	Urban Vacant
110	Residential	Residential
115	Residential	Residential
130	Residential	Mobile Home
160	Residential	Residential
200	Residential	Vacant Income Residential
201	Residential	Duplex
210	Residential	Apartments
309	Residential	Residence on Commercial
310	Commercial	Retail
321	Commercial	Restaurant
330	Business	Office
331	Business	Office
332	Business	Office
333	Business	Office
338	Business	Office/Condo
361	Commercial	Motel
381	Commercial	Automotive
390	Commercial	Banks
515	Commercial	Mini Storage
520	Industrial	Warehouseing
613	Agriculture	Oranges
650	Graze	Graze
810	Church	Church
854	Recreational	Government/Recreational
857	Government	Government
860	Public Utility	Public Utility
SUB	Residential	Subdivision
	None	None

LAND USE CODE DESCRIPTIONS

APPENDIX P

STREAM RESTORATION MANAGEMENT MEASURES AND PRACTICES

STREAM RESTORATION MANAGEMENT MEASURES AND PRACTICES

The following descriptions and typical drawings provide conceptual guidance for a selection of the stream restoration techniques presented in Section 5 of the report. All of the text and typical drawings were obtained from Environmentally-Sensitive Streambank Stabilization (ESenSS), authored by Salix Applied Earthcare and funded by the National Cooperative Highway Research Program.

Biotechnical Engineering

Coconut Fiber (Coir) Roll **Erosion Control Blankets** Large Woody Debris Structures Live Brushlayering Live Brush Mattress Live Fascine Live Gully Fill Repair Live Pole Drain Live Siltation Live Staking **Turf Reinforcement Mats** Veg. Mech. Stabilized Earth Willow Posts and Poles

Stream Corridor Habitat Improvement

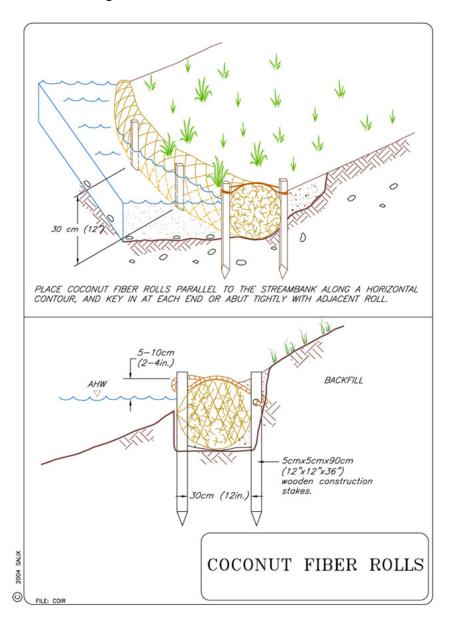
Boulder Clusters Meander Restoration Newbury Rock Riffles **Rootwad Revetment** Vegetated Floodways

River Training Structures

Bendway Weirs Cross Vanes Longitudinal Stone Toe Protection

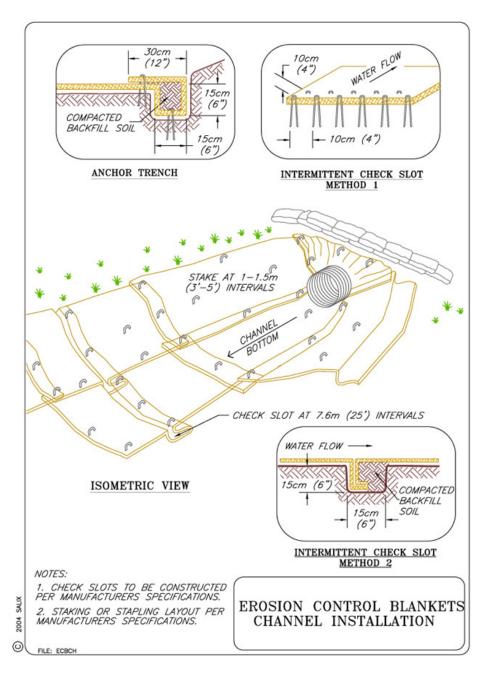
Rock Vanes Rock Vanes with J-Hooks Spur Dikes Stone Weirs

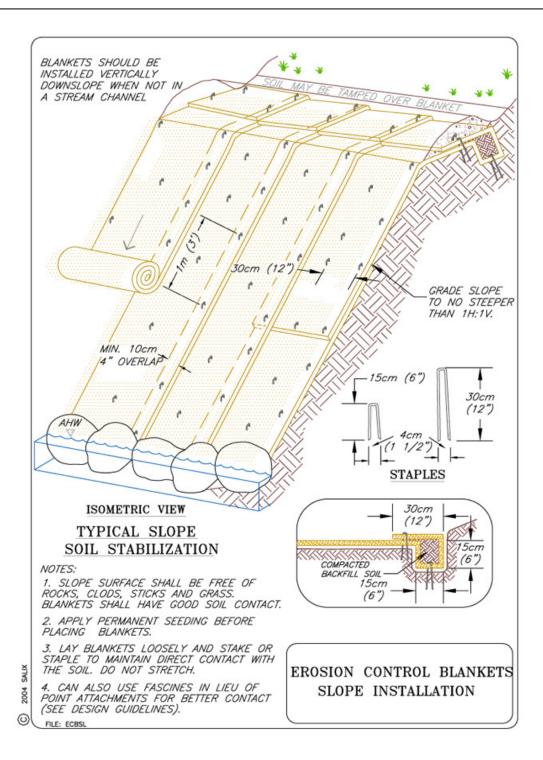
Structural Streambank Stabilization


Cobble or Gravel Armor Geocellular Confinement System Live Cribwall Slope Flattening **Trench Fill Revetment** Vegetated Articulated Concrete Blocks Vegetated Gabions

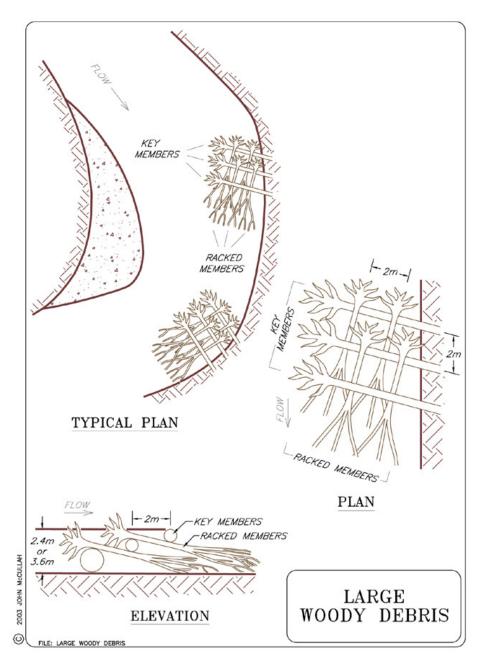
Vegetated Gabions Mattress Vegetated Riprap Stone-Fill trenches

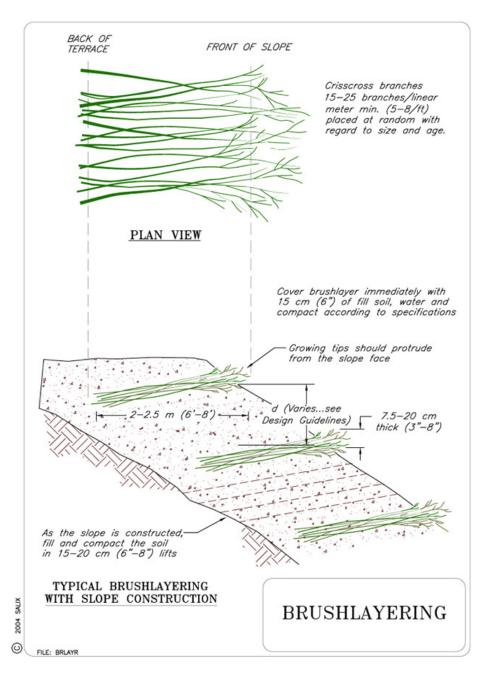
BIOTECHNICAL ENGINEERING


Coconut Fiber Rolls

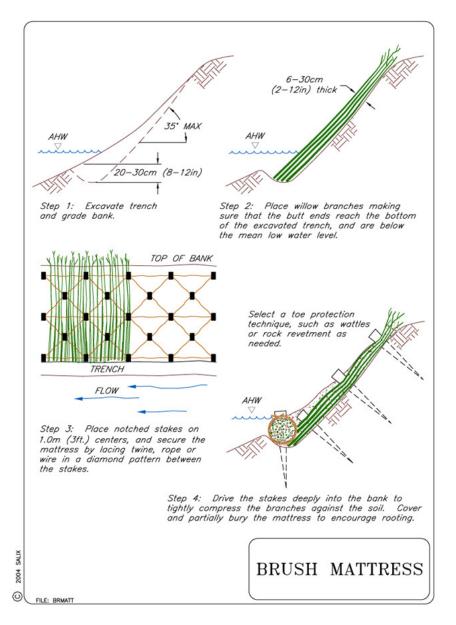

Coconut fiber (coir) rolls are manufactured, elongated cylindrical structures that are placed at the bottom of stream banks to help prevent erosion and scour. The coconut husk fibers are bound together with geotextile netting with 35 cm or 40 cm (12 in or 18 in) diameters and lengths of 6 meters (20 ft). Coir is fairly long-lasting, typically 5-7 years, but must be designed with riparian revegetation to attain permanent solutions. Proper anchoring is critical and generally coir rolls are not recommended for areas with high velocities and shear. Brushlayering and Live Stakes are good candidates for combining with coconut fiber rolls.

Erosion Control Blankets, Channel and Slope Installation

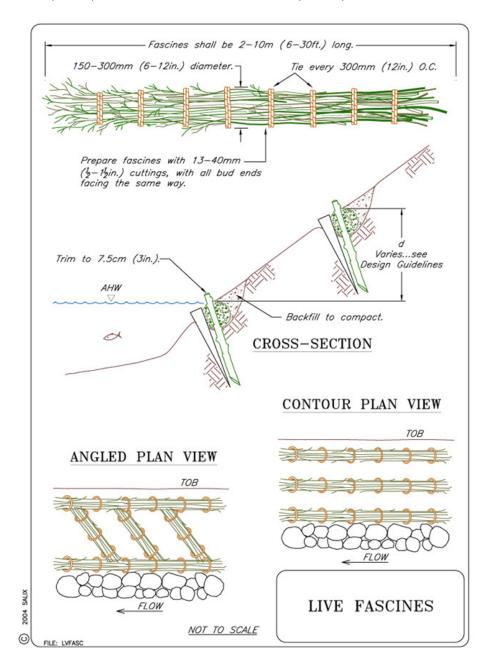

Erosion Control Blankets (ECBs) are a temporary rolled erosion control product consisting of flexible nets or mats, manufactured from both natural and synthetic materials, which can be brought to a site, rolled out, and fastened down on a slope. ECBs are typically manufactured of fibers such as straw, wood, excelsior, coconut, or a combination, and then stitched to or between geosynthetic or woven natural fiber netting. Various grades of biodegradable fibers and netting can be specified depending on required durability and environmental sensitivity.


Large Woody Debris Structures

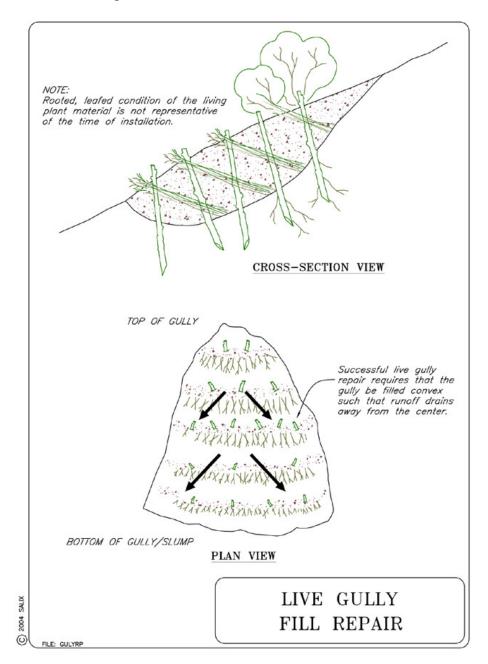
Large woody debris (LWD) structures (aka engineered log jams) made from felled trees may be used to deflect erosive flows and promote sediment deposition at the base of eroding banks. Root wads, consisting of a short section of trunk and attached root bole, can also be used or incorporated into the structures. Using the classical spur design criteria and methods, the placement of LWD can be designed to achieve optimum benefit for both aquatic habitat and bank protection.


Live Brushlayering

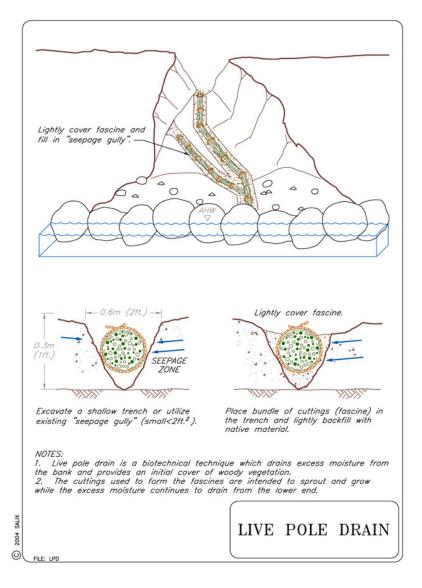
Live brushlayers are rows of live woody cuttings that are layered, alternating with successive lifts of soil fill, to construct a reinforced slope or embankment. Vertical spacing depends on slope gradient and soil conditions. Live Brushlayering provides enhanced geotechnical stability, improved soil drainage, superior erosion control and is one of the most effective ways to establish vegetation from live cuttings. Live brushlayering is an excellent candidate for combining with other streambank stabilization measures.


