The Benefits of Investing In Conservation... ...and the Costs of Not Investing

Developed by
Daniel Mountjoy

USDA - Natural Resources Conservation Service
Laura Tourte,
University of California Cooperative Extension

Soil is the Biological Capital of Production

Is your soil capital appreciating through soil building?

Is your soil capital
depreciating through erosion, compaction, or loss of organic matter?

Maintaining Soil Quality
 = Increased Efficiency of Inputs
 = Water Quality Protection

= increased irrigation efficiency
= improved nutrient efficiency
= less wind and water erosion
= increased water infiltration
= improved soil tilth
= deeper rooting depth and crop growth (higher yields)

Investing in the soil makes good business sense.....And it protects water quality!

How do you know if you are loosing soil capital?

Soil forms at a rate of 2 to 5 tons per year per acre.
You can't see soil erosion of less than 15 tons per acre per year.
But that is 3 to 5 times more than the natural rate of soil formation.
2 out of every 9 acres of irrigated farm land in California are losing soil faster than it can be formed.

Internal vs. External Costs

Internalized Costs: Financial costs to the business

- Crop loss or decline in productivity
- Increased cost of production inputs
- Damage repair
- Investments in land and property

Externalized Costs: Economic costs to society

- Repair and maintenance of public infrastructure
- Impairment of water quality
(loss of beneficial use)
- Loss of fisheries or wildlifie habitat

1. On farm damage and lost productivity

2. Damage to Private Property Downstream

Runoff impacts

Sediment impacts

3. Damage to public property

Sediment filled ditches and culverts increase flooding

4. Non-monetary External Costs

Summary of Economic Impacts of Erosion in North Monterey County

Annual Costs

Long-term road impacts Road maintenance
Public land impacts
Loss of Wetlands
Mosquito Abatement
Harbor Dredging
Drinking Water Quality TOTAL:
Cost per Elkhorn farmer:
Recreational Value
Flood Control
Commercial Fisheries
\$ 160,000
24,000
10,350
10,000
6,270
1,750,000
290,000
\$570,620
\$2,282
2,000,000
70,000

Invest in conservation rather than paying

 the costs of regulations, fines, and lawsuits

Elkhorn Road turn lane damage from farm runoff

$\$ 25,000$

Sediment Basin: \$5,000

Vegetated Ditch Planting Investment VS. Annual Ditch Repair

Consider the

cost of maintenance

when comparing alternatives

Underground Outlet - Partial Budget Summary 400 linear feet

Costs			Benefits			
Additional Costs	Year 1	Year 2-5	Additiona Returns		Year 1	Year 2-5
Installation, Operation \& Maintenance	5,348	156	Yield Improven		1,408	1,408
Reduced Returns (acreage removed)	570	570	Reduced (preventio repair)	Costs n and	650	650
Subtotal	\$5,918	\$726	Subtotal		\$2,058	\$2,058
			Year 1 Year 2-5			
Net Change in Income			-\$3,860	Year 2-5		

Estimating Costs and Potential Benefits Example

Estimating Costs and Potential Benefits Example

Estimating Costs and Potential Benefits Example

Why Costs \& Benefits May Differ...

Examples:

- Labor rates
- Equipment type and use
- Material type and cost
- Slope of land and erosion potential
- 'Suite’ of on-farm conservation practices
- Number of storm events per year

U.C. COOPERATIVE EXTENSION

Table 2. Detail of Representative Installation, Operation \& Maintenance Costs \dagger Underground Outlet (400 Linear Feet) - Central Coast 2003

Operation	Non-Mach Labor		Machine Labor		Custom Work		Material Cost$(\$ / 400 \mathrm{LF})^{\ddagger}$	Total Cost (\$/400 LF) ${ }^{\pi}$	Your Cost (\$/400 LF)
	$\begin{gathered} \mathrm{Hrs} / \\ 400 \mathrm{LF} \end{gathered}$	$\begin{gathered} \text { Cost/ } \\ 400 \mathrm{LF} \end{gathered}$	$\begin{gathered} \text { Hrs/ } \\ 400 \text { LF } \end{gathered}$	$\begin{gathered} \text { Cost/ } \\ 400 \mathrm{LF} \end{gathered}$	$\begin{gathered} \mathrm{Hrs} / \\ 400 \mathrm{LF} \end{gathered}$	$\begin{gathered} \text { Cost/ } \\ 400 \mathrm{LF} \end{gathered}$			
Installation (Year 1):									
Layout \& Mark Site	3.0	40					98	138	
Trench (Backhoe or Trencher)					8	440		440	
Install Pipeline	5.0	67					4,270	4,337	
Fill In \& Compact Site			8.0	167			$77^{\text {§ }}$	245	
Subtotal		107		167		440	4,445	5,160	
Annual Operation \& Maint. (Years 2-5):									
Uncover to Check, Berm \& Re-Cover	8.0	107						107	
Channel/Check Water - Sandbags	1.00	13					8	21	
Clean Downspout Inlets					. 5	28		28	
Subtotal		120				28	8	156	
Interest on Operating Capital @ 7.4\%								32	
Total Costs Per Unit - Year 1							4,453	5,348	
Total Costs Per Unit Per Year - Yrs 2-5							8	156	
Total Costs Per Linear Foot - Year 1							11	13	
Total Costs Per Linear Foot - Yrs 2-5							0*	0 *	

${ }^{\dagger}$ Costs are per 400 linear feet.
\ddagger Detail of material costs located in Table 3. Representative Material Costs.
${ }^{1}$ May not sum due to rounding.
§ Fuel, lube and repairs.

* $\$ 0=$ Cost is negligible when represented on a linear foot basis.

Conservation Practices \Rightarrow Completed Studies \downarrow

- Grassed Farm Roads
- On-Farm Row Arrangement
- Non-Engineered Grassed Waterway
- Non-Engineered Water-Sediment Control Basin
- Underground Outlet
- Annually Planted Cover Crop
- Annually Planted Grassed Filter Strip
- Critical Area Planting
- Perennial Hedgerow Planting

Start out with small management changes, then build on successes.
 'one road at a time'

Furrow Seeding

Look for practices that have multiple benefits for farm management and productivity

Sediment Detention and Tailwater recovery

Look beyond the fence line and work with surrounding neighbors

Working with neighbors in a Watershed

Total Cost to farmers to eliminate problem: $\$ 10,260$ with pipeline
$\$ 3,100$ Basin
$\$ 2,800$ Basin
$\$ 1,700 \mathrm{Bas}$ п

Sharing the Costs

Who should pay for conservation investments? Who should pay for external costs?

- the farmer?
- the landowner?
- a partnership between landowner and tenant?
- a local tax assessment district?
- all taxpayers?
- all of the above?