Live Brush Mattress

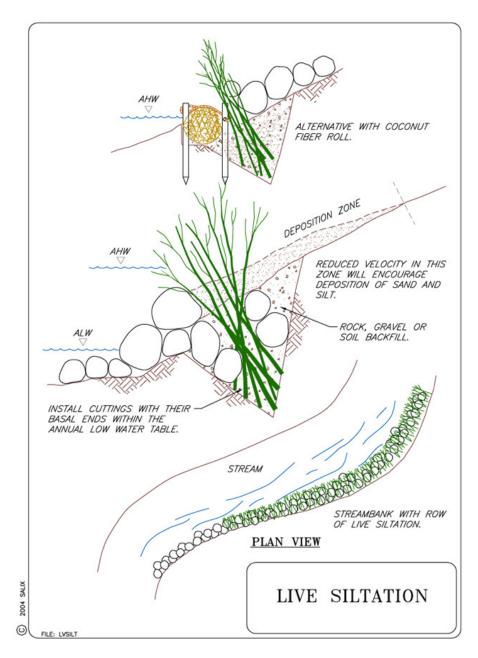
A live brush mattress is a thick blanket (15-30 cm (6-12 in)) of live brushy cuttings and soil fill. The mattresses are usually constructed from live willow branches or other species that easily root from cuttings. Brush mattresses are used to simultaneously revegetate and armor the bank. The dense layer of brush increases roughness, reducing velocities at the bank face, and protecting it from scour, while trapping sediment and providing habitat directly along the waters' edge. Brush mattresses are an excellent candidate for combining with structural techniques such as rock toe protection.


Live Fascines

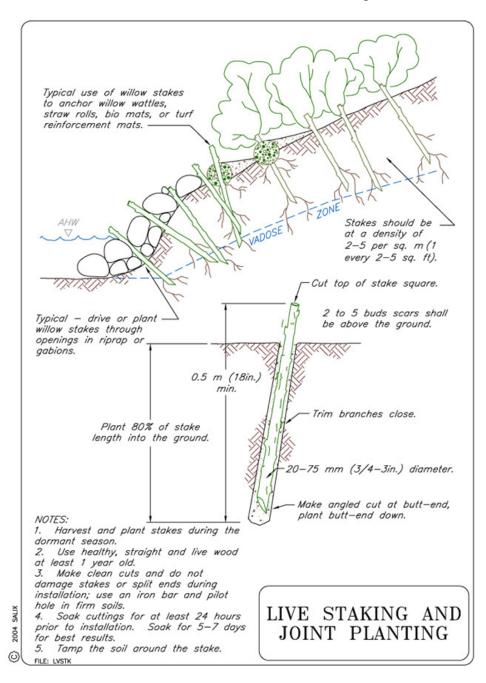
Live fascines are bundles of live (and non-living) branch cuttings placed in long rows in shallow trenches across the slope on contour or at an angle. Fascines are intended to grow vegetatively while the terraces formed will trap sediment and detritus, promoting vegetative establishment. Fascines can be utilized as a resistive measure at the stream edge and for erosion control on long bank slopes above annual high water. Fascines are also an effective way to anchor Erosion Control Blankets (ECBs) and Turf Reinforcement Mats (TRMs).


Live Gully Fill Repair

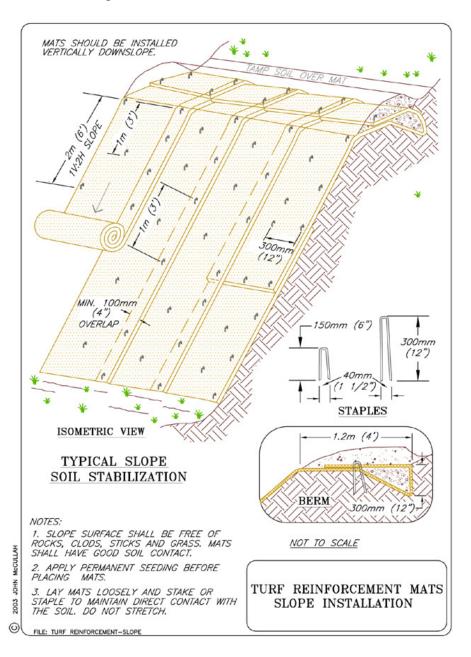
Live Gully Fill Repair consists of alternating layers of live branch cuttings and compacted soil. This reinforced fill can be used to repair small gullies. The method is similar to branch packing (a method for filling small holes and depressions in a slope), but is more suitable for filling and repairing elongated voids in a slope, such as gullies. Gully treatment must include correcting or eliminating the initial cause of the gully as well as the gully itself. Gullies are likely to have tributary gullies that also require treatment.


Live Pole Drain

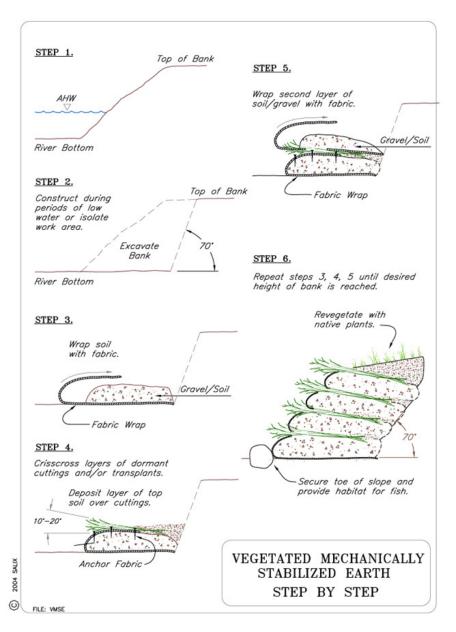
Live pole drains are live, growing and often long-lived drainage systems composed of bundles (fascines) of live branches (commonly willow). Live pole drains placed in areas where excess soil moisture results in soil instability. They are also used to treat small drainage gullies. Live Pole Drains collect subsurface drainage and concentrated surface flow and channel it to the base of the bank. Once established, their drainage function is increased, as the plants absorb much of the water that is conducted along their stems. Because they are long and fibrous, the bundles act like a conduit. As the fascines begin to root and sprout the root system acts like a filter medium, stabilizing fine particles and reducing piping and sapping. Live pole drains provide drainage and stabilization immediately after installation, and once established, produce roots, which further stabilize bank and levee slopes.


Live Siltation

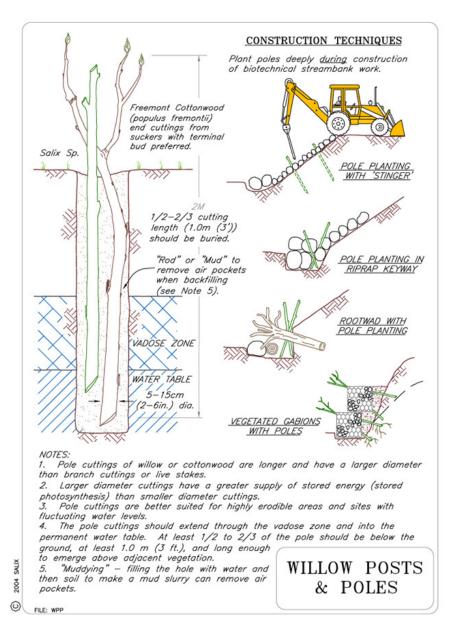
Live siltation is a bioengineering technique involving the installation of a living or a non-living brushy system at the water's edge. Willow cuttings are the most common. Live siltation construction is intended to increase roughness at the stream edge thereby encouraging deposition and reducing bank erosion. The embedded branches and roots also reinforce the bank, reduce geotechnical failure while the branches and leaves provide cover, aquatic food sources and organic matter.


Live Staking

Live stakes are very useful as a revegetation technique, a soil reinforcement technique, and as a way to anchor erosion control materials. They are usually cut from the stem or branches of willow species and the stakes are typically 0.5-1.0 m (1.5 - 3.3 ft) long. The portion of the stem in the soil will grow roots and the exposed portion will develop into a bushy riparian plant. This technique is referred to as Joint Planting when the stakes are inserted into or through riprap. Live staking is an excellent candidate for combination with other techniques.

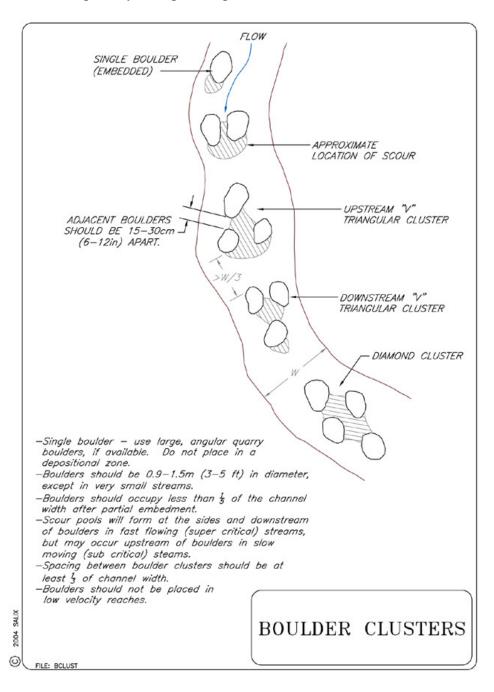

Turf Reinforcement Mats

Turf Reinforcement Mats (TRMs) are similar to Erosion Control Blankets, but they are more permanent, designed to resist shear and tractive forces, and they are usually specified for banks subjected to flowing water. The mats are composed of ultraviolet (UV) stabilized polymeric fibers, filaments, and/or nettings, integrating together to form a three-dimensional matrix 5 to 20 mm (.2 to .79 in) thick. TRMs are a biotechnical practice, intended to work with vegetation (roots and shoots) in mutually reinforcing manner. As such, vegetated TRMs can resist higher tractive forces than either vegetation or TRMs can alone.

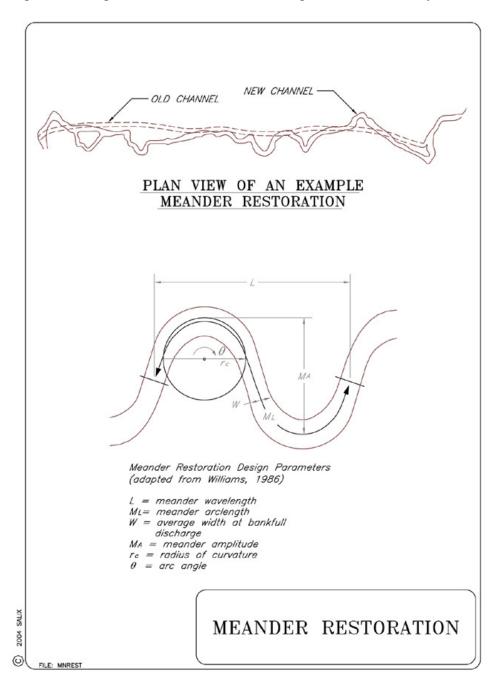

Vegetated Mechanically Stabilized Earth (Soil Wraps)

This technique consists of live cut branches (brushlayers) interspersed between lifts of soil wrapped in natural fabric, e.g., coir, or synthetic geotextiles (Turf Reinforcement Mats (TRMs) or Erosion Control Blankets (ECBs)) or geogrids. The live brush is placed in a crisscross or overlapping pattern atop each wrapped soil lift in a manner similar to conventional brushlayering (see Technique: Live Brushlayering). The fabric wrapping provides the primary reinforcement in a manner similar to that of conventional mechanically stabilized earth (MSE). The live, cut branches eventually root and leaf out providing vegetative cover and secondary reinforcement as well.

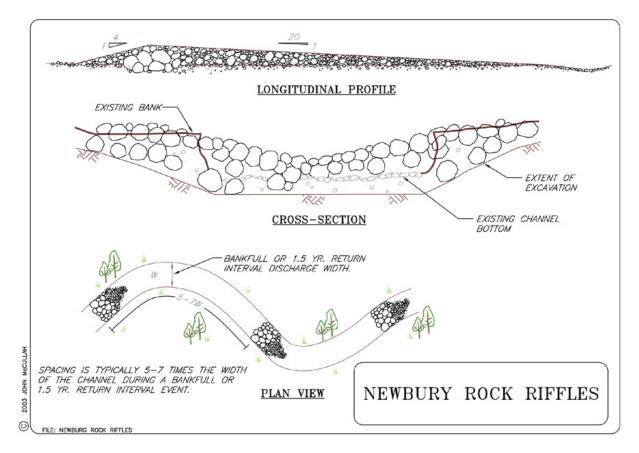
Willow Posts and Poles


Posts and pole plantings are methods intended to provide mechanical bank protection. Willow and cottonwood species are recommended for their ability to root and grow, particularly if they are planted deep into the streambanks. Larger and longer than live stakes, the posts and poles can provide better mechanical bank protection during the period of plant establishment. Dense arrays of posts or poles can reduce velocities near the bank or bed surface, and long posts or poles reinforce banks against shallow mass failures or bank slumps. Posts and poles are also excellent candidates for combination with other structural methods e.g., LWD Structures, Vegetated Gabion Baskets, Live Cribwall, and Cross Vanes.

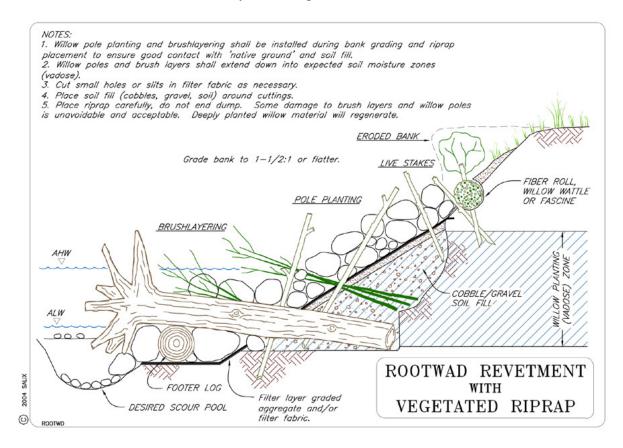
STREAM CORRIDOR HABITAT IMPROVEMENT


Boulder Clusters

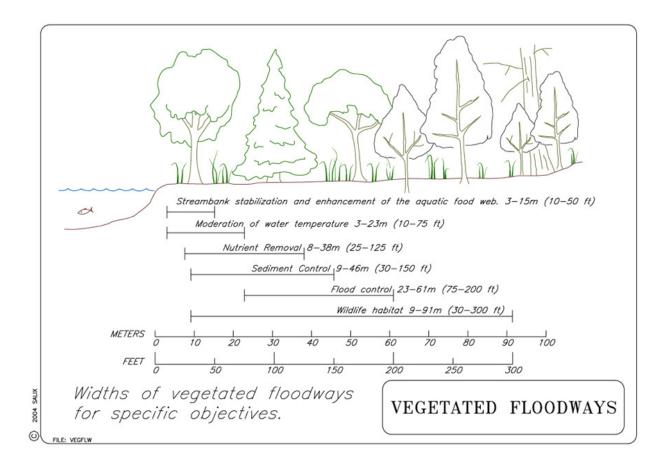
Large boulders may be placed in various patterned clusters within the base flow channel of a perennial stream. Natural streams with beds coarser than gravel often feature large roughness elements like boulders that provide hiding cover and velocity shelters for fish and other aquatic organisms. If a constructed or modified channel lacks such features, adding boulder clusters may be an effective and simple way to improve aquatic habitat.


Meander Restoration

Meanders are broad, looping (sinuous) bends in a stream channel. Meandering is a form of slope adjustment with more sinuous channel paths leading to decreased reach gradient. Fluvial and ecological functions are integrally related to the highly diverse spatial and temporal patterns of depth, velocity, bed material and cover found in meanders. Generally speaking, streams with natural meander bends do not require grade control measures. Meander restoration consists of reconstructing meandering channels that have been straightened or altered by man.

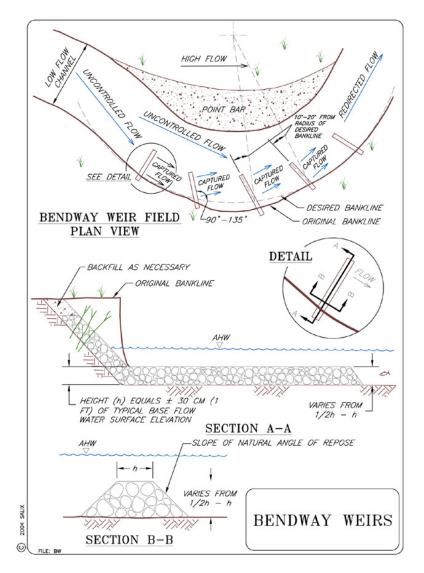

Newbury Rock Riffles

Newbury rock riffles are ramps or low weirs with long aprons made from riprap or small boulders that are constructed at intervals along a channel approaching natural riffle spacing (5 to 7 channel widths). The structures are built by placing rock fill within an existing channel. The upstream slope of the rock fill is typically much steeper than the downstream slope, which creates a longitudinal profile quite similar to natural riffles. These structures provide limited grade control, pool and riffle habitat, and visual diversity in otherwise uniform channels.

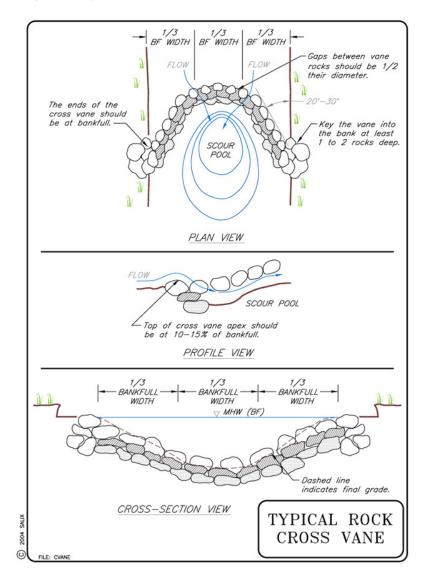

Rootwad Revetments

Rootwad and tree revetments are structures constructed from interlocking tree materials. These structures are continuous and resistive type methods, distinguishable from discontinuous and redirective methods such as Large Woody Debris (LWD) structures or rootwad deflectors. Rootwad revetments and tree revetments are primarily intended to resist erosive flows and are usually used on the outer bank of a meander bend when habitat diversity is desirable and tree materials are available and naturally-occurring.

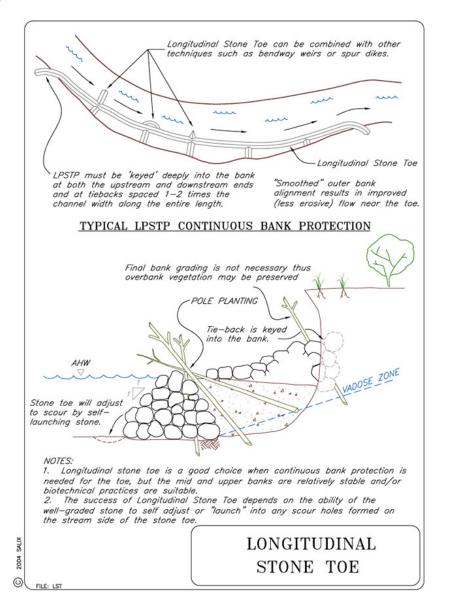
Vegetated Floodways


Confining floodwaters to a broad floodway bordered by levees or topographic highs is attractive because the portion of the floodway not normally inundated can support vegetation and thus provide wildlife habitat or recreational opportunities. Floodways may be created by constructing levees, floodwalls, or by excavation. Excavation consists of creating terraces or benches along an existing channel or a completely new flood channel (bypass). Roadway embankments sometimes serve a dual purpose by defining a floodway.

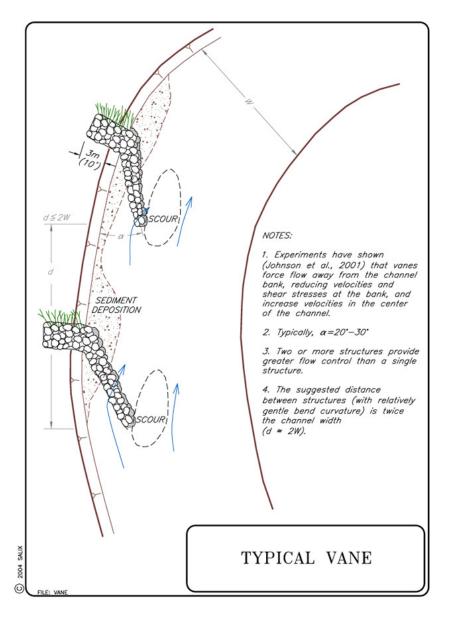
RIVER TRAINING STRUCTURES


Bendway Weirs

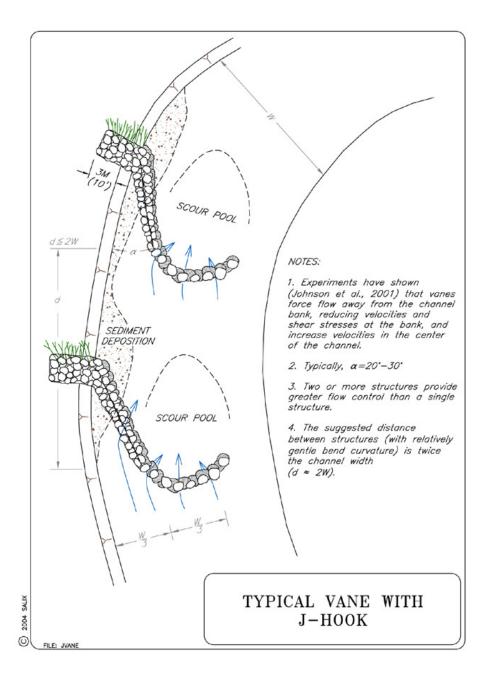
Bendway weirs are discontinuous, redirective, structures usually constructed of rock, designed to capture and then safely direct the flow through a meander bend. A minimum of five structures are typically placed in series (the series are known as "weir fields") along straight or convex bank lines. Bendway weirs differ from spurs and vanes in that they form a control system that captures and directs the streamflow through the weir field, usually all the way through the bend (hence the name bendway weirs). Bendway weirs are generally longer (1/3 - 1/2 stream width) and lower than barbs or spurs, flat crested and are designed to be continuously submerged or at least be overtopped by the design flows. Transverse river training structures often provide pool habitat and physical diversity.


Cross Vanes

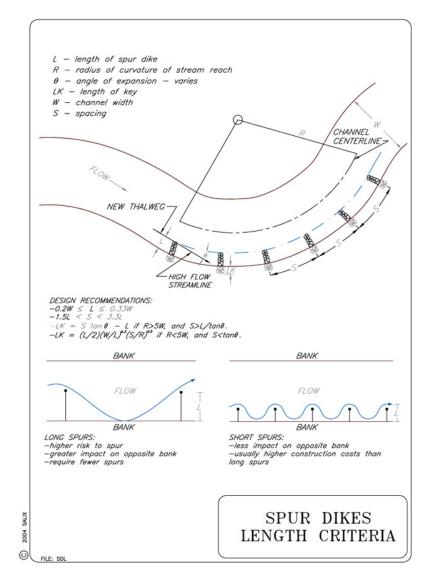
Cross vanes (aka. vortex weirs) are "V" shaped, upstream pointing, rock structures stretching across the width of the stream. Cross vanes redirect water away from the streambanks, and into the center of the channel. This serves to decrease shear stress on unstable banks, as well as create aquatic habitat in the scour pools formed by the redirected flow. Cross vanes are designed to be overtopped at all flows. The lowest part of the structure is the vortex of the "V", which is at the point farthest upstream. The crests are sloped 3-5% with the ends of the vanes keyed into the streambanks at an elevation approximate to annual high water or bankfull stage. This shape forms a scour pool inside of the "V". Cross vanes are particularly useful for modifying flow patterns, enhancing in-stream habitat, substrate complexity and providing in grade control. Double cross vanes (W weirs) are a variation suitable for wider channels.


Longitudinal Stone Toe

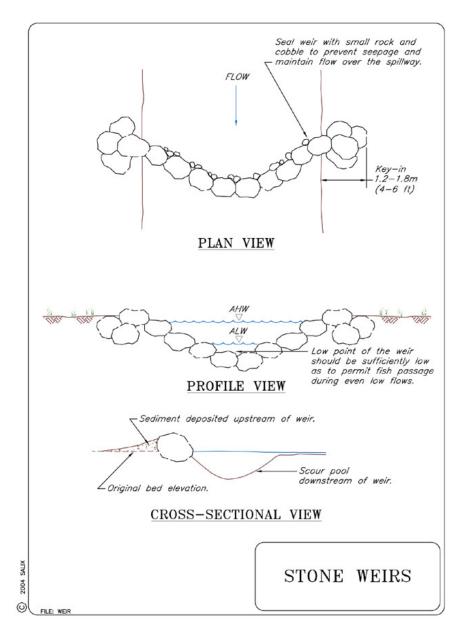
A longitudinal stone toe (aka longitudinal peaked stone toe protection (LPSTP)) is continuous bank protection consisting of a stone dike placed longitudinally at, or slightly streamward of the toe of an eroding bank. The cross section of the stone toe is usually triangular in shape. The success of this method depends upon the ability of stone to self-adjust or "launch" into scour holes formed on the stream side of the revetment. The stone toe does not need to follow the bank toe exactly, but should be designed and placed to form an improved or "smoothed" alignment through the stream bend. Longitudinal stone toes usually require much less bank disturbance and the bank landward of the toe may be revegetated by planting or natural succession. Brushlayering and Willow Post and Poles are excellent candidates for use with this technique.


Rock Vanes

Rock vanes are discontinuous, redirective structures angled upstream 20 to 30 degrees. Generally, two or three vanes are constructed along the outer bank of a bend in order to redirect flows near the bank to the center of the channel. Typically, vanes project 1/3 of the stream width. The riverward tips are at channel grade, and the crests slope upward to reach bankfull stage elevation at the key. Rock vanes can preclude the need for rock armor and increase vegetative techniques as the high flows are redirected away from the bank. Vanes can increase cover, backwater area, edge or shoreline length, and the diversity of depth, velocity and substrate. Variations include Cross Vanes and Rock Vanes with J-hooks.

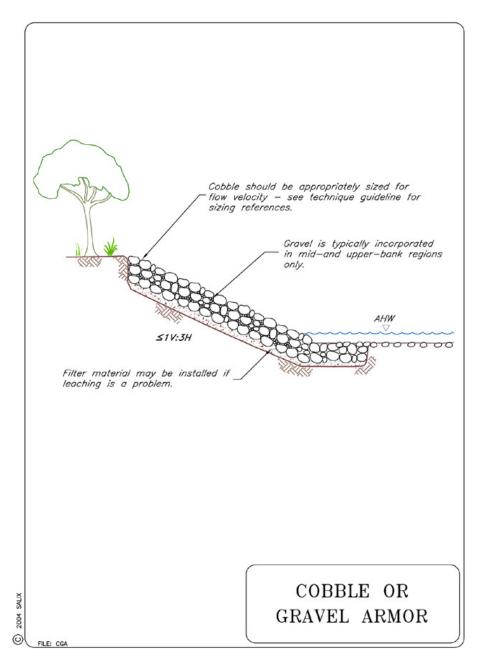

Rock Vanes with J Hook

Vanes with J-Hooks are actually rock vanes modified to enhance the instream habitat benefits. They are redirective, upstream-pointing deflection structures whose tip is placed in a "J" configuration and partially embedded in the streambed so that they are submerged even during low flows. The rock vanes have demonstrated effectiveness in reducing near-bank velocities by redirecting the thalweg toward the center of the channel. The "J" structures are intended to create scour pools and thereby improve substrate complexity. The scour usually results in a "tail out" deposition of gravel (riffle) which may provide spawning habitat.

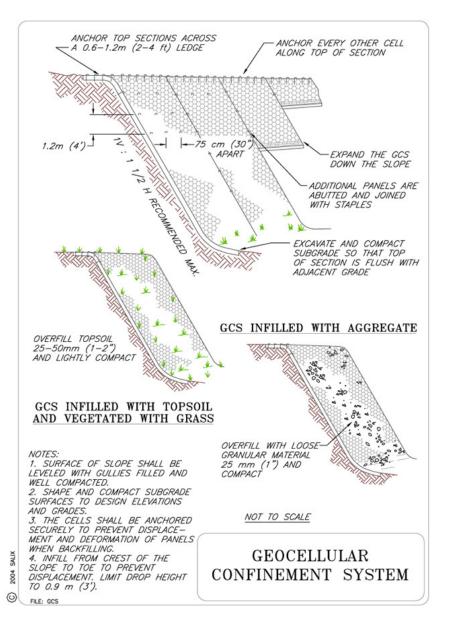

Spur Dikes

Spur dikes, deflectors or groins are transverse structures that extend into the stream from the bank and reduce erosion by deflecting flows away from the bank. Transverse river training structures often provide pool habitat and physical diversity. Two to five structures are typically placed in series along straight or convex bank lines where flow lines are roughly parallel to the bank. Spurs, groins, and deflectors have no specific design criteria regarding crest height, crest slope or upstream angle and therefore differ from vanes and bendway weirs. Earthen core spur dikes are groins constructed with a soil core armored by a layer of stone. Deflectors can also be constructed from natural materials, such as large woody debris (LWD), or LWD embedded with rock, and designed to provide biologic benefits and habitat restoration. Stone spurs capped with a prism of earth reinforced with live fascines are referred to as "live booms."

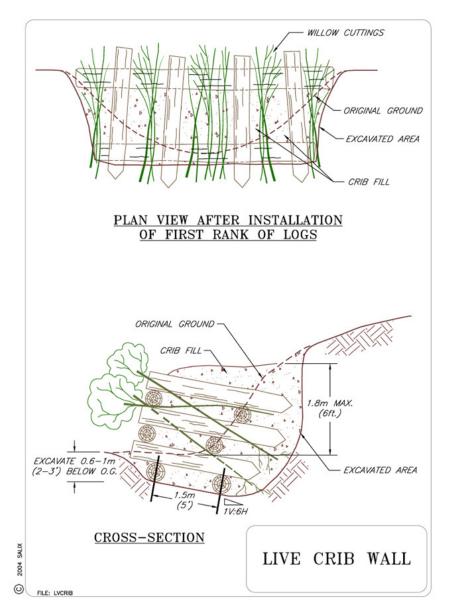
Stone Weirs


Stone weirs are structures that span the stream and produce a drop in the water surface elevation. These structures are frequently made of angular quarried stone, but logs, sheet piling, concrete, boulders and masonry are also quite common. Well-constructed stone weirs can prevent or retard channel bed erosion and upstream progression of "knickpoints" and headcuts, as well as providing pool habitats for aquatic biota. Stone weirs or similar grade control structures are often intended to raise or elevate the bottom of incised channels, with the ultimate goal of elevating a dropping water table. Variations on stone weirs that have additional habitat benefits are Newbury Rock Riffles and Cross Vanes.

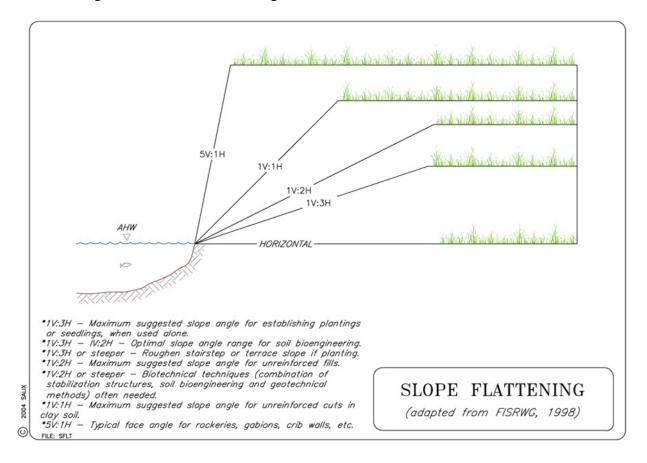
STRUCTURAL STREAMBANK STABILIZATION


Cobble or Gravel Armor

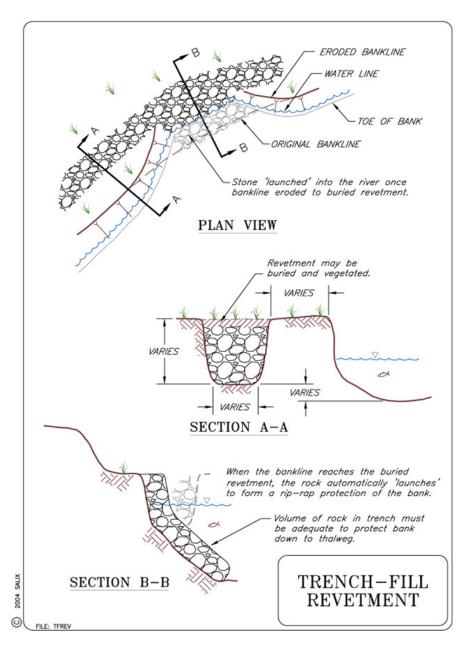
Cobble or gravel armor is a resistive technique, similar to riprap revetment that uses naturallyoccurring rock. Cobbles are natural stones larger than 6.5 cm (2.5 in) in diameter that have been rounded by the abrasive action of flowing water, while gravel is material smaller than cobble, but larger than sand (larger than about 5 mm(0.2 in)). Rounded river cobble or gravel blanket presents a more natural appearance, and can be as effective as riprap revetment for areas with relatively lower tractive forces and velocities.


Geocellular Containment Systems

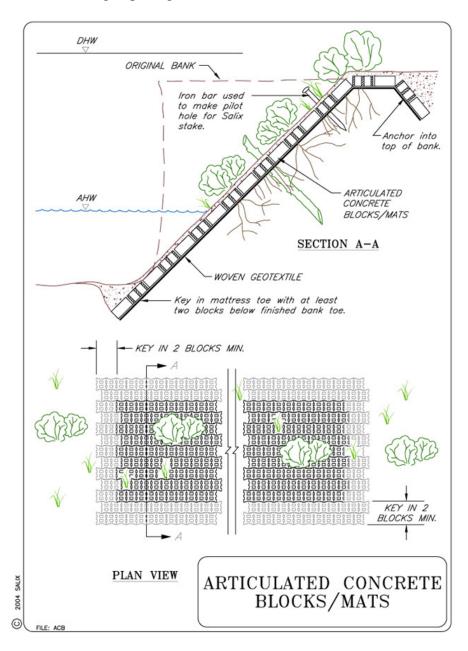
Geocellular Containment Systems (GCS) are flexible, three-dimensional, high density polyethylene (HDPE) honeycomb-shaped earth-retaining structures that can be expanded and backfilled with a variety of materials to mechanically stabilize surfaces. They can be used flat, as channel or slope lining, or stacked to form a retaining wall. Maximum slope for walls is generally 2V:1H, although they have been installed as steep as 0.5V:1H and even 1V:1H in some cases. GCS provide very little habitat enhancements alone, therefore these systems must be combined with vegetation to be considered environmentally-sensitive. Live staking and joint planting are excellent choices for combining techniques.


Live Cribwall

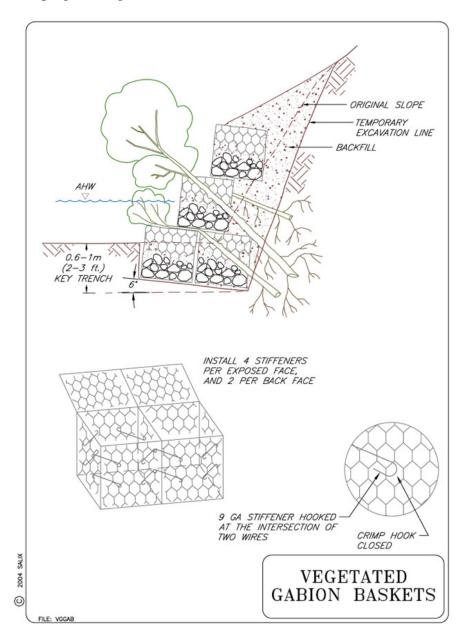
A cribwall is a gravity retaining structure consisting of a hollow, box-like inter-locking arrangement of structural beams (e.g., logs). The interior of the cribwall is filled with rock or soil. In conventional cribwalls, the structural members are fabricated from concrete, wood logs, and dimensioned timbers (usually treated wood). In live cribwalls, the structural members are usually untreated log or timber members. The structure is filled with a suitable backfill material and live branch cuttings are inserted through openings between logs at the front of the structure and imbedded in the crib fill. These cuttings eventually root inside the fill and the growing roots gradually permeate and reinforce the fill within the structure.


Slope Flattening

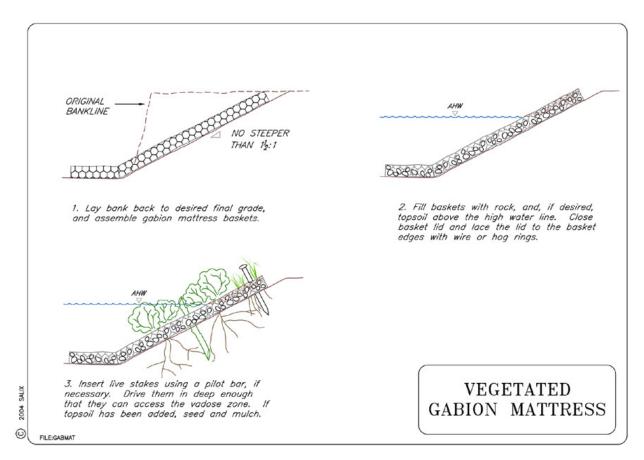
Flattening or bank reshaping stabilizes an eroding streambank by reducing its slope angle or gradient. Slope flattening is usually done in conjunction with other bank protection treatments, including installation of toe protection, placement of bank armor, re-vegetation or erosion control, and/or installation of drainage measures. Flattening or gradient reduction can be accomplished in several ways: 1) by removal of material near the crest, 2) by adding soil or fill at the bottom, or 3) by placing a toe structure at the bottom and adding a sloping fill behind it. Right-of-way constraints may limit or preclude the first two alternatives because both entail either moving the crest back or extending the toe forward.


Trench Fill Revetment

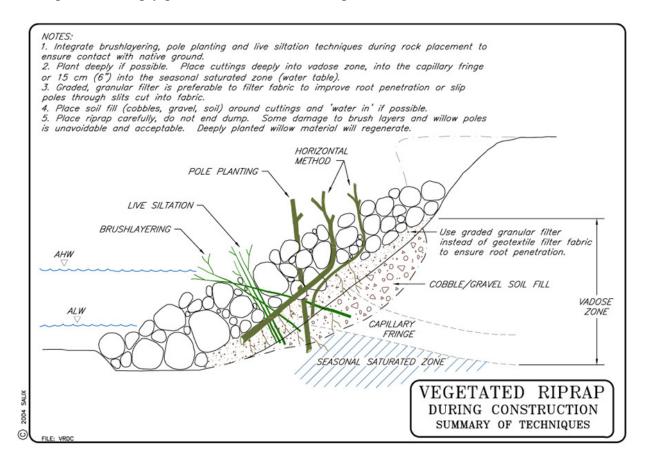
Trench fill revetments are constructed by excavating a trench along the top of the bank and placing stone riprap in the trench. As the bank erodes, the stone is undercut and "launches" down the bank line, resulting in a more gradual, protected slope. Earth removed for excavation of the trench may be used to cover the riprap, thus completely concealing it until it is launched. This technique might be chosen if access to the stream reach is restricted due to legal or environmental issues.


Vegetated Articulated Concrete Blocks

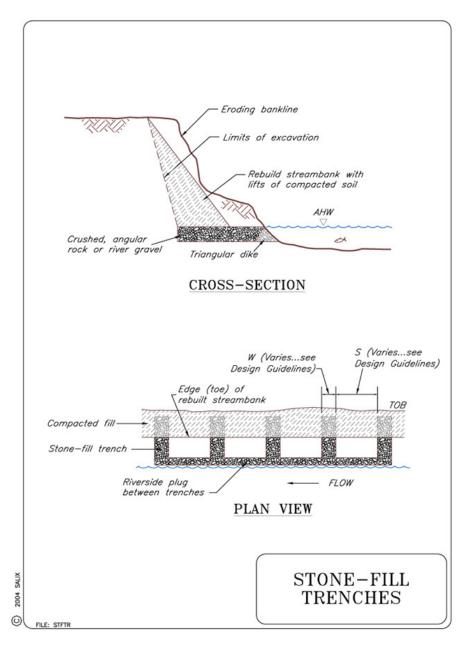
An Articulated Concrete Block (ACB) system consists of durable concrete blocks that are placed together to form a matrix overlay or armor layer. Articulated block systems are flexible and can conform to slight irregularities in slope topography caused by settlement. The blocks are placed on a filter course (typically a geofabric) to prevent washout of fines through the blocks. ACBs provide very little habitat enhancements alone, therefore these systems must be combined with vegetation to be considered environmentally-sensitive. Vegetation in the form of live cuttings or grass plugs is inserted through openings in the blocks into the native soil beneath the blocks.


Vegetated Gabion Baskets

Gabions are rectangular baskets made of twisted or welded-wire mesh that are filled with rock. These flexible and pervious structures can be used individually or stacked like building blocks to reinforce steep banks. Used alone, rock-filled gabions provide insufficient habitat benefit. However, woody vegetation, such as brushlayering, post and poles, can be incorporated by inserting the cuttings all the way through the basket during filling, and penetrating the native subsoil. The woody vegetation can provide additional reinforcement and longevity to the structure while helping to mitigate for loss of habitat.


Vegetated Gabion Mattress

Gabion mattresses differ from gabion baskets as they are shallow, (0.5-1.5 m (20-60 in)) deep, rectangular containers made of welded wire mesh, and filled with rock. Gabion mattresses are not stacked but placed directly and continuously on the prepared banks. They are intended to protect the bed or lower banks of a stream against erosion. A gabion mattress can be used as either a revetment to stabilize a streambank, or when used in a channel, to decrease the effects of scour. Live cuttings are introduced through the rock filled mattress and inserted into native soil beneath.


Vegetated Riprap

A layer of stone and/or boulder armoring that is vegetated, optimally during construction, using pole planting, brushlayering, and live-staking techniques. The goal of this method is to increase the stability of the bank, while simultaneously establishing riparian growth within the rock and overhanging the water, to provide shade, water quality benefits, and fish and wildlife habitat. Vegetative riprap combines the widely accepted, resistive and continuous rock revetment techniques with deeply-planted biotechnical techniques.

Stone-Fill Trenches

Stone-fill trenches are rock filled trenches placed at the base of a streambank, usually within a failed section of the toe. A series of trenches are excavated at or within the toe of the slope in a direction perpendicular to the stream. The trenches are backfilled with crushed rock or stone. The toe of the slope is then reconstructed by placing and compacting earthen fill within and atop the stone-fill trenches. A small, longitudinal riverside plug or stone dike should be used between the stone trenches to help contain and protect the toe of the earthen fill placed between and atop the stone trenches.

APPENDIX Q

EXISTING INFORMATIVE RESOURCES FOR THE SANTA ROSA CREEK WATERSHED

DEFEDENCE #		A RUSA CREEK WATERSHED		
REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
1	Agriculture	2006 Annual Report	2006	San Luis Obispo County Department of Agriculture Weight & Measures
	- ign senter s	Agriculture & Open Space Element		
2	Agriculture	SLO County General Plan	October 22, 1998	
	rightoditaro	Agriculture & Open Space Element		
	Agriculture		September 4, 1002	
3	Agriculture	SLO County General Plan	September 4, 1992	
4	Assessment	Affordable Housing Ordinances EIR	2007	County of San Luis Obispo
		An Environmental Assessment on		
5	Assessment	Golf Course Development		
		Bio-monitoring Report of the Cambria		
6	Assessment	Cross-Town Trail Project	March 16, 2005	
		Biotic Assessment, Santa Rosa		
7	Assessment	Creek, Cross-Town Trail Project	1999	Assegued & Associates
				/ loogada a / loocalao
		Biotic Resources Assessment for the		
		Cambria Community Services District		
_	Account	Proposed Santa Rosa Creek Trail	March 2002	Dingon Conquitante Jac
8	Assessment	and Stream Bank Restoration Project	March, 2003	Rincon Consultants, Inc.
		Cross Town Trail Initial		
	Assessment	Study/Mitigated Negative Declaration		RBF Consulting
10	Assessment	Drainage Study	2004	County of San Luis Obispo
		East-West Ranch Management Plan		
		Initial Study/Mitigated Negative		
11	Assessment	Declaration	2002	Rincon Consultants, Inc.
		East-West Ranch Resource		
12	Assessment	Inventory and Constraints Report	2002	Rincon Consultants, Inc.
		Environmental Assessment		
		Programmatic Habitat Conservation		
13	Assessment	Plan	December 18, 1991	
		Preliminary Geotechnical Study, San		
		Simeon Creek Diversion/Recharge		
		and Off-Stream Dam Project: for		
		Cambria Community Services		
14	Assessment	District, Cambria, California	August, 1988	McClelland Engineers, Inc.
14	Assessment	Preliminary Site Assessment &	August, 1988	
	• ·	Instream Flow Study Plan Santa		-
15	Assessment	Rosa Creek	May 25, 1990	Tenera
	_	Resource Inventory and Constraints		
16	Assessment		March 1, 2002	
		San Simeon & Santa Rosa Creeks		
17	Assessment	Watershed Sanitary Survey	January 1, 1996	
		San Simeon Creek		
		Diversion/Recharge and Off-Stream		
		Storage Project: Preliminary Design		
18	Assessment	Evaluation	September, 1988	Boyle Engineering Corporation
19	Assessment	Watershed Sanitary Survey	October 1, 1997	
		· ·		John O. Sawyer and Todd Keeler-
20	Biology	A Manual of California Vegetation	1995	Wolf
		A Technical Bibliography on the		
		Natural History of the San Simeon		
		Area, San Luis Obispo County,		
		California: Including coastal basins		
		from Santa Rosa Creek north to San		
01	Diology		April 1 2000	Colon R. Bothburn and Supan Wright
21	Biology	Carpoforo Creek	April 1, 2000	Galen B. Rathbun and Susan Wright
22	Biology	California Invasive Plant Inventory	2006	California Invasive Plant Council
	L	California Salmonid Stream Habitat		
23	Biology	Restoration Manual	1998	Flosi, et al

SANTA ROSA CREEK WATERSHED INFORMATIVE RESOURCES

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
		http://www.alagoupty.ag.gov/Acasta/A	
1		http://www.slocounty.ca.gov/Assets/A G/croprep/2006+Crop+Report.pdf	
•			CCSD resource #227;
2			Bookcase B; Shelf 5
_			CCSD resource #250;
3			Bookcase C; Shelf 2
		http://www.slocounty.ca.gov/planning	
		/environmental/EnvironmentalNotices	
	Includes water, biological, geological and	/Environmental_Impact_Reports_200	
4	historical resources for the county.	7.htm	
_			CCSD resource #196;
5			Bookcase B; Shelf 4 CCSD resource #224;
6			Bookcase B; Shelf 5
0			DUURCASE D, SHEIL J
7			
•			
8			
9			
10			
11			
12			
			CCSD resource #176;
13			Bookcase B; Shelf 3
	Matar atoraga, Matar augulu, Matar diyarajan		Cal Poly State University
14	Water storage, Water supply, Water diversion, Dams		Reference Section
14	Danis		
			CCSD resource #35;
15			Bookcase A; Shelf 2
			CCSD resource #226;
16			Bookcase B; Shelf 5
			CCSD resource #354;
17			Bookcase D; Shelf 1
40	Water storage, Water supply Mater diversion		Cal Poly State University Reference Section
18	Water storage, Water supply, Water diversion		CCSD resource #467;
19			Bookcase D; Shelf 4
13			Kennedy Library, Cal
20	Vegetation series descriptions		Poly State University
		http://www.greenspacecambria.org/D	
		ocuments/NaturalHistoryBibliography	
21		.pdf	
		http://www.cal-	
~~	Non-native invasive plant species for the Central	ipc.org/ip/inventory/pdf/Inventory200	
22	Western Floristic Province.	<u>6.pdf</u>	
23			
23	ļ		ļ

REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
	0020201		5/112	
		ODEO Dasia Diserian and Ushitat		O antina la O a a at Marta mala a di Otuatia a
04	Piology	CDFG Basin Planning and Habitat		Central Coast Watershed Studies
24	Biology	Mapping Project Comparison of Juvenile Steelhead		Team
25	Biology	Densities in 1994-96	January 1, 1997	DW Alley & Associates
	Biology	Comparison of Juvenile Steelhead	bandary 1, 1001	
26	Biology	Densities in 1994-97	July 1, 1998	DW Alley & Associates
		Comparison of Juvenile Steelhead		
		Densities Santa Rosa Creek 1994-		
27	Biology	1997	July 1, 1998	DW Alley & Associates
	Dieleeur	Comparison of Juvenile Steelhead	Cantambar 1, 1000	
28	Biology	Densities Santa Rosa Creek 1994-98 Comparison of Juvenile Steelhead	September 1, 1999	
		Production in 1994-1999 for Santa		
		Rosa Creek, San Luis Obispo		
		County, California, With Habitat		
		Analysis and an Index of Adult		
29	Biology	Returns	2000	DW Alley & Associates
		Comparison of Juvenile Steelhead		
30	Biology	Production in 1994-98	September 1, 1999	DW Alley & Associates
		Comparison of Juvenile Steelhead Production Santa Rosa Creek 1994-		
21	Biology	98	September 1, 1999	DW Alley & Associates
51	Biology	Determination of Juvenile Steelhead	September 1, 1999	DW Alley & Associates
		Densities Santa Rosa and San		
32	Biology	Simeon Crees	February 5, 1995	DW Alley & Associates
		Draft Recovery Plan for the	•	
		Tidewater Goby (Eucyclogobius		
33	Biology	newberryi)	2004	US Fish and Wildlife Service
		Fisheries-Steelhead Trout		California Department of Fich and
34	Biology	Management Tasks (Coastal Watersheds)	2008	California Department of Fish and Game
	Biology	History and Status of Steelhead in	2000	danie
		California Coastal Drainages South		
35	Biology	of San Francisco Bay	1994	Titus, Erman and Snider
		History and Status of Steelhead in		
		California Coastal Drainages South		
36	Biology	of San Francisco Bay	2000	Titus, Erman and Snider
~~	Piology	Invasive Plants of California	2000	Papaged Dandall and Lashavely
37	Biology	Wildlands Listed, Proposed and Candidate	2000	Bossard, Randall and Hoshovsky
		Species Which May Occur in San		US Department of the Interior, Fish
38	Biology	Luis Obispo County		and Wildlife Service
		Misc. Articles, Reports, etc. about		
39	Biology	Steelhead Fish Monitoring	1997	
		Monitoring Report San Simeon &		
40	Biology	Santa Rosa Creeks 1992-93	November 18, 1993	DW Alley & Associates
A 4	Piology	Monitoring Report San Simeon and Santa Rosa Creeks, 1992-93	November 19, 1002	DW Allow & Accordictor
41	Biology	Monitoring Report San Simeon and	November 18, 1993	DW Alley & Associates
42	Biology	Santa Rosa Creeks, 1993-94	March 22, 1995	DW Alley & Associates
		Monitoring Results for Lower San		
		Simeon and Santa Rosa Creeks		
43	Biology	2000-01	November 1, 2003	DW Alley & Associates
		Monitoring Results for Lower San		
	D' 1	Simeon and Santa Rosa Creeks	A 14 0004	
44	Biology	2002-03	August 1, 2004	DW Alley & Associates
		Monitoring Results for Lower San Simeon and Santa Rosa Creeks,		
45	Biology	Simeon and Santa Rosa Creeks, 1997-99	June 1, 2001	DW Alley & Associates
+5		Monitoring Results for San Simeon		
46	Biology	and Santa Rosa Creeks	1995-1996	DW Alley & Associates
10	37		· · · · · ·	-,-

DECEDENCE "	DESCRIPTION	WERGITE	
REFERENCE #	GIS data of stream structures and potential	WEBSITE	OTHER SOURCE
	barriers, riparian canopy denisty, embeddedness,		
	geology, habitat level, habitat type, land cover,		
	primary pools, restoration projects, slope, water		
	temperature, erosion of right bank, erosion of left	http://ccows.csumb.edu/scdp/data/Sa	
24	bank, and spawning.	ntaRosa/index.htm	
			CCSD resource #138;
25			Bookcase B; Shelf 1
			CCSD resource #140;
26			Bookcase B; Shelf 1
			CCSD resource #172
27			Bookcase B; Shelf 2
			CCSD resource #216;
			Bookcase B; Shelf 4
28			(may be a duplicate)
			CCCD resource #140:
			CCSD resource #142; Bookcase B; Shelf 1
29			CCSD resource #135;
30			Bookcase B; Shelf 1
			CCSD resource #263;
31			Bookcase C; Shelf 3
			CCSD resource #147;
32			Bookcase B; Shelf 1
33			
		http://nrm.dfg.ca.gov/steelhead/steel	
34	Prioritized land management tasks	head_tasks.aspx	
05			
35			
36			
37		Blackgold.org	
0.		http://www.fws.gov/ventura/esprogra	
		ms/listing_ch/spplists/species_slo.cf	
38	Not an official list	m	
			CCSD resource #175;
39			Bookcase B; Shelf 3
			CCSD resource #173
40			Bookcase B; Shelf 2
			CCSD resource #143;
41			Bookcase B; Shelf 1
			CCSD resource #167;
42			Bookcase B; Shelf 2
			CCSD resource #552;
43			Bookcase F; Shelf 3
43			20000036 F, 011611 0
			CCSD resource #230;
44			Bookcase C; Shelf 1
			CCSD resource #134;
45			Bookcase B; Shelf 1
			CCSD resource #117;
46			Bookcase B; Shelf 1
		•	

REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
		Monitoring Results for San Simeon		
		and Santa Rosa Creeks in 1995 and		
		1996: Water Quality Conditions in		
		Lagoons, Streamflow Measurements,		
		Fish Sampling in Lagoons and		
		Steelhead Censusing in the Upper		
		Watersheds, San Luis Obispo		
47	Biology	County, California	1997	DW Alley & Associates
		Passage Requirements for Steelhead		
48	Biology	in Santa Rosa Creek, 1993	July 10, 1993	DW Alley & Associates
		Santa Rosa Creek Trail and Stream		
		Bank Restoration Project - Biological		
		Assessment of Existing Conditions, Potential Impacts and Mitigations for		
		the Following Sensitive Aquatic		
		Species: California Red-legged Frog,		
		Southwestern Pond Turtle, Steelhead		
49	Biology	and Tidewaer Goby	2003	DW Alley & Associates
+5	Biology		2000	California Department of Fish and
50	Biology	Special Animals (848 taxa)	October, 2007	Game
	2.0.035	Species Profiles: Life Histories and	000000, 2007	
		Environmental Requirements of		
		Coastal Fishes and Invertebrates		
51	Biology	(Pacific Southwest)-Steelhead	1986	R.A. Barnhart
		State and Federally Listed		
		Endangered and Threatened Animals		California Department of Fish and
52	Biology	of California	February, 2008	Game
		State and Federally Listed		
		Endangered, Threatened, and Rare		California Department of Fish and
53	Biology	Plants of California	January, 2008	Game
		Status and Ecology of Sensitive		
		Aquatic Vertebrates in Lower San		
		Simeon and Pico Creeks, San Luis		
54	Biology	Obispo, California	1993	Rathburn, et al
		Status of Declining Aquatic Reptiles,		
	Distant	Amphibians and Fish in Lower Santa	E-h	
55	Biology	Rosa Creek Summary of Steelhead Population	February 1, 1996	
		and Habitat Sampling, Santa Rosa		
		Creek, San Luis Obispo County,		
56	Biology	1993	July 29, 1994	Jennifer Nelson
50	biology	1555	001y 20, 1004	berniner Neison
		Technical Bibliography on Monterey		
57	Biology	Pine, Pinus radiata	October 23, 1998	Rathburn, et al
0.		The Status of Steelhead Populations	,	
		in CA in Regards to the Endangered		
58	Biology	Species Act	February 1, 1995	Cramer/Alley et al
		Trends in Juvenile Steelhead		
		Production in 1994-2000 for Santa		
		Rosa Creek, San Luis Obispo		
		County, California, with Habitat		
		Analysis and an Index of Adult		
59	Biology	Returns	2001	DW Alley & Associates
		Trends in Juvenile Steelhead		
		Production in 1994-2001 for Santa		
		Rosa Creek, San Luis Obispo		
		County, California, with Habitat		
	.	Analysis and an Index of Adult		
60	Biology	Returns	2002	DW Alley & Associates
		Trends in Juvenile Steelhead		
		Production in 1994-2002 for Santa		
		Rosa Creek, San Luis Obispo		
		County, California, with Habitat		
~	Piology	Analysis and an Index of Adult	2002	DW Allow & Accesister
61	Biology	Returns	2003	DW Alley & Associates

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
			CCSD resource #174
47			Bookcase B; Shelf 2
			CCSD resource #139;
48			Bookcase B; Shelf 1
49			
50	California Natural Diversity Database (CNDDB)		
	U.S. Fish and Wildlife Service Biological Report 82 (11.60); U.S. Army Corps of Engineers, TR EL-		
	82-4		
52	California Natural Diversity Database (CNDDB)		
52	California Natural Diversity Database (CNDDB)		
54		http://www.werc.usgs.gov/pb/rathbun 1.pdf	
55			CCSD resource #177; Bookcase B; Shelf 3
56			Greenspace
	A compilation of reports held by the Piedras		
F7	Blancas Field Station, Western Ecological Besearch Center, USGS in San Simeon	www.greenspacecambria.org/Docum	
57	Research Center, USGS, in San Simeon.	ents/MontereyPinesBibliography.pdf	
			CCSD resource #266;
58			Bookcase C; Shelf 3
			CCSD resource #170
59			Bookcase B; Shelf 2
			CCSD resource #217;
60			Bookcase B; Shelf 4 (may be a duplicate)
			· · · · · · · · · · · · · · · · · · ·
61			

REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
		Trends in Juvenile Steelhead		
		Production Santa Rosa Creek 1994-		
62	Biology	2003	August 1, 2004	DW Alley & Associates
		Trends in the Juvenile Steelhead		
		Population in 1994-2006 for Santa		
		Rosa Creek, San Luis Obispo		
		County, California with Habitat		
	D . 1	Analysis and an Index of Adult		
63	Biology	Returns	June 2007	DW Alley & Associates
64	Dieleeur			
04	Biology			
65	Biology			
	2.0.035			National Oceanic and Atmospheric
66	Biology			Administration
67	Biology		1998	
68	Biology			
	L			
69	Forestry	Cambria Forest Management Plan	April 1, 2002	Cambria Forest Committee
		Cambria Monterey Pine Forest		
70	Forestry	Management Plan	April 6, 2001	
	0	California Landscape: Origin and		N.4
[] []	Geology	Evolution		Mary Hill
		California's Changing Landscapes: a		
70	Geology	Guide to the Geology of the State	1971	Gordon B. Oakeshott
12	Gology	CaliforniaSerpentines: Flora,		
		Vegetation, Geology, Soils, and		
73	Geology	Management Problems	1984	Arthur Kruckeberg
				3
		Cretaceous Geology of the California		
		Coast Ranges West of the San		
		Andreas Fault: Pacific Coast		
74	Geology	Paleogeography Field Guide No 2	1977	Howell, Vedder and MacDougall
		Drought and Ground Deformation,		
75	Geology	Cambria, San Luis Obispo, California	1980	G.B. Cleveland
	Caslary	Earthquake Basics Brief No. 1:		Earthquake Engineering Research
76	Geology	Liquefaction		Institute
		Franciscan and Related Rocks and		
77	Geology	their Significance in the Geology of Western California	1964	Edgar Herbert Bailey
	acology	Geologic Map of the Adelaida	1004	Lugar riervert Dalley
		Quadrangle, San Luis Obispo		
78	Geology	County, California.	1968	David L. Durham
	5.501097	Geologic Map of the Cambria		
		Region, San Luis Obispo County,		
79	Geology	California	1974	Calrence Hall
		Geologic Map of the San Luis Obispo	4	
80	Geology	San Simeon Region, California	1979	Hall and others
	Geology	Geology of California	1976	Robert Norris & Robert Webb
		Introduction to the Geology of		
		Southern California and its Native		
82	Geology	Plants	2007	Clarence Hall
			Volume 23, Issue 52,	
	Geology	Mercury Rising	2009	Colin Rigley
83				
83		Preliminary Observations on the		
	Geology	Preliminary Observations on the December 22, 2003 San Simeon Earthquake	March, 2004	Earthquake Engineering Research

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
62			CCSD resource #231; Bookcase C; Shelf 1
63			Greenspace
64	California Department of Fish and Game California Natural Diversity Database	http://www.dfg.ca.gov/biogeodata/cnd db/	· · ·
	California Native Plant Society Inventory of Rare	http://cnps.web.aplus.net/cgi- bin/inv/inventory.cgi/BrowseAZ?nam	
	and Endangered Plants, by topo quad Central California Coast Steelhead DPS	e=quad http://swr.nmfs.noaa.gov/recovery/St eelhead_CCCS.htm	
	Endangered Species List and Descriptions for Santa Barbara and San Luis Obispo Counties	http://www.essexenv.com/endangere d species/	
	Wieslander Vegetation Type Mapping Project. Search historic photographs and maps by quads. Includes vegetation data associated wth historic		
68	photographs.	http://vtm.berkeley.edu/	CCSD resource #25;
69		CCSD website	Bookcase A; Shelf 2 CCSD resource #26;
70			Bookcase A; Shelf 2 Cal Poly State University
71		Blackgold.org	Library
72			
73			Cal Poly State University; Physics Department
74			
75			
76	Liquefaction: What it is and what to do about it	http://www.eeri.org/cds_publications/ earthquake_basics_series/LIQ1.pdf	
77		Blackgold.org	Cal Daly State
78	GQ-768		Cal Poly State University; Physics Department
79	Miscellaneous Field Studies. 1:24000. Map MF- 599		Cal Poly State University; Physics Department
	Miscellaneous Investigations Series, 1:48,000. Map I-1097	-	Cal Poly State University; Physics Department
81		Blackgold.org	Cal Poly State University; Physics Department
83	Cleaning up mercury mining sites in the Central Coast, including Oceanic Mine, in Cambria.	http://www.newtimesslo.com/cover/2 994/mercury-rising/	Print
84		http://www.eeri.org/lfe/pdf/usa_san_si meon_eeri_preliminary_report.pdf	

EFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
		Preliminary Report and Geologic		
		Guide to Franciscan Melanges of the		
		Morro Bay-San Simeon Area,		
85	Geology	California	1976	K. Jinghwa Hsu
		Quaternary Deformation of the San		
		Luis Range, San Luis Obispo		
86	Geology	County, California	1994	Lettis, et al
		Roadside Geology of Northern and		
87	Geology	Central California	2000	David Alt
88	Geology	San Luis Obispo Geology Field Trip		Al Stevens
		Seismotectonics of the Central		
89	Geology	California Coast Ranges	1994	
	cloology		1001	
		Special Publication 117: Guidelines		
		for Evaluating and Mitigating Seismic		
00	Geology	Hazards in California	March 13, 1997	State Mining and Geology Board
90	Geology	The Geology of San Luis Obispo	IVIAICIT 13, 1997	State Mining and Geology Board
~	Coology	County: a Brief Description and Field		David Chipping
91	Geology	Guide		David Chipping
	L Bata	12,000 Years of Cultural Change		Parker & Associates Archeological
92	History	Along the Central Coast		Research
		400 Years of Central California		
		Precipitation Variability Reconstruted		
93	History	from Tree-Rings	1987	Michaelson, Halston and Davis
94	History	Cambria		Gayle Baker
		Cambria Treasures: Interviews with		
95	History	Noteworthy Cambrians		Darren Wetlund
	,	Captain Portola in San Luis Obispo		
96	History	County	1721-1782	Juan Crespi
				Marcus Waltz & Delmar Herbert
97	History	Chronicles of the Cambria Pioneers	1946	Williams
0.	lietery	Chumash Place Names. Journal of		
98	History	California Anthropology	1974	Richard Applegate
50	Thotory	Cultural Resources Inventory	10/4	Thomata Applogate
		Assessment for Preliminary		
00	History	Environmental Assessment	May 1 1009	
99	History	Environmental Assessment	May 1, 1998	
		Deminian Quer Balm and Bines Baul		
100		Dominion Over Palm and Pine: Paul	0004	
100	History	Squibb and His Students	2001	Gary Lewis
		Emerging from the Ice Age: early		
		Holocene Occupations on the		
		California Central Coast: a		
		Compilation of Research in Honor of		San Luis Obispo County
	History	Roberta Greenwood	2004	Archaeological Society
102	History	Guide to Historic Cambria		Carol Adams
		History of San Luis Obispo County,		
		California, with Illustrations and		
		Biographical Sketches of its		
103	History	Prominenet Men and Pioneers	1883	Myron Angel
		Inventory and Assessment of Historic		
		Properties for the Santa Rosa Creek		
104	History	Trail Project	March, 2003	Gibson's Archaeological Consultin
	History	Memories of Cambria		Marjan Swantek
105		Memories of the Land: Place Names		
106	History	of San Luis Obispo County	1994	Mark Hall-Patton
106	i listory	or San Luis Obispo County	1334	
	Lister	Objene te grad During 7. Ob	1070	Deberte Originali
	History	Obispeño and Purismeño Chumash	1978	Roberta Greenwood
107				
	History	Our Cambria: Intimate Glimpses of a Rare Town		Irina Wilson

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
85			
	Seismotectonics of the Central California Coast		
	Ranges		
87		Blackgold.org	
88		Blackgold.org	Cal Poly State
			University; Physics
89	Special Paper 292		Department
90			
91		Blackgold.org	
		http://www.tcsn.net/sloarchaeology/1 2,000.pdf	
92		2,000.pui	
93			
93			Cal Poly State University
94		Blackgold.org	Library-Special Collections
			Cal Poly State University
95		Blackgold.org	Library-Special Collections
			Collections
96		Blackgold.org	Cal Poly State University
			Library-Special
97			Collections
98		Blackgold.org	
			CCSD resource #11;
99			Bookcase A; Shelf 1
			Cal Poly State University Library-Special
100			Collections
101		Blackgold.org	
102		Blackgold.org	
103		Blackgold.org	
103			
104			
104		Blackgold.org	
106		Blackgold.org	
	In R.F. Heizer, vol. ed., Handbook of North		
107	American Indians. Vol. 8: California.		
108		Blackgold.org	

REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
100	History	Russ Leadabrand "sez"	1991	
109	mistory	Russ Leadabrand Sez	1991	
		The Cambria Forest: Reflections on		
110	History	its Native Pines and its Eventful Past		Taylor Coffman
111	History	The Cambrian		
		The Names and Locations of Historic		
110	History	Chumash Villages (assembled by Thomas Blackburn)	1075	Chaster King
112	History		1975	Chester King
113	History	Vision Revision: from Cambria	1981	Paul Squibb
		Where the Highway Ends: A History		
		of Cambria, San Simeon and the		
114	History	Ranchos		Geneva Hamilton
	Hydrology	Analysis of Borehole Extensometer	1060	ES Bilov
115	Hydrology	Data from Central California Cambria Drainage and Flood Control	1969	F.S. Riley
116	Hydrology	Study	November 1, 2003	
	riyarology	Cambria Drainage and Flood Control		
117	Hydrology	Study	February 1, 2004	
		Draft Report for Flood Mitigation in		
118	Hydrology	the West Village of Cambria	February 16, 2000	
119	Hydrology	Groundwater Recharge Project	December 1, 1991	
120	Hydrology	High School Well	1979	
120	пушоюду	Hydrogeology, Water Quality, Water	1979	
		Budgets, and Simulated Responses		
		to Hydrologic Changes in Santa		
		Rosa and San Simeon Creek Ground-		
		Water Basins, San Luis Obispo		Eugene B. Yates and Kathryn M. Van
121	Hydrology	County, California	1998	Konyenburg
		Hydrologic and Hydraulic Analysis for		
100	l hudura la anu	FEMA CLOMR Application, Cambria,	Contombox 0005	Quests Engineering Corneration
122	Hydrology	California Hydrologic Evaluation of Design and	September 2005	Questa Engineering Corporation
		Impacts of CCSD Proposed		
123	Hydrology	Groundwater Recharge Project	November 25, 1991	
	, , ,	,	,	
124	Hydrology	Rainfall Data 1973	1973	
		San Luis Obispo County Hydrologic		
	l hushas l	Report, Water Years 2001-02 and	May 40, 0005	
125	Hydrology	2002-03	May 16, 2005	County of San Luis Obispo State of California Department of
		San Luis Obispo County		Water Resources Division of
126	Hydrology	Investigation	1958	Resources Planning
.20		SWRCB-CA Division of Water Rights		
		San Simeon & Santa Rosa Creek		
127	Hydrology	Underflow	May 19, 1987	
		The Role of Ground Water in		
400	Hydrology	Generating Streamflow in Headwater	Fobruary 2007	Thomas C. Winter
128	Hydrology	Areas and in Maintaining Base Flow Water Supplies for the Central	February, 2007	Thomas C. Winter
120	Hydrology	California Coastal Area	May 1, 1969	
123		Water Well Completion Report for		
130	Hydrology	CCSD Well SR4	January 1, 2001	
131	Hydrology	WWTP Rain Gage Data	1985-86	
		0000 Managament Breaties Ob		Regional Water Outlity Outlity
100	Land Use	2006 Management Practice Checklist Update Summary Report	June, 2007	Regional Water Quality Control Board
132	Land USC	opuale ourninary hepott	00110, 2007	Dodiu

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
			Cal Poly State University
			Library-Special
109			Collections
			Cal Poly State University Library-Special
110		Blackgold.org	Collections
110			Cal Poly State University
111			Library
			· · ·
112			Cal Poly State University
			Library-Special
113			Collections
114		Blackgold.org	
115			
.10			CCSD resource #322;
116			Bookcase C; Shelf 4
			CCSD resource #323;
117			Bookcase C; Shelf 4
118			CCSD resource #534; Bookcase F; Shelf 3
110			CCSD resource #156;
119			Bookcase B; Shelf 2
			CCSD resource #446;
120			Bookcase D; Shelf 3
121	Water-Resources Investigations Report 98-4061		Greenspace
122	Creek bypass channel to reduce flooding in West Village.		
100			CCSD resource #159;
123			Bookcase B; Shelf 2 CCSD resource #456;
124			Bookcase D; Shelf 3
		http://www.slocountywater.org/site/W	,
		ater%20Resources/Reports/Hydrolog	
125		ic%20Report%202002.pdf	
126		Blackgold.org	
			CCSD resource #352;
127			Bookcase D; Shelf 1
		http://www.blackwell-	
		synergy.com/doi/abs/10.1111/j.1752-	
128		1688.2007.00003.x	
			CCSD resource #355;
129			Bookcase D; Shelf 1
130			CCSD resource #371; Bookcase D; Shelf 1
130			CCSD resource #457;
131			Bookcase D; Shelf 3
		http://www.waterboards.ca.gov/centra	
100		lcoast/AGWaivers/documents/2007	
132		6_11_ChecklistReport_000.pdf	

REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
				San Luis Obispo County Department
133	Land Use	Annual Resource Summary Report	2006	of Planning and Building
		Cambria Prks, Recreation and Open		
134	Land Use	Space Needs Assessment	October 11, 1992	
		Coastal Zone Land Use Ordinance -		
		Title 23 of the San Luis Obispo		
135	Land Use	County Code	January, 2006	County of San Luis Obispo
		Draft Environmental Impact Report		
		for Growth Management Ordinance		
136	Land Use	Amendments	June, 2005	County of San Luis Obispo
		Final EIR for Land Use Element &		
		Local Coastal Plan SLO County		
137	Land Use	General Plan	December 10, 1996	
		Final Environmental Impact Report:		
		Cambria Ranch Grading Permit and		
		Development Plan: ED87-41/ED88-		
138	Land Use	127 (D870020D)	May, 1989	QUAD Consultants
	l	Inactive Metal Mines in Four San		
139	Land Use	Luis Obispo County Watershed	June, 1999	
		Land Use Element - Circulation		
		Element - San Luis Obispo County		
		General - Annual Resource		San Luis Obispo County Department
140	Land Use	Summary Report	2006	of Planning and Building
		Land Use Element & Local Coastal		San Luis Obispo County Planning
141	Land Use	Plan-North Coast Planning Area	April, 1988	Department
		Land Use Ordinance - Title 22 of the		
142	Land Use	San Luis Obispo County Code	January, 2008	County of San Luis Obispo
143	Land Use	North Coast Area Plan	March 1, 1988	
		Surface Water Degradation in North		
		West San Luis Obispo County,		
144	Land Use	California	December, 1993	
	1			
145	Land Use			Colifornia Department of Forestry
				California Department of Forestry
	DI		2225	and Fire Protection/San Luis Obispo
140	Plan	2005 Fire Management Plan 2006 North Coast Transit Plan:	2005	County Fire Department
4 4 7	Plan		lanuary 10, 0007	San Luis Obispo Council of
147	Plan	Cambria Component	January 18, 2007	Governments
		A General Plan for the Community of		San Luis Obispo County Planning
1/0	Plan	Cambria	1964	Department
148	1 1011		1004	California Department of Food and
		California Noxious and Invasive		Agriculture and California Invasive
1/0	Plan	Weed Action Plan	September, 2005	Weed Awareness Coalition
149			2003	
150	Plan	California Water Plan Update	2005	Department of Water Resources
130			2000	
151	Plan	Cambria 2010 Community Plan	1989	Cambria Community Services District
.51		Cambria Community Services District		
152	Plan	Code	August 27, 2006	Cambria Community Services District
.02		Cambria Design Plan Public Review		
153	Plan	Draft	January 7, 2000	
.55	···			1
154	Plan	Cambria Residential Design Plan	May 9, 2002	
.04		Cambria Village Center, Cambria,		1
		California: Draft Supplemental		
155	Plan	Environmental Impact Report	February, 1994	Morro Group, Inc.
133			, oordary, 100+	
		Cambria Village Center: Draft		
156	Plan	Additional Information	March, 1990	Morro Group, Inc.
130				

DECEDENCE #	DESCRIPTION	WEDGITE	
REFERENCE #		WEBSITE http://www.slocounty.ca.gov/Assets/P	OTHER SOURCE
		L/pdfs/Annual+Resource+Summary+	
133		Report.pdf	
155			CCSD resource #190;
134			Bookcase B: Shelf 3
104			
		http://www.slocounty.ca.gov/planning	
		/General_Plan_Ordinances_and_El	
135		ements/Land_Use_Ordinances.htm	
136			
			CCSD resource #228;
137			Bookcase B; Shelf 5
	Highway engineering, Real estate development,		
	Land use, Regional planning, Environmental		Cal Poly State University-
138	impact statements, Cambria ranch		Reference Section
139	Surface water quality impact and remedial options		David Schwartz
140			
141			
		http://www.slocounty.ca.gov/planning	
		/General_Plan_Ordinances_and_El	
142		ements/Land_Use_Ordinances.htm	0000
140			CCSD resource #62;
143			Bookcase A; Shelf 3
1//	Santa Rosa Creek Inactive Metal Mining Report		David Schwartz
144	San Luis Obispo Planning and Building		David Ochwartz
	Department Website. CEQA, land use,		
	environmental, planning and other pertinent	http://www.slocounty.ca.gov/planning	
145	information for local watershed plans.	.htm	
		http://cdfdata.fire.ca.gov/fire_er/fpp_	
146		planning plans details?plan id=91	
		planning plane detailer plannie et	
147			
			Cal Poly State University-
148			Reference Section
		http://www.cdfa.ca.gov/phpps/ipc/nox	
		weedinfo/pdfs/noxious_weed_plan.pd	
149		f	
		http://www.waterplan.water.ca.gov/in	
150		dex.cfm	
151			
		http://municipalcodes.lexisnexis.com/	
152		codes/cambria/	
			CCSD resource #212;
153			Bookcase B; Shelf 4
			CCSD resource #327;
154			Bookcase C; Shelf 5
			Cal Daly Otata University
			Cal Poly State University-
155	City Planning, Land Use		Reference Section
			Cal Daly Otata Universit
150	City Planning Land Lice		Cal Poly State University-
156	City Planning, Land Use		Reference Section

REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
		Cambria Village Center: Draft		
157	Plan	Environmental Impact Report	1988	Morro Group, Inc.
		Cambria Village Center: Draft		
		Subsequent Environmental Impact		
158	Plan	Report	December, 1999	Morro Group, Inc.
4 5 0	Disa	Cambria Village Center: Final	1000	Marina Oracina Inc.
159	Plan	Environmental Impact Report	1989	Morro Group, Inc.
				County of San Luis Obispo Planning
160	Plan	Combria Villago, Special Report	June, 1972	Department
100	1 1011	Cambria Village, Special Report Draft Environmental Impact Report,	Julie, 1972	Department
161	Plan	Fiscalini Ranch Development Plan	1981	Envicom Corporation
	i iuii	Draft Environmental Impact Report:	1001	
		Cambria Ranch Grading Permit and		
		Development Plan: ED87-41/ED88-		
162	Plan	127 (D870020D)	December, 1988	QUAD Consultants
		East-West Ranch Public Access and		
163	Plan	Resource Management Plan	2002	Rincon Consultants, Inc.
		General Plan and Land Use Element		San Luis Obispo County Department
164	Plan	Draft EIR	1994	of Planning and Building
165	Plan	Master Development Plan	November 20, 1995	
166	Plan	Master Development Plan	May 23, 1994	
		Mid-State Bank Cambria		
		Development Plan Draft Subsequent		
167	Plan	Environmental Impact Report	August, 2001	Douglas Wood & Associates
168	Plan	North Coast Area Plan	January 5, 1998	
100	Diam	North Coost Area Dian & Droft EID		
109	Plan	North Coast Area Plan & Draft EIR North coast Area Plan Project		
170	Plan	Description	January 1, 2000	
170	FIGII	Description	January 1, 2000	
171	Plan	North Coast Area Plan Update	January 15, 1998	
	i iuii	North Coast Area Flan Opdate	bandary 10, 1000	
172	Plan	Parks & Recreation Master Plan	August 2, 1988	
=		Parks, Recreation & Open Space	, luguot 2, 1000	
173	Plan	Master Plan	November 21, 1994	
		Periodic Review of the San Luis	,	
174	Plan	Obispo County Local Coastal Plan	February 2, 2001	California Coastal Commission
175	Plan	Policy Statement	October, 1976	Cambria Advisory Council
		San Luis Obispo County Master		
176	Plan	Water Plan	1998	County of San Luis Obispo
	L	SLO County North Coast Area Plan		
177	Plan	Update Vol. I & II	January 13, 1998	
		Supplemental Environmental Impact		
	Diam	Report: Cambria Village Center,	hung dood	
178	Plan	Cambria, California	June, 1994	Morro Group, Inc.
1-0	Dian	Water Meeter Dian		DRE Consulting
1/9	Plan	Water Master Plan Water Resources and Land Use		RBF Consulting
100	Plan	Planning: Coping with Limits in	1097	Kimborly App Hanson
180	Plan	Cambria, California	1987	Kimberly Ann Hansen
		Growth Management Ordinance-Title		
		26 of the San Luis Obispo County		
101	Regulation	Code	2007	County of San Luis Obispo
101	riegulalion	Code	2007	County of San Luis Obispo

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
157	City Planning, Land Use		Cal Poly State University- Reference Section
158	City planning, Flood control, Land use, Environmental conditions		Cal Poly State University- Reference Section
159			Cal Poly State University
160	Historic districts, Central business districts, Regional planning, Land use		Cal Poly State University- Reference Section
161			
	Highway engineering, Real estate development, Land use, Regional planning, Environmental impact statements, Cambria ranch		Cal Poly State University- Reference Section
162		http://www.cambriacsd.org/Library/W ebsite/services/parks/Mgm_%20Plan _%205-22-03.pdf	
164			
164			CCSD resource #213;
165			Bookcase B; Shelf 4 CCSD resource #225; Bookcase B; Shelf 5
100			BOOKCase B, Shell 5
167	City and regional planning, Land use, Environment		Cal Poly State University- Reference Section
168			CCSD resource #317; Bookcase C; Shelf 4
169			CCSD resource #313; Bookcase C; Shelf 4
170			CCSD resource #295; Bookcase C; Shelf 4
171			CCSD resource #318; Bookcase C; Shelf 4
172			CCSD resource #194; Bookcase B; Shelf 3
173			CCSD resource #189; Bookcase B; Shelf 3
174			
175	Regional planning, Land use		Cal Poly State University- Reference Section
176		http://www.slocountywater.org/site/Fr equent%20Downloads/Master%20W ater%20Plan/index.htm	
177			CCSD resource #185; Bookcase B; Shelf 3
	City planning, Flood control, Land use, Environmental impact statements		Cal Poly State University- Reference Section
	Cambria Community Services District Water Master Plan	http://www.cambriacsd.org/cm/Servic es/Engineering/water%20master%20 plan.html	
180	Water supply, Water resource development		Cal Poly State University- Main Collection
		http://www.slocounty.ca.gov/Assets/P L/Ordinances/Title+26+- +Growth+Management+Ordinance.p	
181	County growth regulations	df	1

REFERENCE #	SUBJECT	TITLE	DATE	AUTHOR
	-			
182	Regulation			Environmental Protection Agency
183	Regulation			Environmental Protection Agency
100	riogulation			State Water Resources Control
184	Regulation			Board
185	Regulation	Effluent Disposal Field & Stream		Environmental Protection Agency
186	Restoration	Restoration Improvement Project	August 1, 1993	
		Santa Rosa Creek and Stream Bank		
187	Restoration	Restoration Project	April 2, 203	
188	Restoration	Santa Rosa Creek Enhancement Plan 1993	1993	Prunuske Chatham, Inc.
100	restoration	Santa Rosa Creek Streambank	1000	
189	Restoration	Protection Project	April 9, 1998	
	_	Santa Rosa Creek Trail and Stream		
190	Restoration	Bank Restoration Project Steelhead Restoration and	April 2, 2003	RBF Consulting
101	Restoration	Management Plan for California	1996	D. McEwan and T.A. Jackson
		Grading, Drainage, Erosion and		
192	Soils	Sediment Control	1998	
		Sediment Yield Variations in		
193	Soils	Northern Santa Lucia Mountains	2000	Barry Hecht
		Soil Characteristics of Blue Oak and		
	Soils	Coast Live Oak Ecosystems	1996	Denise Ellen Downie
195	Soils	Soil Data Viewer		USDA, NRCS
196	Soils	Soil Survey Manual	October, 1993	US Department of Agriculture
				United States Department of
		Soil Survey of San Luis Obispo		Agriculture, Soil Conservation
197	Soils	County, California, Coastal Part	1984	Service
		Soil Survey of San Luis Obispo		United States Department of Agriculture, Soil Conservation
198	Soils	County, California, Paso Robles Area	1977	Service
		The Influence of Annual Precipitation,		
		Topography, and Vegetative Cover on Soil Moisture and Summer		
199	Soils	Drought in Southern California	1983	Miller, Poole and Miller
				USDA NRCS Watershed Planning
		Cambria Erosion and Sediment	Ammended June 18,	Services, Engineering, and Resource
200	Transportation	Study	1998	Technology Staffs
		Embankment Failure Investigation of		
		California State Highway 46 at Post		
201	Transportation	Mile 4.15	2000	David Serafini
		Slope Stability Investigation on		
		California Highway 46 Post Mile 0.5		
202	Transportation	East of Cambria	December, 1995	John K. Sanchez
203	Water quality	Annual Water Quality Report County of San Luis Obispo	1989	Cambria Community Services District
		Stormwater Pollution Prevention and		
204	Water quality	Discharge Control Ordinance	2006	County of San Luis Obispo
		Draft Central Coast Water Quality		
	Motor suchts	Data Synthesis, Assessment, and		Copley, DeBeukeleer erst Harver
205	Water quality	Management (SAM) Project		Conley, DeBeukelaer and Hoover
		National Pollutant Discharge		
		Elimination System (NPDES) Phase		
		II Storm Water Management Plan		
206	Water quality	County of San Luis Obispo	2006	County of San Luis Obispo

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
		http://www.epa.gov/lawsregs/laws/es	
182	Endangered Species Act	a.html	
		http://www.epa.gov/lawsregs/laws/cw	
183	Federal Clean Water Act	a.html	
104	Deuten Colorino Water Quality Constral Act	http://www.swrcb.ca.gov/water_laws/ docs/portercologne.pdf	
184	Porter Cologne Water Quality Control Act	docs/ponercologne.pdl	
185	The California Environmental Quality Act (CEQA)	http://ceres.ca.gov/ceqa/	
100			CCSD resource #160;
186			Bookcase B; Shelf 2
			CCSD resource #440;
187			Bookcase D; Shelf 3
			CCSD resource #148;
188			Bookcase B; Shelf 1
189			CCSD resource #496; Bookcase F; Shelf 1
109			DUURCASET, SHEILT
190			Greenspace
191			
			CCSD resource #219;
192			Bookcase B; Shelf 5
		http://www.balancehydro.com/pdf/He	
		cht,%202000,%20Sed%20Yield%20 N.%20Lucia%20Mts.,%20Balance%2	
193		099066.pdf	
100			
194	Masters Thesis		Cal Poly State University
195	Website with supporting soils data	http://soildataviewer.nrcs.usda.gov/	
		http://soils.usda.gov/technical/manua	Government Printing
196		V	Office (GPO)
	In cooperation with University of California Agricultural Experiment Station		
	In cooperation with University of California Agricultural Experiment Station		
199	-		
			CCSD resource #151;
	Erosion study, mostly of roads, in the Lodge Hill		Bookcase B; Shelf 2;
200	community of Cambria.		USLT RCD Office
			California Polytechnic
			State University,
201	Senior project		Kennedy Library, Senior Project
201			California Polytechnic
			State University,
			Kennedy Library, Senior
202	Senior project		Project
203		http://www.elecoupty.co.gov/Accete/D	
		http://www.slocounty.ca.gov/Assets/P W/stormwater/Draft IDDE Ordinanc	
204		e 12-07.pdf	
204			
	Prepared with the Monterey Sanctuary/ Sanctuary		
205	Integrated Monitoring Network		
205	Integrated Monitoring Network		
205	Integrated Monitoring Network		
205	Integrated Monitoring Network	http://www.slocounty.ca.gov/Assets/P	

REFERENCE #			DATE	AUTHOR
REFERENCE #	SUBJECT	TITLE Results of Santa Rosa Creek Visual	DATE	AUTHOR
		Field Survey and Water Quality		
207	Water quality	Sampling 6/2000	September 1, 2000	
207	water quality	Results of Santa Rosa Creek Visual	September 1, 2000	
000	Mater evality	Field Survey and Water Quality		
208	Water quality	Sampling 6/2001 Storm Water Pollution Prevention	April 8, 2002	
	Mater evality	Plan	Contombor 1, 0000	
209	Water quality		September 1, 2003	
010		Stormwater Management Area		
210	Water quality	Assessments and Maps		
		Quefe e e Mister Manitaria e 1000.01	1004	
211	Water quality	Surface Water Monitoring 1993-94	1994	
		The Dela of Lie advictory Other area in		
010	Mater evality	The Role of Headwater Streams in	2007	Alexander et al
212	Water quality	Downstream Water Quality	2007	Alexander, et al
		Western 2020 Community Operations		
		Water 2006: Consumer Confidence	0000	
213	Water quality	Report	2006	Cambria Community Services District
		Water Quality Control Plan (Basin		Regional Water Quality Control
214	Water quality	Plan) Central Coast Region	1994	Board
				California State Water Resources
215	Water quality		2000	Control Board
				California State Water Resources
216	Water quality		2000	Control Board
217	Water quality			
				California State Water Resources
218	Water quality		2001	Control Board
		Administrative Final EIR for Santa		
219	Water Rights	Rosa Creek Water Rights Project	April 1, 1987	McClelland
		Exhibit to Analysis of CCSD Water		
		Rights in Santa Rosa Creek 1/8/01		
220	Water Rights	Vol. I & II	January 8, 2001	
		Final Impact Report for Santa Rosa		
221	Water Rights	Creek Water Rights Project	November 1, 1987	McCelland Engineers, Inc.
		Riparian Enhancement, Revegetation		
222	Water Treatment	and Screening Program	Revised January 1993	
		Santa Rosa Creek Sewer Line		
223	Water Treatment	Crossing	April 1, 1982	
		Assessment of Long-Term Water		
224	Water Use	Supply Alternatives CCSD	April 1, 2003	
		CCSD Water Conservation and		
225	Water Use	Sewer Study and Appendices	March 12, 1992	
226	Water Use	Drought Management Plan	March 1, 1989	
227	Water Use	Master Water Plan	August, 1998	
228	Water Use	Urban Water Management Plan	June 12, 1989	Stratford
				California Department of Water
229	Water Use	Urban Water Use in California	1983	Resources
				California Department of Water
230	Water Use	Vegetative Water Use in California	1975	Resources
231	Water Use	Water Shortage Contingency Plan	June 22, 1992	
232	Water Use			
		Public Access and Wetlands: Impact		
233	Wetlands	of Recreational Use	1989	
		Status and Trends of Wetlands in the		
		Conterminous United States 1998 to		
234	Wetlands	2004	2006	T.E. Dahl

REFERENCE #	DESCRIPTION	WEBSITE	OTHER SOURCE
207			CCSD resource #237; Bookcase C; Shelf 1
208			CCSD resource #238; Bookcase C; Shelf 1
209			CCSD resource #551; Bookcase F; Shelf 3
210		http://www.slocounty.ca.gov/Assets/P W/stormwater/appa_a.pdf	
		W/Stornwater/appa_a.pui	CCSD resource #155;
211		http://www.blackwell-	Bookcase B; Shelf 2
212		synergy.com/doi/abs/10.1111/j.1752- 1688.2007.00005.x	
213	Brochure describes water resources, water quality and conservation techniques for the area.	http://www.cambriacsd.org/Library/W ebsite/services/water/2006%20CCR %20brochure.pdf	
214			
	Nutrients	http://www.swrcb.ca.gov/tmdl/backgr ound.html	
216	Nutrients	http://www.swrcb.ca.gov/nps/docs/nu trient_tac.doc	
217	State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Data Management	http://www.swrcb.ca.gov/swamp/	
218	TMDL	http://www.swrcb.ca.gov/tmdl/docs/t mdl_factsheet	
219			CCSD resource #350; Bookcase D; Shelf 1
220			CCSD resource #349; Bookcase D; Shelf 1
221			CCSD resource #360; Bookcase D; Shelf 1
			CCSD resource #87;
222			Bookcase A; Shelf 3 CCSD resource #90;
223			Bookcase A; Shelf 3 CCSD resource #29;
224			Bookcase A; Shelf 2 CCSD resource #161:
225			Bookcase B; Shelf 2
226			CCSD resource #258; Bookcase C; Shelf 2
227		http://www.slocountywater.org/site/Fr equent%20Downloads/Master%20W ater%20Plan/index.htm	
228			CCSD resource #443; Bookcase D; Shelf 3
	Bulletin 166-3		
	Bulletin 133-3		
231			CCSD resource #259; Bookcase C; Shelf 2
	California Department of Water Resources California Irrigation Management Information Systems (CIMIS)	http://www.cimis.water.ca.gov/cimis/w elcome.jsp	
232		leiconne.jsp	CCSD resource #191; Bookcase B; Shelf 3
233			DUURUASE D, SHEII S
234			